Haplotyping as Perfect Phylog eny: Conceptual Framework
and Efficient Solutions

[Extended Abstract]

Dan Gusfield
Department of Computer Science
University of California, Davis

gusfield@cs.ucdavis.edu

ABSTRACT

The next high-priority phase of human genomics will in-
volve the development of a full Haplotype Map of the human
genome [12]. It will be used in large-scale screens of popula-
tions to associate specific haplotypes with specific complex
genetic-influenced diseases. A prototype Haplotype Map-
ping strategy is presently being finalized by an NIH working-
group. The biological key to that strategy is the surprising
fact that genomic DNA can be partitioned into long blocks
where genetic recombination has been rare, leading to strik-
ingly fewer distinct haplotypes in the population than pre-
viously expected [12, 6, 21, 7].

In this paper we explore the algorithmic implications of the
key (and now realistic) “no-recombination in long blocks”
observation, for the problem of inferring haplotypes in pop-
ulations. We observe that the no-recombination assumption
is very powerful. This assumption, along with the stan-
dard population-genetic assumption of infinite sites [23, 14]
imposes severe combinatorial constraints on the permitted
solutions to the haplotype inference problem, leading to an
efficient deterministic algorithm to deduce all features of the
permitted haplotype solution(s) that can be known with cer-
tainty. The technical key is to view haplotype data as dis-
guised information about paths in an unknown tree, and the
haplotype deduction problem as a problem of reconstructing
the tree from that path information. This formulation al-
lows us to exploit deep theorems and algorithms from graph
and matroid theory to efficiently find one permitted solution
to the haplotype problem; it gives a simple test to determine
if it is the unique solution; if not, we can implicitly repre-
sent the set of all permitted solutions so that each can be
efficiently created.

Keywords
haplotype inference, perfect phylogeny, graph realization,

Thisis a modestlycorrectedversionof thepaper
whichappeaedin RECOMB2002,pagesl66-175WashingtonDC, April
18-21,2002

graphic matroid recognition

1. INTRODUCTION

Building a Haplotype Map of the human genome has be-
come a central NTH promoted goal [12]. A prototype Hap-
lotype Mapping strategy is presently being finalized by an
NIH working-group. The biological key to that strategy is
the surprising fact that genomic DNA can be partitioned
into long blocks where genetic recombination has been rare,
leading to strikingly fewer distinct haplotypes in the popu-
lation than previously expected [5, 6, 12, 21, 7]. Quoting
from [5]:

In this study we observed strikingly limited hap-
lotype diversity across long distances punctuated
by sites of multiple historical recombination events.
Essentially, this long genomic region can be parsed
into blocks of low diversity in which recombi-
nation plays little or no role in assortment of
haplotypes... The description of these haplotype
patterns suggest powerful methods for testing
for association. Specifically, the non-recombining
regions with limited haplotype diversity can be
treated as single, multi-allelic loci ... (and) are
the quantum of genetic variation that should be
tested for association.

The lessons for algorithmists are two-fold:

1) Algorithms to determine haplotype structure will be very
valuable, because haplotypes will be the “quantum” ele-
ments used in disease association studies.

2) In developing algorithms for deducing haplotypes, it is
now realistic in important applications (and maybe obliga-
tory in some contexts given the NIH focus on non-recombining
regions) to incorporate a no-recombination assumption into
the algorithmic methods. Until now, such an assumption
would have had to be apologized for, and justified as a way
to make the problem tractable.

In this paper we show that the no-recombination assumption
is very powerful, and can be exploited to develop efficient
methods for deducing all deterministic information about
the permitted haplotype solutions.

1.1 Intr oductionto SNP’s,Genotypesand Hap-
lotypes

In diploid organisms (such as humans) there are two (not
completely identical) “copies” of each chromosome, and hence
of each region of interest. A description of the data from a
single copy is called a haplotype, while a description of the
conflated (mixed) data on the two copies is called a geno-
type. In complex diseases (those affected by more than a
single gene) it is often much more informative to have hap-
lotype data (identifying a set of gene alleles inherited to-
gether) than to have only genotype data.

The underlying data that forms a haplotype is either the full
DNA sequence in the region, or more commonly the values
of single nucleotide polymorphisms (SNP’s) in that region.
A SNP is a single nucleotide site where exactly two (of four)
different nucleotides occur in a large percentage of the pop-
ulation. The SNP-based approach is the dominant one, and
high density SNP maps have been constructed across the hu-
man genome with a density of about one SNP per thousand
nucleotides.

1.2 The biological problem

Because polymorphism screens will be conducted on large
populations, it is not feasible to examine the two copies of a
chromosome separately, and genotype data rather than hap-
lotype data will be obtained, even though it is the haplotype
data that will be of greatest use.

Abstractly, data from m sites (SNP’s) in n individuals is
collected, where each site can have one of two states (al-
leles), which we denote by 0 and 1. For each individual,
we would ideally like to describe the states of the m sites
on each of the two chromosome copies separately, i.e., the
haplotype. However, experimentally determining the haplo-
type pair is technically difficult or expensive. Instead, the
screen will learn the 2m states (the genotype) possessed by
the individual, without learning the two desired haplotypes
for that individual. One then uses computation to extract
haplotype information from the given genotype information.
Several methods have been explored and are intensely used
for this task [3, 2, 8, 22, 11, 19]. None of these methods are
presently fully satisfactory.

