
Integer Programming for
Phylogenetic Network Problems

D. Gusfield
University of California, Davis

Presented at the National University of Singapore, July 27, 2015.
!

There are many important phylogeny problems that
depart from simple tree models:

• Missing entries
• Data generated by complex biology, such as

recombination or recurrent mutation
• Genotype (conflated) sequences, rather than

simpler haplotype sequences
!

 Most of these problems are NP-hard, although
some elegant poly-time solutions exist (and
are well-known) for simpler data.

Question
 Can Integer Programming efficiently solve

these problems in practice on ranges of
complex data of current interest in biology?

!
We have recently developed ILPs for many such

problems and intensively studied their
performance (speed, size and biological
utility).

!4

In this talk I will concentrate on
ILP problems relating to networks caused by
back mutation and recombination.
!
We start with the Perfect-Phylogeny Model, which
is the case when neither back mutation or
recombination are allowed.

00000
1

2

4

3

510100

10000
01011

00010

01010

12345sites
Ancestral sequence

Extant sequences at the leaves

Site mutations on edges
The tree derives the set M:!
10100!
10000!
01011!
01010!
00010

Only one mutation per site!
allowed.

Starting Model: Perfect Phylogeny
(infinite sites) model for binary sequences

 Classic NASC: Arrange the sequences in
a matrix. Then (with no duplicate
columns), the sequences can be
generated on a unique perfect
phylogeny if and only if no two columns
(sites) contain all three binary pairs:

 0,1 and 1,0 and 1,1
 This is the 3-Gamete Test.

When can a set of sequences be
derived on a perfect phylogeny?

Each binary pair is called a gamete.
!
 A pair of sites that has all three gametes is
called incompatible.

Problem MD: Missing Data

 Given ternary sequences (0s, 1s, ?s), change
 the ?s to 0s and 1s in order to minimize the resulting

number of incompatible pairs of sites. NP-hard.
!
 (Special case) Perfect Phylogeny with Missing Data:
 Determine if the ?s can be set so that there are no

resulting incompatibilities. In the case that the root is
all-zero, there is an elegant poly-time solution (Pe’er,
Sharan, Shamir), but we will not use it. Instead we

 use ILP, because it can be extended to other problems.

Simple ILP for the  
Missing Data problem

Create a binary variable Y(i,p) for a ? in cell (i,p),
indicating whether the cell will be set to 0 or to 1.

For each pair of sites p, q that could be made
incompatible, let D(p,q) be the set of missing or
deficient gametes in site pair p,q.

!
 For each gamete a,b in D(p,q), create the binary

variable B(p,q,a,b),
 and create inequalities to set it to 1 if the Y variables

for cells for sites p,q are set so that gamete a,b is
created in some row for sites p,q.

Example

D(p,q) = {1,1; 0,1}
p q!
----!
0 0!
? 1!
1 0!
? ?!
? 0!
0 ?

To set the B variables, the ILP will have inequalities !
for each a,b in D(p,q), one for each row where a,b could be created!
at site p,q.!
!
For example, for a,b = 1,1 the ILP has:!
Y(2,p) <= B(p,q,1,1) for row 2!
Y(4,p) + Y(4,q) -- B(p,q,1,1) <= 1 for row 4!

Example continued

D(p,q) = {1,1; 0,1}
p q!
----!
0 0!
? 1!
1 0!
? ?!
? 0!
0 ? !

For a,b = 0,1 the ILP has:!
!
Y(2,p) + B(p,q,0,1) => 1 for row 2!
Y(4,q) -- Y(4,p) -- B(p,q,0,1) <= 0 for row 4!
Y(6,q) -- B(p,q,0,1) <= 0 for row 6!

The ILP also has a variable C(p,q) which is set to 1 if!
 every gamete in D(p,q) is created at site-pair p,q.

So, C(p,q) is set to 1 if (but not only if) the Y variables for sites p, q!
(missing entries in columns p, q) are !
set so that sites p and q become incompatible.

B(p, q, 1, 1) + B(p, q, 0, 1) -- C(p,q) <= 1

In the example:

If M is an n by m matrix, then we have at most nm Y variables;
2m2 B variables; m2/2 C variables; and O(nm2) inequalities in
worst-case.

