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GWAS

In Genome Wide Association Studies (GWAS) we try to locate
mutations that are causal for a particular trait by comparing
genomic information from individuals who are believed to have the
trait (cases), with information from individuals who are believed to
not have the trait (controls).

The goal is to find sites in the genome which statistically
distinguish the cases from the controls. The method considers each
site separately. This has worked well for simple traits caused by a
single particular mutation at a single site (pure Mendelian traits).



Complex Traits

However, for many complex traits, involving more than one site, or
mutations with small effect, or with large errors in determining
who has the trait, GWAS have only recovered a small proportion of
the variance in trait prevalence known to be caused by genetics.
Ex. Diabetes II.

The most common explanation is the presence of multiple
interacting or causal mutations that cannot be identified
individually due to a lack of statistical power.

But, the mutations are often concentrated in a small number of
genes, or loci. Many are thought to be Compound Heterozygous
traits, a subset of the recessive traits.



Compound Heterozygous (CH) Trait

CH
Xg (SNPs): 0 1 1 0 0 0 1

H1,1 : 1 0 1 0 1 0 0
H1,2 : 1 1 0 0 1 1 0 1

H2,1 : 1 0 0 1 1 0 0
H2,2 : 0 1 1 0 1 0 1 0

Table : Vector Xg and two haplotype pairs. CH(1) is 1, and CH(2) is 0.

In this talk, we discuss an GWAS approach to finding loci that are
causal for CH traits.



Formal Model of a CH-trait at a Causal Locus

Binary vector Xg denotes which of the m SNP sites are causal
(i.e., contribute to the CH-trait), and which are not. H is the set
of haplotype pairs for n individuals.

Given Xg and H, we define CH(i):

CH(i) = [
∨

c

(Xg (c) ∧ Hi ,1(c))] ∧ [
∨

c

(Xg (c) ∧ Hi ,2(c))] (1)

In words, CH(i) will have value 1 if and only if there is a SNP site
c with Xg (c) = 1, where site c in haplotype Hi ,1 also has value 1;
and there is also a site c ′ (possibly c) with Xg (c ′) = 1, where site
c ′ in haplotype Hi ,2 also has value 1.



CH

We let CH denote the vector of length n, containing the values
CH(1), ...,CH(n).

Phenotypes The phenotypes of the individuals are recorded by the
observable vector T . The cases have T -value of 1; the controls
have T -value of 0.

CH + noise → T .

Without false positive or negatives, T = CH. But there are always
some false positives or negatives, so T will differ to some extent
from CH.

In the simulations I will discus later in the talk, about 30% of the
cases (T value of 1) are false positives, and about 5% of the
controls (T value of 0) are false negatives, at a causal gene.
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Hidden Phenotypic Distance

Definition: Given CH (which is a function of Xg and H), the
Hidden Phenotypic Distance is the Hamming Distance (number of
positions where the vectors differ) between CH and T . This is
written HPD(CH,T).

Without false positives or negatives, HPD(CH,T) = 0.



Compound Heterozygous (CH) Trait

CH phenotype T
Xg (SNPs): 0 1 1 1 0 0 1

H1,1 : 1 0 1 0 1 0 0
H1,2 : 1 1 0 0 1 1 0 1 1

H2,1 : 1 0 0 1 1 0 0
H2,2 : 0 1 1 0 1 0 1 1 0

Table : Hidden Phenotypic Distance is the Hamming Distance between
vectors CH and T . In this example, it is 1.



The Phenotypic Distance Problem

Definition: Given only H and T , the Phenotypic Distance
Problem is the problem of determining a vector X̃g , which induces

a vector C̃H to Minimize the Hamming Distance between C̃H and
T . This is written PD(H,T).

Loosely, PD(H,T) measures how well the phenotypes fit the CH
model, or, the deviation from what is expected (under the
CH-model), and what is observed.