1.3 The computational problem

Abstractly, input to the haplotyping problem consists of n
genotype vectors, each of length m, where each value in the
vector is either 0,1, or 2. Each position in a vector is as-
sociated with a site of interest on the chromosome. The
position in the genotype vector has a value of 0 or 1 if the
associated chromosome site has that state on both copies (it
is a homozygous site), and has a value of 2 otherwise (the
chromosome site is hetrozygous).

Given an input set of n genotype vectors, a solution to the
Haplotype Inference (HI) Problem s a set of n pairs of binary
vectors, one pair for each genotype vector. For any genotype
vector g, the associated binary vectors v, vz must both have
value 0 (or 1) at any position where g has value 0 (or 1); but
for any position where g has value 2, exactly one of vy, vs
must have value 0, while the other has value 1. That is, vy, v2
must be a feasible “explanation” for the true (but unknown)

haplotype pair that gave rise to the observed genotype g.
Hence, for an individual with A hetrozygous sites there are
2"=1 haplotype pairs that could appear in a solution to the
HI problem.

For example, if the observed genotype g is 0212, then the
pair of vectors 0110, 0011 is one feasible explanation, out of
two feasible explanations. Of course, we want to find the
explanation that actually gave rise to g, and a solution for
the HI problem for the genotype data of all the n individuals.
However, without additional biological insight, one cannot
know which of the exponential number of solutions is the
“correct one”.

2. ENTER THE COALESCENT (OR PER-
FECT PHYLOGENY)

Algorithm-based haplotype inference would be impossible
without the implicit or explicit use of some genetic model,
either to assess the biological fidelity of any proposed solu-
tion, or to guide the algorithm in constructing a solution.
Most of the models use statistical or probabilistic aspects of
population genetics. We will take a more deterministic or
combinatorial approach.

The most powerful (and previously, seemingly unrealistic)
such genetic model is the population-genetic concept of a
coalescent,i.e., a rooted tree that describes the evolutionary
history of a set of sequences (or haplotypes) in sampled indi-
viduals [23, 14]. The key observation is that “In the absence
of recombination, each sequence has a single ancestor in the
previous generation.” [14].

That is, if we follow backwards in time the history of a sin-
gle haplotype H from a given individual I, when there is
no recombination, that haplotype H is a copy of one of the
haplotypes in one of the parents of individual 7. It doesn’t
matter that / had two parents, or that each parent had two
haplotypes. The backwards history of a single haplotype in
a single individual is a simple path, if there is no recombina-
tion. That means that the history of a set of 2n individuals,
if we look at one haplotype per individual, forms a tree. The
histories of two sampled haplotypes (looking backwards in
time) from two individuals merge at the most recent com-
mon ancestor of those two individuals. (The reason for using
2n instead of n will be clarified shortly.)

There is one additional element of the basic coalescent model:
the infinite-sites assumption. That is, the m sites in the se-
quence (SNP sites in our case) are so sparse relative to the
mutation rate, that in the time frame of interest at most
one mutation (change of state) will have occurred at any
site. This assumption is almost universally made, and em-
pirical data frequently agrees with this assumption, but does
not always agree. How to deal with small deviations from
the infinite-sites assumption is an open question.

Hence the coalescent model of haplotype evolution says that
without recombination, the true evolutionary history of 2n
haplotypes, one from each of 2n individuals, can be dis-
played as a tree with 2n leaves, where each of the m sites
labels exactly one edge of the tree, i.e., at a point in history
where a mutation occurred at that site. This is the under-
lying genetic model that we assume from here on. See [23]

for another explanation of the relationship between sequence
evolution and the coalescent model.

For convenience, we assume that we know the ancestral hap-
lotype at the root of the tree, and assign all of its states to
be zero'.

In more computer science terminology, the no-recombination
and infinite-sites model says that the 2n haplotype (binary)
sequences can be explained by a perfect phylogeny [9, 10]:

Definition Let B be an 2n by m 0-1 (binary) matrix. A
perfect phylogeny for B is a rooted tree T' with exactly 2n
leaves that obeys the following properties:

1) Each of the 2n rows labels exactly one leaf of T
2) Each of the m columns labels ezactly one edge of T.

3) Every interior edge (one not touching a leaf) of T is la-
beled by at least one column.

4) For any row i, the columns that label the edges along the
unique path from the root to leaf ¢ specify the columns of B
that have a value of one in row 2 in B. In other words, that
path is a compact representation of row 1.

The classical Theorem of Perfect Phylogeny is that a binary
matrix B has a perfect phylogeny if and only if for each pair
of columns, there are no three rows with values 0,1; 1,0; and
1,1 in those two columns [9, 10]. Moreover, if the columns of
B are distinct, then there is only one perfect phylogeny for
B. If there are identical columns, then they label the same
edge, and we impose no ordering on those labels. Note that
an edge to a leaf need not have a column label.

What happenedto the genotypedata?

How does the coalescent view of haplotypes relate to the
problem of deducing the haplotypes when only the n geno-
type vectors are given as input?

The answer is that each genotype vector (from a single indi-
vidual in a sample of n individuals) was obtained from the
mating of two of 2n haplotype vectors in an (unknown) coa-
lescent (or perfect phylogeny). That is, the coalescent with
2n leaves is the history of haplotypes in the parents of the
n individuals whose genotypes have been collected. Those
2n haplotypes are partitioned into pairs, each of which gives
rise to one of the n observed genotypes.