Finally, we have the objective function:

Where P is the set of site-pairs that could be made to be!
incompatible. !
!
Or, we could require that the sum of the C(p,q) variables !
be zero, and then there is a way to set the missing values!
to form a Perfect Phylogeny, if and only if the ILP is feasible. !

C(p, q)Σ
(p,q) in P

Minimize

!14

Empirically these ILPs solve very quickly, in fractions of
seconds or seconds for n and m up to hundreds of rows
and columns.

The software for to create the ILP formulations was written
in 2006, but is paying dividends now.

!15

Persistent and Dollo:
Deviations from Perfect Phylogy

• Extends the Perfect Phylogeny Model by
allowing each site to revert from state 1
to state 0.

• Persistent Phylogeny: Only once in the
tree. So this is like the infinite sites
model in for both forward and backward
mutations.

• Dollo Model: Forward mutation once, but
backwards any number of times.

!16

A range of possibilities

• So given binary data either it can be
generated on a Perfect Phylogeny, or a
Galled-Tree, or a Persistent Phylogeny,
or a Dollo Phylogeny, or none of the
above - i.e., a more general network is
needed.

• Given binary data, how do we determine
what case we have?

!17

The Dollo model was introduced more than 100 years
ago, but the persistent phylogeny model was only
introduced recently, by T. Przytycka and D. Durand,
has been studied intensively by P. Bonizzoni
and co-authors.

The Persistent Phylogeny Problem: Given M, determine
if M can be derived on a Persistent Phylogeny.
!
The question of whether the Persistent Phylogeny Problem
is NP-hard is open. So, we take an ILP approach.

!18

The Persistent Phylogeny
Problem

• The key to the ILP for it, is the following
formalism developed by P. Bonizzoni et
al. in 2013.

!19

 Definition: Given a binary matrix M, the extended
matrix Me contains two columns, j1 and j2, for
each column j in M. !
!
Column j1 of Me is derived from column j in M!
by replacing every occurrence of `0' in column j of
M with `?' in column j1 of Me. !
!
Column j2 of Me is derived from column j1 by
replacing every occurrence of `1' in j1 with `0’.!
!
So a 0 in j becomes ??, and a 1 becomes 10.

!20

Completing Me

A completion M’e of Me changes each
?’ to either 0 or 1, with the requirement
that for every pair of sites (j1, j2) in
Me that originated from an entry of
value 0 in cell (i,j) in M, cells (i, j1) and
(i, j2) in M’e must get the same value,
i.e., they either get 0,0 or 1,1.

!20

M Me M’e!
1110 101010?? 10101000!
0111 ??101010 11101010!
0000 ???????? 00000000!
1010 10??10?? 10001000!
1100 1010???? 10101100!
1111 10101010 10101010

Extension Me and Completion M’e of M

For character j in M, character j1 in Me is
``a mutation of character j has occurred”,
and character j2 is ``a back mutation of character j
has occurred”.

!21

Theorem of Bonizzoni et al.

M can be represented by a Persistent Phylogeny if and
only if there is a completion M’e of Me that is a Perfect
Phylogeny. And if so, the perfect phylogeny for M’e is
a Persistent Phylogeny for M.

This theorem shows the way to formulate the ILP for
the Persistent Phylogeny problem.

!22

The ILP
Given M, we form Me and treat that as
input to problem MD, but for every
pair of sites (j1, j2) in Me that originated
from an entry of value 0 in cell (i, j) in M,
we add the constraint: Y(i,j1) = Y(i,j2).
!
Then the ILP has optimal value zero if
and only if M has a persistent phylogeny.

!23

ARGs and Galled-Trees

• ARGs incorporate recombination, but
still only allow one mutation per site in
the ARG.

• The problem of finding the ARG for M
that minimizes the number of
recombination nodes is NP-hard.

ARG

00000

5
2

3

3

4S
p

P
S

1

4

a:00010

b:10010
c:00100

10010

01100

d:10100

e:01100

00101

01101

f:01101

g:00101

00100

00010

Recombination Cycles

• In an ARG, with a recombination node x,
if we trace two paths backwards from x,
then the paths will eventually meet.