We want to compute Phenotypic Distance for up to n = 4000
haplotype pairs and n = 250 sites.



Computing PD(H,T)

Enumeration of 2m possible X̃g is infeasible.

But Integer Linear Programming (ILP) works efficiently in practice
for this problem. Under 3 seconds for a causal gene, and under 1
minute for a non-causal gene, on a macbook pro (2.3 GH, 4 cpus,
$1500 to buy).



Integer Linear Programming (ILP)

In ILP, we translate the problem of computing PD(H,T) into a set
of linear inequalities on a set of binary variables, and a linear
objective function on a subset of the variables.

The particulars of the inequalities is where the magic resides. For
4000 haplotype pairs and 250 sites, the ILP has about 10,000
inequalities and 8,000 variables (this is modest size). The
translation from problem instance to ILP inequalities is written in
(really) bad and simple Perl.

Then we use a commercial ILP solver that finds the optimal values
of the variables. (GUROBI 6.0, free to academics and researchers)



An ILP Formulation for the Phenotypic Distance Problem

The ILP formulation is almost an immediate restatement of the
problem requirements, with only a couple of subtlties.

Recall that an Hi pair with T (i) = 1 is called a case, even though,
due to false-positives, indivdual i might not actually have the trait;
similarly an Hi pair with T (i) = 0 is called a control.



The ILP Inequalities for Cases

For each case Hi , the ILP formulation for the Phenotypic Distance
will have the following inequalities:

C̃H(i) ≤
∑

c: Hi,1(c)=1

X̃ (c)

C̃H(i) ≤
∑

c: Hi,2(c)=1

X̃ (c)

The first inequality ensures that for any case, C̃H(i) can be set to
1 only if some X̃ (c) is set to 1 for a column c where Hi ,1(c) = 1.

The second inequality says the similar thing for the second
haplotype of a case, i.e., for Hi ,2(c). So, for any case Hi , C̃H(i)

will be set to 1 only if the values of X̃ and Hi satisfy equation 1.



Errors from Cases

It follows that in an ILP solution,

[(the number of cases)−
∑

Hi a case

C̃H(i))]

is the number of cases (i.e., T (i) = 1), where C̃H(i) is set to 0.
That is, it is the number of errors in the solution, contributed by
the cases.

Next, we consider the inequalities for a control.



The ILP inequalities for Controls
Let fi be the number of columns, c , in Hi where Hi ,1(c) = 1, and
let si be the number of columns, c , in Hi where Hi ,2(c) = 1.

For each control Hi , the ILP formulation will have the three
inequalities:

∑

c: Hi,1(c)=1

X̃ (c) ≤ fi × Zi ,1

∑

c: Hi,2(c)=1

X̃ (c) ≤ si × Zi ,2

Zi ,1 + Zi ,2 − C̃H(i) ≤ 1

The first inequality ensures, for a control Hi , that Zi ,1 will be set

to 1 if there is a column c where X̃ (c) is set to 1 and Hi ,1(c) = 1.
The second inequality ensures, for a control Hi , that Zi ,2 will be

set to 1 if there is a column c where X̃ (c) is set to 1 and

Hi ,2(c) = 1. The third inequality ensures that C̃H(i) will be set to
1 if both Zi ,1 and Zi ,2 are set to 1.



The Converse

The converse, that for Hi a control, C̃H(i) will be set to 1 only if
those inequalities are satisfied, is not needed because the objective
function has the term +

∑
Hia control C̃H(i), and since the objective

is a minimization, C̃H(i) will be set to 0 for any control Hi , unless
doing so violates one of the three inequalities above.

The result is that in an optimal ILP solution,
∑

Hi a control C̃H(i) is

the number of Hi pairs where T (i) = 0, but C̃H(i) is set to 1.



The Objective Function

It follows that in an optimal ILP solution, the Hamming Distance
between C̃H and T is
[(The number of cases)−

∑
Hia case C̃H(i)] +

∑
Hia control C̃H(i).