"This is justified either by standard “out-group” methods
of phylogenetics, or by the fact that if the data has even
one homozygote, or single site-hetrozygote, we can “declare”
that leaf to be the root, and recode all the genotypes relative
to that one. The tree built from this may not be historically
correct, but it will solve the haplotype problem correctly. If
neither of these approaches is possible, we can still find one
solution by assigning the ancestral state of any site to be
either 0 or 1 depending on which state is more common at
that site. This “majority assignment” works because each 2
in a column will ultimately be converted to an equal number
of 0’s and 1’s, and it is well-known that (for a binary matrix)
the “majority assignment” of ancestral state works if there
is any assignment that works [18].

So, given a set S of n genotype vectors, we want to find
a perfect phylogeny T, and a pairing of the 2n leaves of T
which explains S. If we are given 7' and S, finding a leaf
pairing that explains S is a trivial problem, and hence we
need only concentrate on finding 7'

2.1 Further justification for the coalescentodel

We have used the “no-recombination in long blocks” obser-
vation to justify our no-recombination assumption, leading
to the coalescent model. But there are three additional jus-
tifications for using this model.

First, one publicly available program, PHASE [22], that
deduces haplotype pairs from a set of genotype vectors,
incorporates probabalistic consequences of the assumption
that the haplotypes evolve according to a coalescent model.
Those consequences are used to guide the program, and
PHASE is empirically (as claimed in [22] and in my testing)
the most successful haplotype inference program to date.
The effectiveness of PHASE, compared to programs that
don’t incorporate any coalescent assumptions is an indirect
validation of the underlying model. It says that when you
incorporate the coalescent assumption, you are better able
to generate solutions that conform to real world data, sug-
gesting that real world data itself fits the coalescent model.
Second, the coalescent model of haplotype evolution is as-
sumed in other work in statistical genetics [17]. However,
these two approaches only use statistical consequences that
are derived from the the coalescent model. Here, we find
what can be deterministicly deduced about underlying coa-
lescent.

Finally, often in the biological literature, where people re-
port the haplotypes that they have found (by whatever means),
the found haplotypes are displayed in a tree that demon-
strates the evolutionary (or mutational) relationship of the
haplotypes. Those trees are often perfect phylogenies for
the set of haplotypes. An example is shown in [15]. Note
that the approach in that literature is to first determine the
haplotypes by some means, and then to lay out the tree.
The approach in this paper is the reverse: we try to deter-
mine the haplotypes from genotype data by seeing how the
genotype data deterministicly forces features of a tree, and
use those features to deduce haplotype information.

2.2 Finally, the purely combinatorial view
Under the coalescent model of haplotype evolution, the gen-
eral HI problem is now much more constrained, so that only
some solutions to the HI problem are permitted. The haplo-
type inference problem now has precisely the following com-
binatorial interpretation:

The Perfect Phylogeny Haplotype (PPH) Problem

Given a (genotype) matrix S of n rows with values 0, 1 or 2,
duplicate each row to create pairs of rows 1,1’ for ¢ from 1 to
n. The resulting matrix is denoted by Q. Then for each such
pair 1,4’, and every column c where Q(i,c) = Q(i',¢) = 2, we
are required to set exactlyone of those two cells to have value
0 and the other to have value 1, so that the resulting binary
matrix B has a Perfect Phylogeny T'(S). Such a setting
of values, and the associated perfect phylogeny T'(S), is a
solution to the PPH Problem. The binary vectors in the

Figure 1: A simple example where the HI problem
has two solutions, but the PPH problem has only
one solution.

19 12 12
al2 2 al22 allo
) a0 1
Sbo2 ==>Q 22 _, g |
cl1 o b|02
b'lo 2 b'l0 O
cl|10 c|10
clto cl10
1 2
==>T(S)
bl
c
c’ a a b

two rows 1,1’ of the solution are then the haplotype pair for
individual 2. By the Perfect Phylogeny Theorem, the setting
of values must avoid creating two columns with three rows
containing 0,1; 1,0; and 1,1.

In addition to efficiently finding one solution to the PPH
problem, we would like to determine if that is the unique
solution, and if not, we want to efficiently represent the set
of all solutions, so that each one can be generated efficiently.

See Figure 1 for a trivial example. In that example, there
are two solutions to the HI problem, but only the one shown
solves the PPH problem, i.e., is a solution that has a perfect
phylogeny. So in this example, we know for sure what the
underlying haplotypes are (assuming the coalescent model
of haplotype evolution).

We assume from here on, that for any S, there is at least one
solution to the PPH problem for S, and denote a solution

by T(S).

The PPH Problem is similar to the problem considered in
[20] where a ternary matrix is also given. In that problem,
one must change each 2 to either a 0 or a 1, so that the
resulting binary matrix has a perfect phylogeny. An ele-
gant polynomial-time algorithm is presented in [20] for that
problem. However that problem is not identical to the PPH
problem because of the required row duplications and the
associated constraints in the PPH problem.

3. SOLVING THE PPHPROBLEM

At first, it may seem that the mating process that forms n
genotype vectors from 2n haplotype vectors will so disguise
the underlying tree structure, that it would be impossible to
deterministicly learn much about it. However, the genotype
data encodes certain path information from the underlying
tree, allowing efficient deterministic deduction of tree fea-

tures, often the complete underlying tree. In this section we
show how this can be done.