• The cycle specified by those two paths
is called a ``recombination cycle”.

Allowing Limited Recombination:
Galled-Trees

• An ARG where no recombination cycles
share an edge is called a galled tree.

• A cycle in a galled-tree is called a gall.

4

1

3

2 5

a: 00010

b: 10010

d: 10100

c: 00100

e: 01100

f: 01101

g: 00101

A galled-tree for the !
sequences generated!
by the prior ARG.

2

4

p s

p
s

 Galled-Trees and Persistent
Phylogeny

• Theorem: Efficient (provably polynomial-time) algorithm
to determine whether or not any sequence set M can
be derived on a galled-tree.
!

• Practical software exists to determine if M can be
derived on a galled tree.
!

• Theorem: If M can be derived on a galled tree, it can be
derived on a Persistent Phylogeny. Hence, this is a
special case where the Persistent Phylogeny problem
can be solved in polynomial time.

!33

Empirical Results: It Works!

r; c br data types conflicts ILP-data

perf; gt; pers gt; pers inf; int; tm-gt; tm-pers

40, 30 0.02 39, 10, 1 2.29, 3 0, 0, 0, 0

40, 30 0.05 29, 17, 4 1.7, 3.75 0, 0, 0, 0

40, 30 0.1 20, 23, 7 1.73, 5 0, 0, 0, 0.01

40, 30 0.2 7, 21, 22 1.95, 6.13 0, 0, 0, 0

40, 100 0.02 12, 17, 21 7.35, 12.85 0, 0, 0.01, 0.04

40, 100 0.05 3, 6, 41 4.66, 24.56 0, 0, 0, 0.16

40, 100 0.1 0, 0, 50 0, 33.15 0, 0, 0, 0.34

40, 100 0.2 0, 0, 50 0, 48.7 0, 0, 0, 0.62

60, 30 0.02 39, 10, 1 1.8, 3 0, 0, 0, 0

60, 30 0.05 26, 17, 7 2.11, 4.28 0, 0, 0, 0

60, 30 0.1 21, 22, 7 1.63, 4.71 0, 0, 0, 0

60, 30 0.2 12, 11, 27 1.81, 5.03 0, 0, 0, 0.01

60, 100 0.02 11, 23, 16 4.56, 13.56 0, 0, 0, 0.06

60, 100 0.05 1, 6, 43 6, 18.83 0, 0, 0.01, 0.13

60, 100 0.1 0, 2, 48 5.5, 36.29 0, 0, 0.03, 0.47

60, 100 0.2 0, 1, 49 12, 56.04 0, 0, 0.1, 0.95

100, 30 0.02 41, 8, 1 2.62, 5 0, 0, 0, 0

100, 30 0.05 33, 16, 1 1.56, 2 0, 0, 0, 0

100, 30 0.1 18, 20, 12 1.45, 4.75 0, 0, 0, 0

100, 30 0.2 14, 21, 15 2.14, 6 0, 0, 0, 0.01

100, 60 0.02 15, 20, 15 2.8, 6.46 0, 0, 0, 0.01

100, 60 0.05 10, 16, 24 2.31, 11.5 0, 0, 0, 0.03

100, 60 0.1 1, 8, 41 2.37, 11.92 0, 0, 0, 0.04

100, 60 0.2 0, 6, 44 3.16, 15.75 0, 0, 0, 0.11

100, 100 0.02 8, 16, 26 4.12, 15.96 0, 0, 0, 0.07

100, 100 0.05 2, 9, 39 5.11, 19.17 0, 0, 0.01, 0.13

100, 100 0.1 0, 0, 50 0, 34.24 0, 0, 0, 0.46

100, 100 0.2 0, 0, 50 0, 44.08 0, 0, 0, 1.22

150, 80 0.02 13, 37, 0 1.48, 0 0, 0, 0.09, 0

150, 80 0.05 0, 0, 50 0, 13.84 0, 0, 0, 0.41

150, 80 0.1 0, 0, 50 0, 18.82 0, 0, 0, 0.52

150, 80 0.2 1, 0, 49 0, 31.69 0, 0, 0, 1.54

150, 100 0.02 9, 0, 41 0, 7.41 0, 0, 0, 0.06

150, 100 0.05 2, 0, 48 0, 21.12 0, 0, 0, 0.25

150, 100 0.1 0, 0, 50 0, 33.74 0, 0, 0, 2.2

150, 100 0.2 5, 0, 45 0, 56.04 0, 0, 0, 3.67

Peristent Phylogeny

Table : Table for 40, 60, 100 and 150 taxa representable by a persistent

phylogeny. All times are in seconds.