So, the ILP formulation optimizes the objective function:

Minimize[(#ofCases)−
∑

Hia case

C̃H(i)] +
∑

Hia control

C̃H(i),

and hence the optimal solution has value exactly PD(H,T).

The formulation has at most 3n +m variables and at most 3n
inequalities, and so has modest size.



minZ
subject to:
+X5 + X109 + X131 + X167 + X215 + X227 − 6Z0, 1 ≤ 0
+X129− 1Z0, 2 ≤ 0
Z0, 1 + Z0, 2−W 0 ≤ 1
+X118 + X139− 2Z1, 1 ≤ 0
−0Z1, 2 ≤ 0
Z1, 1 + Z1, 2−W 1 ≤ 1
+X52 + X77 + X210 − 3Z2, 1 ≤ 0
+X196− 1Z2, 2 ≤ 0
Z2, 1 + Z2, 2−W 2 ≤ 1
−0Z3, 1 ≤ 0
+X7 + X127 + X130 + X167 + X215 + X227 − 6Z3, 2 ≤ 0
Z3, 1 + Z3, 2−W 3 ≤ 1
−X13− X63− X80− X114 − X192− X217 +W 4 ≤ 0
−X14−X36−X44−X45−X59−X74−X102−X115+W 5 ≤ 0
... about 10,000 more inequalities



The GWAS Context and Simulations

Let Tg denote the phenotype vector at a causal gene. In GWAS
simulations, we generate data for many genes, but use Tg as the
phenotype vector for all genes.



Identifying Causal Genes with GWAS

The computations distinguish causal genes from non-causal genes.

1. The phenotypic distance computed at a causal gene is
consistently and significantly less than the phenotypic distance
computed at every non-causal gene. Meaning: Causal genes fit the
CH-model better than non-causal ones.

2. The time needed at a causal gene is generally less than at a
non-causal gene.

3. Permutation tests (of Tg ) behave very differently at causal and
non-causal genes. Large increase in PD(H,Tg ) when Tg is
permuted at a causal gene g , but little change when permuted at a
non-causal gene.



sites HPD PD PD/SNP cases controls secs SNP-dist
233 890 879 3.77 2000, 2000 1.50 64

255 1374 1340 5.25 2000, 2000 4.11 85
239 1324 1301 5.44 2000, 2000 17.33 71
238 1348 1319 5.54 2000, 2000 4.77 77
241 1333 1313 5.44 2000, 2000 47.86 88
242 1337 1305 5.39 2000, 2000 9.67 79
269 1344 1300 4.83 2000, 2000 33.26 88
237 1381 1345 5.67 2000, 2000 13.39 82
236 1378 1345 5.69 2000, 2000 7.58 74
236 1320 1281 5.42 2000, 2000 5.27 83
237 1353 1320 5.56 2000, 2000 1.84 79
247 1297 1280 5.18 2000, 2000 9.61 61

Table : The first few datasets in a GWAS simulation. The first one is the
causal gene, and the others are non-causal.



c/p hp sites HPD PD/ub case con secs SNP-dist
c 400 153 91 86 200, 200 0.02 46
p 159 200, 200 0.10 71
c 400 155 96 85 200, 200 0.02 63
p 165 200, 200 0.19 67
c 400 162 80 75 200, 200 0.03 59
p 156 200, 200 0.19 63
c 400 145 100 90 200, 200 0.04 44
p 162 200, 200 0.30 59
c 400 178 91 75 200, 200 0.02 70
p 149 200, 200 0.11 71
c 400 172 99 85 200, 200 0.04 59
p 142 200, 200 0.32 78

AVG c 400 157.6 91.6 83.2 200, 200 0.025 54.7
AVG p 153.8 200, 200 0.172 68.8

Table : Simulations at causal loci, each followed by a test of the
permuted T vector.



Thank You!