3.1 Simpletools

The values in S encode certain deterministic information
about paths in the underlying perfect phylogeny 7'(S) from
which the genotype data S was created. We recover path
information from S with three simple observations:

1. For any row 2 in G, the set of 1 entries in row 1 specify
(without order) the exact set of edge labels on the path
from the root to the least common ancestor of leaves @
and ¢, in every perfect phylogeny for S.

2. For any row 1 in S, and any column ¢, if S(¢,c¢) is 2,
then the edge labeled with ¢ must be on the path from
the root to exactly one of the leaves 1 and ¢’ in every
perfect phylogeny for S. Another way to say that, is
that the path between ¢ and i’ must contain the edge
with label c.

3. For any row i in S, and any column ¢, if S(z,¢) is 0,
then the edge labeled with ¢ must not be on the path
from the root to either leaves i or ¢’, or on the path
between them, in any perfect phylogeny for S.

The first observation allows us to deduce the labels of the
edges on the path from the root to the least common ances-
tor of 7 and 7', but without their order. However, the order
must be the same in every perfect phylogeny, and can be
simply deduced as we show next.

Define a leaf-count for each column c as follows: Each 1 in
column ¢ contributes a count of 2, and each 2 in column ¢
contributes a count of 1. Let £(c) be the total leaf-count
for ¢. From the three observations above, we see that in
every perfect phylogeny T'(S) for S, the edge labeled with ¢
must have exactly ¢(c) leaves in its subtree. Therefore, all
labels that appear together on the same edge of a perfect
phylogeny T'(S), must have the same leaf-count. In fact,
all edge labels that appear together on the same edge must
have exactly the same entries in their respective columns of
S (this is a necessary but not sufficient condition for being
on the same edge). Similarly, the leaf-counts of labels along
successive edges on any directed path from the root must
strictly decrease. Hence, if we know which labels appear on
a directed path, we also know how they should be organized
into edges, and how the edges should be ordered.

We next observe that the paths defined by the 1 entries form
an “initial” unique perfect phylogeny that appears in every
perfect phylogeny for S. Let C; be the set of columns that
each contain at least one 1 entry.

Lemma In any perfect phylogeny 7'(S) for S, no path from
the root can encounter an edge labeled with a column in Cy
if it has already encountered an edge labeled with a column
not in C.

Proof Suppose to the contrary that there is in 7(.S) a path
from the root containing a label e for a column not in C;
followed by a label f for a column in C;. Since f is in Cq,

there must be a row ¢ with value 1 in column f, and hence
both leaves i and i’ must be below the edge labeled f in
T(S). But then both leaves i and i’ are below the edge
labeled e, meaning that row : should have a value of 1 in
column e, contradicting the assumption that column e is not

in Cl.

As a consequence of the Lemma, the edges labeled by the
columns in C; appear in a unique “initial” (or upper) perfect
phylogeny in every T(S) (assuming no ordering of the labels
that appear together on the same edge), and the root of that
subtree must be the root of every perfect phylogeny T/(.S).
Further, if 7 is a row in S that contains no 2 entry, then we
know that the complete paths to both leaves ¢ and 1’ must
be in this initial perfect phylogeny.

Let Ri be the set of rows where each contains at least one
1 entry, and let R; ;1 be the subset of R; consisting of those
rows in R; that have no 2 entries. We find the “initial”
perfect phylogeny for S by first finding, for each row in
Ry — Ri,, the ordered path to the least common ancestor
of leaves 1 and ¢ as explained above. For each row i in
Ri 1, then we create two ordered paths, one to leaf : and
one to leaf :. The initial perfect phylogeny is made up of
these ordered paths. We can then simply merge the identical
initial segments of all these paths to create the unique initial
perfect phylogeny 71, containing all the edges labeled by
columns in Cj, and all the leaf-pairs 7,1’ for every row i in

R171 .
As a simple consequence we have

Lemma If each column of S has at least one 1, then there
is a unique perfect phylogeny T(S) for S, and it can be
found efficiently. That is, the underlying 2n haplotypes and
the mating that gave rise to the n genotypes in S, can be
completely and deterministicly deduced.

Proof The initial perfect phylogeny T for S is unique and
contains an edge labeled by ¢ for every column cin S = C;.
Moreover, T will contain the leaf-pair 1,1’ for every row i in
Ry 1. For any row : not in R ; there must be a contiguous
path in the tree containing the column labels for the 2 entries
in row 2, otherwise there is no perfect phylogeny for S. So
the addition of the leaf pair i,:' onto T is forced, and the
resulting tree is T'(.S) for S.

Given the Lemma, the main issue then is how to deal with
the mutations corresponding to columns not in C;, and how
those mutations extend 77.

3.2 Complextool: Graph Realization

The three path observations stated above will allow us to
solve the PPH problem by reducing it to the classical prob-
lem of “recognizing graphic binary matroids” [24]. However,
we will discuss that problem directly in terms of paths and
trees as is done in [1]. This approach does not describe the
classical work in its proper historical or mathematical con-
text, but it allows a much shorter exposition.