Peristent Phylogeny

r; c br data types conflicts ILP-data

perf; gt; pers gt; pers inf; int; tm-gt; tm-pers

200, 100 0.02 6, 0, 44 0, 11.45 0, 0, 0, 0.04

200, 100 0.05 1, 0, 49 0, 21.69 0, 0, 0, 0.22

200, 100 0.1 0, 0, 50 0, 34.86 0, 0, 0, 0.64

200, 100 0.2 0, 0, 50 0, 44.34 0, 0, 0, 0.93

200, 200 0.02 0, 0, 50 0, 54.9 0, 0, 0, 1.33

200, 200 0.05 0, 0, 50 0, 101.78 0, 0, 0, 3.67

200, 200 0.1 0, 0, 50 0, 138.56 0, 0, 0, 9.42

200, 200 0.2 0, 0, 50 0, 173.78 0, 0, 0, 13.67

200, 250 0.02 0, 0, 50 0, 86.86 0, 0, 0, 4.01

200, 250 0.05 0, 0, 50 0, 181.5 0, 0, 0, 11.67

200, 250 0.1 0, 0, 50 0, 266.95 0, 0, 0, 20.42

200, 250 0.2 0, 0, 50 0, 350.8 0, 0, 0, 38.34

400, 200 0.05 0, 0, 50 0, 98.26 0, 0, 0, 4.37

400, 200 0.1 0, 0, 50 0, 172.72 0, 0, 0, 10.15

400, 200 0.2 0, 0, 50 0, 186.36 0, 0, 0, 16.49

400, 300 0.05 0, 0, 50 0, 277.72 0, 0, 0, 21.77

400, 300 0.1 0, 0, 50 0, 400.8 0, 0, 0, 47.98

400, 300 0.2 0, 0, 50 0, 595.98 0, 0, 0, 98.65

400, 400 0.05 0, 0, 50 0, 538.22 0, 0, 0, 79.07

400, 400 0.1 0, 0, 50 0, 676.76 0, 0, 0, 138.08

400, 400 0.2 0, 0, 50 0, 971.5 0, 9, 0, 169.35

400, 450 0.05 0, 0, 50 0, 745.28 0, 1, 0, 106.77

400, 450 0.1 0, 0, 50 0, 802.2 0, 6, 0, 160.33

400, 450 0.2 0, 0, 50 0, 1214.22 0, 18, 0, 203.77

500, 300 0.05 0, 0, 50 0, 233.82 0, 0, 0, 22.42

500, 300 0.1 0, 0, 50 0, 362.28 0, 0, 0, 49.36

500, 300 0.2 0, 0, 50 0, 439 0, 0, 0, 66.16

500, 400 0.05 0, 0, 50 0, 568.55 0, 0, 0, 74.59

500, 400 0.1 0, 0, 50 0, 651.22 0, 2, 0, 124.53

500, 400 0.2 0, 0, 50 0, 787.58 0, 7, 0, 163.85

500, 500 0.05 0, 0, 50 0, 825.8 0, 3, 0, 146.48

500, 500 0.1 0, 0, 50 0, 1234.92 0, 23, 0, 189.37

500, 500 0.2 0, 0, 50 0, 1378.42 0, 30, 0, 223.14

1000, 500 0.05 0, 0, 25 0, 609.24 0, 3, 0, 150.16

1000, 500 0.1 0, 0, 25 0, 1199.32 0, 7, 0, 204.81

1000, 500 0.2 0, 0, 25 0, 938.84 0, 12, 0, 217.7

Peristent Phylogeny

Table : Table for 200 through 1000 taxa representable by a persistent

phylogeny. Galled-tree computations were not run on these data, due to

size limitations in the galled-tree program. All times are in seconds.