Let E, a set of r distinct integers. A “path-set” is an un-
ordered subset P of E,. A path-set is “realized” in a undi-

rected, edge-labeled tree T' consisting of r edges, if each edge
of T is labeled by a distinct integer from F,, and there is a
contiguous path in 7' whose labels consist only of the inte-
gers in P. Note that since P is unordered, it’s presentation
does not specify or constrain the order that those edges ap-
pear in T. In quite different terms, from the 1930’s to the
1960’s Whitney and Tutte and others studied and solved the
following problems:

The Graph Realization Problem Given FE, and a family
II = Py, Ps, ..., Pr of path-sets, find a tree T' in which each
path-set is realized, or determine that no such tree exists.
Further, determine if there is only one such T, and if there
is more than one, characterize the relationship between the
realizing trees.

There are elegant mathematical results for each of these
problems.

Building on the mathematical results, algorithms for the
graph realization problem were studied by several people,
(Tutte, Lofgren, Cunningham, Edmonds, Bixby, Wagner,
Gavril, Tamari, Fujishige) in the 1950’s and work continued
until the 1980’s. Space limits a full discussion of the history.
One of the first algorithms, by Lofgren, finds a realizing tree
T by an algorithm whose obvious implementation runs in
exponential time. Later, Bixby and Wagner [1] showed how
it could be implemented in almost linear time. Hence the
problem of finding one realizing tree 7' for Il can be solved
efficiently.

3.3 Reducing PPH to the graph realization
problem

In this section we show, given an instance S of the PPH
problem, how to efficiently create a instance II of the graph
realization problem such that any realizing tree for Il can
be used to obtain a solution to the PPH problem for S.
This then establishes that the PPH problem can be solved
efficiently; that one can efficiently test if that solution is
unique; that the set of all solutions can be succinctly repre-
sented in a compact data-structure; and that each solution
can be created in linear time per solution.

Given a genotype matrix S, the integers F, will consists
of every column label from S, plus several new labels for
“glue edges”. After a realizing tree T' is constructed, the
glue edges will be contracted to give a perfect phylogeny for
S.

3.4 Realizingthe initial perfect phylogeny
Assume C is non-empty. As observed earlier, the edge la-
bels of columns in C; form the initial perfect phylogeny T
that is in every solution to the PPH problem for S. Tree T1
also contains the leaves 7 and ¢’ for each row i that does not
contain a 2 entry. We could contract 77 and create a new
PPH problem, but instead we will reduce the entire PPH
problem to a single graph realization problem. So we first
show how to create path-sets for II so that any realizing tree
for II constructs 7;.

For a fixed leaf v of T1, let e1, ez, ...e; be the edge labels in
order on the path from the root of Ti to leaf v. We extend

that ordered path by adding a “common” glue edge go to
the start of it. If v is not a leaf ¢ or i’ corresponding to a
row ¢ in Ry 1, then we also add a “specific” glue edge g, to
the end of the ordered path. Then, we add to II the path-
set {go,e1} and the path-set {e;,e;41} for each 7 from 1 to
x—1. Next, add to TT the path-set {go, €1, €2}, and the path-
set {ei,eit1,ei42}, for each i from 1 to x — 2. If g, exists,
then we also add the path sets {ez, g, } and {€z—1,€s,9s} to
11.

In the case that the path to v in 77 only contains a single
edge, then only put into TI the path set {go, €1}, along with
{e1,9.} and {go,e1,gv} if go exists.

It is easy to prove inductively that the only tree realization
for these path-sets must be the ordered path go,e1,...,€5,
followed by g, if it exits.

By creating similar path-sets for each leaf v in T; (each
time with the same go but with a different g,), we create a
IT whose only realizing tree is 71, with the added edge go
attached to its root, and added edges g, attached to certain

leaves v. Let 7™ denote this tree.

The purpose of the common glue edge go is to glue together
all the directed paths at the root of 71, and the purpose of
each specific glue edge g, is to allow future paths not in 7T}
to be glued to leaf v if needed. We may not actually need
them all, but they do no harm at this point.

3.5 Therestof the reduction

Now consider a row i of S that contains some 2 value(s).
If at least one of those 2 values is in a column j of Ci,
then in every solution to the PPH problem for S, the path
between leaves ¢ and ¢ must go through the edge labeled
7, so we only need to add to Il a path-set consisting of all
the column labels in S where row ¢ has a value of 2. The
realizing path for the 2 entries of row 1 will contain an edge
in T* and hence will be glued to T* without the use of glue
edges.

However, if row ¢ has no 2 value in a column of C;, then
in any solution to the PPH problem, the path between 1
and ¢’ cannot go through an edge labeled with a column of
C1, and hence must go through a leaf of 77. That leaf is
easy to identify, as it is the only leaf v in 77 whose entering
edge has a label where row 1 has a value of 1 in S. So, for
such a row 2, we add to II the path-set consisting of all the
column labels in S where row 1 has a value of 2, along with
the specific glue edge g». The use of g, will ensure that the
path realized is attached at the proper location in T*.

As a special case, if C; is empty, then we create one glue
edge go and add it to the path-set for each row :, which
contains the column labels for the 2 entries in row 1.

After a realizing tree T' has been created from II we add in
the needed leaf labels as follows: For any row 1 in R 1, the
two leaves 7 and i’ were already in T} (a.nd hence T* and
T), and there is nothing more to do. For a row ¢ that does
contain some 2 values, we find the endpoints in T' of the
path realizing the path-set created for iz, and add one leaf
edge leading to ¢ at one end, and one leaf edge leading to

7" at the other edge. Finally, we contract the glue edges to
obtain a solution 7'(S) to the PPH problem for S. From this
solution, the edge labels on the path from the root to leaf
¢ specifies one of the haplotypes for genotype ¢, while the
edge labels on the path to ¢’ specifies the other haplotype.

3.6 Uniquenessof the solution

The uniqueness question for the general graph realization
problem was resolved (but in quite different terms) by Whit-
ney [26] in 1932. Given a tree T in which all the path-sets
of input set Il are realized, add a new edge between the two
endpoints of path P; in T, for each P; in II. Call these new
edges “scaffold edges”. Contract any edge in T' that is not
labeled, and call the new graph G(7T). Then T is the only la-
beled tree that realizes the path-sets in I if and only if G(T)
is three-connected. A connected graph is three-connected if
there are no two nodes whose removal disconnects the graph.

Now for the PPH problem with input S, we had to spec-
ify not only path-sets involving columns from S, but also
involving new glue edges, in order to specify where those
paths went. Otherwise, the tree would not be a solution to
the PPH problem. So to use Whitney’s result to check for
uniqueness of a PPH solution, we don’t use the tree T(S)
but rather use the tree that realizes the complete family of
path-sets Il as specified in the reduction discussed earlier.
Also, it may be possible that the removal of the two end-
points of edge go disconnects the graph. In Whitney’s sense,
this shows that there is another solution (and this will be
clearer after the next section), but since we contract glue
edges to finally obtain our PPH solution, that “new” solu-
tion will not be different. Hence when looking for a pair of
nodes whose removal might disconnect the graph, we do not
consider the pair consisting of the endpoints of go.

This gives the following simple test for uniqueness to a so-
lution of the PPH problem (however obtained). Build the
perfect phylogeny T'(S) associated with the haplotypes in
the solution, extend it with the glue edges that would be
specified by the reduction, add in all the scaffold edges from
the family of path-sets Il specified by the reduction; contract
any unlabeled edge in T'(S). Call this graph H(T,S) and
test if there is a pair of nodes (excluding the pair consisting
of the endpoints of go) in H(T, S) whose removal disconnects
the graph. If so, then the solution is not unique, otherwise
it is. There are conceptually easier specializations of this
method that will be detailed in the full version of this pa-
per. Note, graph H(T,S) is two-connected, i.e., that no
single node removal will disconnect it.

3.7 Multiple solutions

When the solution to the PPH problem is not unique, we
would like to understand the relationship between the var-
ious solutions, to efficiently represent them all, and to enu-
merate each one in linear time per solution.

Given a two-connected graph, we define a two-partition as a
partition of the edges of GG into two connected subgraphs G4
and G2 of G, which each have at least two edges, and which
have exactly two nodes (denoted = and y) in common. Note
that both G; and G2 contain a copy of both # and y. G is
not three-connected because the removal of and y would
disconnect G. If we connect node x in GG; to node y in G2,

and node y in G; to node z in G2, this results in a new
edge-labeled graph G’. This operation is called a “twisting”
around the two-partition. It may happen that G and G’ are
isomorphic as unlabeled graphs, but as labeled graphs they
are different. However, a set of edge-labels is contained in
a cycle in G if and only if that set is contained in a cycle
in G'. Therefore, if H(T, S) is defined as above, and G’ is
obtained from H(T, S) by a twisting around a two-partition,
then G' is the graph H(T',S) for a tree T' (containing the
same edge labels as T') that realizes all the path-sets realized
by T. Therefore, a new solution to the PPH problem for a
given S can be obtained by this twisting operation around
the two-partition. Again, we are not interested in twisting
around the endpoints of edge go, because when we later
contract glue edges, the resulting solution is the same.

In 1933 Whitney showed that the converse of this twist-
ing result is also true for two-connected graphs [27]. This
theorem can be adapted® to show that if 7' and 7" are differ-
ent edge-labeled trees that realize the same path-sets, then
H(T',S) can be obtained from H(T,S) by a series of twist-
ing operations. So all the solutions to the PPH problem for
a given S are related in this way only.

Further, the set of all such solutions can be implicitly rep-
resented in a data-structure that can be built in linear time
(once a first solution is found). The data-structure we use
is related to one developed by by Cunningham and Ed-
monds [4, 1] to represent all realizing (non-isomorphic) trees.
Without explicitly discussing graph realization, Hopcroft
and Tarjan [13] also developed a related data structure, and
a linear time algorithm to produce it.

Starting with graph G = H(T, S), and assuming it is not
three-connected, we find a two-partition of G into subgraphs
G1 and G as defined previously. Denote the separating
nodes as z and y. In both G and G2 we add a new edge
between z and y, give it the same new label, and call it a
“marker edge”. The two resulting graphs are called “split
graphs”. We replace G by those two split graphs, and re-
curse. That is, if a two-partition can be found in a com-
ponent of the current graph, we use it to create two new
split graphs, and replace the component by those two split
graphs. This is continued until no further splitting is pos-
sible. An example of this is shown in Figure 3. This is
essentially the splitting procedure described in [13]. How-
ever, in that paper, certain components are merged after
all the splitting is done. In our application we also merge
certain components, but use a different merging rule, for a
different end result. Merging is the inverse of splitting - if
two components have the same-labeled marker edge, then
we attach the components at the endpoints of the marker
edge (without twisting), and remove the marker edge. In our
application, if we have a component that contains no labeled
tree edges (labeled with a column of S), then we merge it
together with another component, and continue this until all
components have at least one edge labeled with a tree-edge.