Peristent Phylogeny

!34

Next Topic: Computing the History Bound

1. The History Lower Bound

Given a set of sequences M, the History Bound of Myers and
Griffiths is a lower bound on the number of needed recombinations
in any ARG that creates M (with all-zero ancestral sequence).

It is defined only by the algorithms that compute it.

!29

ARGs, Reticulation Networks,
the History Bound and ILPs

• The history bound is the best available
lower bound on the minimum number of
recombinations needed in an ARG that
derives M.

• But, the history bound takes exponential
time to compute, as a function of the
number of rows of M.

• Can an ILP approach do better?

The computation of the history bound uses three Rules

Initially, set M̃ to the input M. As the algorithm proceeds, rows
and columns of M will be deleted. Let M̃ denote the current
remaining submatrix of M as the algorithm executes. The
algorithm executes three Rules.

Rule Dc: If a column c of M̃ contains at most one entry
with value 1, then remove column c from M̃.

Rule Dt: If neither Rule Dc nor Dr can be applied, pick
a row r̃ in the current M̃ (other than the all-zero row
that corresponds to the ancestral sequence) and remove
row r̃ from M̃.

Example

1 2 3 4 5 6
r1 0 0 1 0 0 0
r2 0 1 1 0 1 0
r3 0 1 0 0 1 0
r4 1 0 0 0 0 1
r5 1 0 0 1 0 1
r6 0 0 0 1 0 0

Figure: The input M . No application of Rule Dc or Dr is possible. So
pick a row, say r6, for Rule Dt.

Example

1 2 3 4 5 6
r1 0 0 1 0 0 0
r2 0 1 1 0 1 0
r3 0 1 0 0 1 0
r4 1 0 0 0 0 1
r5 1 0 0 1 0 1

Figure: Now apply Rule Dc to column 4.

Example

1 2 3 5 6
r1 0 0 1 0 0
r2 0 1 1 1 0
r3 0 1 0 1 0
r4 1 0 0 0 1
r5 1 0 0 0 1

Figure: Now apply Rule Dr, and remove row r5.

Example

1 2 3 5 6
r1 0 0 1 0 0
r2 0 1 1 1 0
r3 0 1 0 1 0
r4 1 0 0 0 1

Figure: Now apply Rule Dc twice to remove columns 1 and 6.

Example

2 3 5
r1 0 1 0
r2 1 1 1
r3 1 0 1
r4 0 0 0

Figure: Now apply Rule Dt to remove row 4.

Example

2 3 5
r1 0 1 0
r2 1 1 1
r3 1 0 1

Figure: Now apply Rule Dt again to remove row 3.

Example

2 3 5
r1 0 1 0
r2 1 1 1

Figure: Now apply Rule Dc twice to remove columns 2 and 5.

Example

3
r1 1
r2 1

Figure: Now apply Rule Dr to remove row 2.

Example

3
r1 1

Figure: Now apply Rule Dc to remove column 3 to obtain a single row
with no entries, so this execution of Algorithm CHB ends.

!30

History Bound and Reticulation
Networks

• Also, the history bound is equal to the
minimum number of reticulation nodes
needed in any reticulation network that
derives M, in the soft-wired sense.

• So, the ILP for the history bound also
solves this problem about reticulation
networks.

1

v

a

b

c

d

e

(a) Reticulation network D, with
two reticulation nodes. Each leaf is
labeled with the rows of input ma-
trix M .

v

a

b

c

d

e

(b) A spanning subtree TD of D, dis-
playing one split for each edge. For
example, split {e, c, d}.

e

v

dc
(c)

Figure 1: A column c of input data M is displayed in reticulation network DD
(in the softwired sense) if there is a spanning tree TDD of D, and an edge (u, v)
such that the removal of edge (u, v) separates the rows of c labeled 0 from the
rows of c labeled 1.

!31

We (Yufeng Wu and I) now have
an ILP formulation for the history
bound, and Julia Matsieva has
implemented it, and is optimizing
it. Currently, it is about as fast as
the DP for computing the history
bound. The DP does not scale.
The goal is to compute history
bound with the ILP for data with
many more rows than can be
handled by the DP.