The finished data-structure represents all the solutions to

2 All the expositions [have seen only concern graphs that are
non-isomorphic when unlabeled, but it is easy to verify that
the theorem holds also for differently labeled, but isomorphic
graphs, which is what we need for the PPH problem.

Figure 2: An example genotype matrix S we will use
to illustrate the enumeration of multiple solutions.

Qa0To
NNORPR
NNPRO
OO0k
OORrRO
ONOO
NOOO
ONOO

the PPH problem for S. To enumerate the solutions, inde-
pendently decide for each marker edge, whether to twist one
component containing it around that marker edge, or not.
That is, decide whether to re-attach the end-points of the
marker edge as in their original orientation, or to reverse
the attachment. For example, when no twists are made, we
obtain the original tree embedded in H(T, S).

If there are ¢t marker edge-labels in the data-structure, then
there are exactly 2° distinct solutions to the PPH problem.

Figure 2 gives an example genotype matrix S. The splittings
used to create the data-structure for S are shown in Figure
3, and the final data-structure is shown in Figure 4. One of
the eight permitted solutions, after twisting around markers
edges B, C, and D, is shown in Figure 5.

4. FUTURE WORK

This paper is intended to show that the PPH problem has
an efficient solution, via reduction to the graph realization
problem. However, the efficient known algorithms for graph
realization are complex and difficult to implement. [t is
clear that many simplifications can be made for the special
case of the PPH problem, and future work will find such
simplifications before any programming is done.

One of the purposes of having an algorithm that can de-
terministicly deduce haplotype information under the coa-
lescent model, is to explore the conditions under which the
PPH solution is unique. Those conditions will guide the de-
sign of haplotype screens, for we want to be able to uniquely
determine the haplotypes after the genotypes are collected.
As one condition, it seems reasonable that as the ratio of
individuals to sites increases, the number of permitted so-
lutions decreases, and we conjecture that for randomly gen-
erated data under the coalescent model, when the number
of individuals is above mlogm (where m is the number of
sites), the probability that the solution is unique will be
high. The hand-simulations we have done (using input gen-
erated by a widely-used simulation program that produces
haplotypes under the coalescent model [14]), are consistent
with this conjecture. Once a fully working program is fin-
ished (and this is not simple) we will be able to study this
issue in depth. It is important because the answer to that
question will guide the design of haplotyping studies: how
many people do you need when you have a given number of
sites of interest, and conversely, if you have a fixed number
of people, how many sites can reliably be handled.

We also conjecture that the use of the data-structure to
represent all the solutions to the PPH problem will lead to a

Figure 3: The splitting steps used to build the data
structure to represent all the solutions to the PPH
problem given in Figure 2. A solution to the PPH
problem is shown in 1), along with the dashed scaf-
fold edges. There are four splitting steps in building
the data-structure, shown in 2), 3), 4), 5). The T}
portion of the data-structure is simplified in 2), and
omitted in the remainder of the figure. The marker
edges are displayed as thick dashed edges, and are
labeled with capital letters. To create the final data-
structure, the two components with the A marker
edge are merged. The finished data-structure is
shown in the next figure.

2)

Figure 4: The finished data-structure representing
all the solutions to the PPH problem. To enumer-
ate the solutions, we keep one component fixed (the
top component say), and then independently decide
how to orient the three marker edges in the other
components. Hence there are eight solutions to this
PPH problem. When we twist and reconnect the
graph, the resulting tree may have internal edges
without labels, or an internal node with only one out
tree edge. In either case, we contract those edges
to form a single edge. Also, it is difficult to keep
track of the leaf labels during twisting and recon-
struction. The easiest approach is to drop, for each
row i, any distinction between leaf label : and ', and
label them both :. The two : leaves are then located
at the ends of the scaffold edge that ran between :
and ¢'; wherever that scaffold edge ends up after the
twisting, defines the two 1 leaves. In a sense, we first
label the scaffold edge with : during the twistings.
If either end is located at an internal node after the
twistings, just create a new leaf edge with no edge
label to a new leaf labeled :.

Figure 5: The perfect phylogeny corresponding to
twisting marker edges B, C, and D. The first figure
shows the graph after the twistings, and the second
figure shows the graph after cleanups discussed in
the caption of Figure 4.

non-trivial upper bound on the number of distinct solutions.

In a different direction, we will try to handle data where a
limited amount of recombination may have occurred. The
perfect phylogeny problem (with binary sequences not mixed
by haplotyping) with unlimited recombination was shown to
be NP-complete, but under some moderate assumptions, has
a polynomial time solution [25].

Similarly, we need to deal with situations where the infinite-
sites assumption is violated, but only by a small amount.

Next, there is the question of more than two possible alleles
at a site. The perfect phylogeny problem for more than
two states has a polynomial time solution for every fixed
number of states [16]. The genotype data will specify which
two states occur at each site, without partitioning the data
into two haplotypes.

Finally, I believe that this is the first paper to connect the
graph realization literature to a problem related to phy-
logeny, and I don’t believe the phylogeny community is aware
of these powerful techniques. Finding additional applica-
tions for these methods in phylogenetics remains a general
open problem.

5. ACKNOWLEDGEMENTS

I would like to thank Chuck Langley for introducing me to
the issue of haplotype inference, and continuing discussions
on its importance.

Before | remembered the problem of recognizing graphic ma-
troids and realized that the PPH problem could be solved
by reduction to it, I tried to solve the PPH problem from
scratch (and in hind-sight my ad hoc solution was close). My
daughters Talia and Shira were very helpful then in generat-
ing trees from which they derived genotype data to challenge
my methods, and for solving instances of the problem by

their own ad hoc methods. These puzzles gave my children
the first indication of what I do for a living, although they
still don’t understand how [can get paid for having such
fun. One of their eight year-old friends found a missing case
in an analysis | was doing. [thank them all for those efforts,
even though the current paper does not reflect that work.

I also thank Sam Rash for early discussions and for poking
holes in my first efforts. Thanks to Katherine St. John for
helping to try to read part of the coalescent literature.

Research partially supported by grant DBI-9723346 from
the National Science Foundation.

6. REFERENCES
[1] R. E. Bixby and D. K. Wagner. An almost linear-time
algorithm for graph realization. Mathematics of
Operations Research, 13:99-123, 1988.

[2] A. Clark, K. Weiss, and D. Nickerson et. al. Haplotype
structure and population genetic inferences from
nucleotide-sequence variation in human lipoprotein
lipase. Am. J. Human Genetics, 63:595-612, 1998.

[3] Andrew Clark. Inference of haplotypes from
PCR-amplified samples of diploid populations. Mol.
Biol. Fvol, 7:111-122, 1990.

[4] W. H. Cunningham and J. Edmonds. A combinatorial
decomposition theory. Can. J. Math., 32:734-765,
1980.

[5] M. Daly, J. Rioux, S. Schaffner, T. Hudson, and
E. Lander. Fine-structure haplotype map of 5q31:
implications for gene-based studies and genomic Id
mapping. Abstract of talk presented at the American
Associate of Human Genetics National meeting,
October 14, 2001

[6] M. Daly, J. Rioux, S. Schaffner, T. Hudson, and
E. Lander. High-resolution haplotype structure in the
human genome. Nature Genetics, 29:229-232, 2001.

[7] L. Friss, R. Hudson, A. Bartoszewicz, J. Wall,
T. Donfalk, and A. Di Rienzo. Gene conversion and
differential population histories may explain the
contrast between polymorphism and linkage

disequilibrium levels. Am. J. of Human Genetics,
69:831-843, 2001.

[8] M. Fullerton, A. Clark, Charles Sing, and et. al.
Apolipoprotein E variation at the sequence haplotype
level: implications for the origin and maintenance of a
major human polymorphism. Am. J. of Human
Genetics, pages 881-900, 2000.

[9] D. Gusfield. Efficient algorithms for inferring
evolutionary history. Networks, 21:19-28, 1991.

[10] D. Gusfield. Algorithms on Strings, Trees and
Sequences: Computer Science and Computational
Biology. Cambridge University Press, 1997.

[11] D. Gusfield. Inference of haplotypes from samples of
diploid populations: complexity and algorithms.
Journal of computational biology, 8(3), 2001.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

L. Helmuth. Genome research: Map of the human
genome 3.0. Science, 293(5530):583-585, 2001.

J. E. Hopcroft and R.E. Tarjan. Dividing a graph into
triconnected components. SIAM J. on Computing,
2:135-157, 1973.

R. Hudson. Gene genealogies and the coalescent
process. Ozford Survey of Evolutionary Biology,
7:1-44, 1990.

L. Jin, P. Underhill, V. Doctor, R. Davis, P. Shen,

L. Luca Cavalli-Sforza, and P. Oefner. Distribution of
haplotypes from a chromosome 21 region distinguishes
multiple prehistoric human migrations. Proc. of the
Nat. Academy of Science, 96:3796-3800, 1999.

S. Kannan and T. Warnow. Inferring evolutionary
history from DNA sequences. SIAM J. on Computing,
23:713-737, 1994.

M.K. Kuhner and J. Felsenstein. Sampling among
haplotype resolutions in a coalescent-based genealogy
sampler. Genetic Epidemiology, 19:515-521, 2000.

F. McMorris. On the compatibility of binary
qualitative taxonomic characters. Bull. Math. Biology,
39:133-138, 1977.

S. Orzack, D. Gusfield, and V. Stanton. Experimental
and theoretical inferal of haplotypes. In preparation.

I. Pe’er, R. Shamir, and R. Sharan. Incomplete
directed perfect phylogeny. In D. Sankoff, editor,
Eleventh Annual Symposium on Combinatorial
Pattern Matching (CPM’00), pages 143-153, 2000.

J. C. Stephens and et. al. Haplotype variation and
linkage disequilibrium in 313 human genes. Science,
293:489-493, 2001.

M. Stephens, N. Smith, and P. Donnelly. A new
statistical method for haplotype reconstruction from
population data. Am. J. Human Genetics, 68:978-989,
2001.

S. Tavare. Calibrating the clock: Using stochastic
processes to measure the rate of evolution. In

E. Lander and M. Waterman, editors, Calculating the
Secretes of Life. National Academy Press, 1995.

W.T. Tutte. An algorithm for determining whether a
given binary matroid is graphic. Proc. of Amer. Math.
Soc, 11:905-917, 1960.

L. Wang, K. Zhang, and L. Zhang. Perfect
phylogenetic networks with recombination. J. of
Comp. Biology, 8:69-78, 2001.

W. T. Whitney. Congruent graphs and the
connectivity of graphs. American Math. J.,
54:150-168, 1932.

W. T. Whitney. 2-isomorphic graphs. American Math.
7., 55:245-254, 1933.

