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Abstract. Several central and well-known combinatorial problems in
phylogenetics and population genetics have efficient, elegant solutions
when the input is complete or consists of haplotype data, but lack effi-
cient solutions when input is either incomplete, consists of genotype data,
or is for problems generalized from decision questions to optimization
questions. Unfortunately, in biological applications, these harder prob-
lems arise very often. Previous research has shown that integer-linear
programming can sometimes be used to solve hard problems in practice
on a range of data that is realistic for current biological applications.
Here, we describe a set of related integer linear programming (ILP) for-
mulations for several additional problems, most of which are known to
be NP-hard. These ILP formulations address either the issue of missing
data, or solve Haplotype Inference Problems with objective functions that
model more complex biological phenomena than previous formulations.
These ILP formulations solve efficiently on data whose composition re-
flects a range of data of current biological interest. We also assess the
biological quality of the ILP solutions: some of the problems, although
not all, solve with excellent quality. These results give a practical way to
solve instances of some central, hard biological problems, and give prac-
tical ways to assess how well certain natural objective functions reflect
complex biological phenomena. Perl code to generate the ILPs (for input
to CPLEX) is on the web at wwwcsif.cs.ucdavis.edu/~gusfield

1 Introduction

Several well-studied problems in computational phylogenetics and population ge-
netics have efficient, elegant solutions when the data is “simple” or “ideal”, but
lack efficient solutions when the data is more complex, due to recombination,
homoplasy, missing entries, site incompatibility, or the need to use genotypic
rather than haplotypic data. Similarly, optimization variants of many decision
problems are often more difficult to solve. In this paper we discuss integer linear
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programming (ILP) formulations for several such problems and report on em-
pirical investigations done with these formulations. For most of the problems,
the concept of incompatibility is fundamental.

Definition: Given a matrix M whose entries are 0’s and 1’s, two sites (or
columns) p and q in M are said to be incompatible if and only if there are four
rows in M where columns p and q contain all four of the ordered pairs 0,1; 1,0;
1,1; and 0,0. The test for the existence of all four pairs is called the “four-gamete
test” in population genetics.

The concept of incompatibility is central to many questions concerning phylo-
genetic trees and population histories [14, 25, 7] for the following reason. Consid-
ering each row of M as a binary sequence, the classic Perfect Phylogeny Theorem
says that there is a rooted phylogenetic tree that derives the sequences in M ,
starting from some unspecified root sequence and using only one mutation per
site, if and only if no pair of sites of M are incompatible. Moreover, if the root
sequence is specified, then the phylogenetic tree is unique. For expositions of this
classic result, see [9, 25]. The assumption of one mutation per site is called the
“infinite sites” assumption in population genetics.

2 Missing Data Problems

When there are no missing values in M , the decision question of whether there
are incompatible pairs of sites can be answered in linear time [8], and of course
the number of incompatible pairs can trivially be computed in polynomial time.
However, the situation is more interesting and realistic when some entries of M
are missing, and this leads to three natural, biologically motivated problems,
which we call M1, S1, and R1.

2.1 Imputing values to minimize incompatibility

Problem M1: Given a binary matrix M with some entries missing, fill in (im-
pute) the missing values so as to minimize the number of incompatible pairs of
sites in the resulting matrix M ′.

Problem M1 generalizes the following decision question: Can the missing
values be imputed so that the the sequences in M ′ can be generated on a perfect
phylogeny? That decision question has an efficient, elegant solution [21] when
a required root sequence of the unknown phylogeny is specified as input, but
is NP-complete when the root sequence is not specified [27]. When the missing
values can be imputed so that M ′ has no incompatible site pairs, the sequences
in M are consistent with the hypothesis that they originated from a perfect
phylogeny; when the values cannot be imputed with zero incompatibilities, the
solution to Problem M1 gives a measure of the deviation of M from the Perfect
Phylogeny model.

The ILP formulation for Problem M1 Our ILP formulation for Problem
M1 is direct and simple. Its importance is that it generally solves very quickly,
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M p q

1 0 0
2 ? 1
3 1 0
4 ? ?
5 ? 0
6 0 ?

Table 1. Six rows and two columns in the input M to Problem M1.

imputing missing values with high accuracy, and that it can be built upon to
address more complex problems. More generally, these formulations and compu-
tations illustrate that for applied problems whose range of data is known, the
fact that a problem is NP-hard does not necessarily imply that exact solutions
cannot be efficiently obtained for that data.

The ILP for problem M1 has one binary variable Y (i, j) for each cell (i, j) in
M that is missing a value; the value given to Y (i, j) is then the imputed value
for M(i, j). The program that creates the ILP for problem M1 identifies all pairs
of columns (p, q) of M that are not necessarily incompatible, but can be made
incompatible depending on the imputed values are set. We let P be the set of
such pairs of columns; for each pair (p, q) in P , the program creates a variable
C(p, q) in the formulation, which will be forced to 1 whenever the imputations
cause an incompatibility between columns p and q. For each pair in P , the pro-
gram also determines which of the four binary combinations are not presently
found in column pair (p, q); let d(p, q) represent those missing (deficient) binary
combinations. The program creates a binary variable B(p, q, a, b) for every or-
dered binary combination a, b in d(p, q); B(p, q, a, b) will be forced to 1 if the
combination a, b has been created (through the setting of the Y variables) in
some row in columns (p, q). The program next creates inequalities that set a bi-
nary variable C(p, q) to 1 if B(p, q, a, b) has been set to 1 for every combination
a, b in d(p, q). Therefore, C(p, q) is set to 1 if (but not only if) the imputations
of the missing values in columns (p, q) cause those sites to be incompatible. To
explain the formulation in detail, consider the pair of columns shown in Table
1, where a missing entry is denoted by a “?”. Then d(p, q) is {(0, 1), (1, 1)}.

For each pair a, b in d(p, q), the program will make one inequality involving
B(p, q, a, b) for each row r where the pair a, b can be created in columns p, q.
The specific inequality for a pair a, b and a row r depends on the specific pair
a, b and whether there is a fixed value in row r in sites p or q. The full details
are simple and omitted but explained for variable B(p, q, 1, 1) using the above
example. Those inequalities are:

Y (2, p) ≤ B(p, q, 1, 1) (1)
Y (4, p) + Y (4, q)−B(p, q, 1, 1) ≤ 1, (2)

which force the variable B(p, q, 1, 1) to 1 when the missing value in the second
row is set to 1 or the two missing values in the fourth row are set to 1; this is
the general pattern for this combination.
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In the above example, the inequalities to set variable B(p, q, 0, 1) are:

Y (2, p) + B(p, q, 0, 1) ≥ 1 (3)
Y (4, q)− Y (4, p)−B(p, q, 0, 1) ≤ 0 (4)

Y (6, q)−B(p, q, 0, l) ≤ 0 (5)

The ILP for the example has the following inequality to set the value of variable
C(p, q) to one, if all the combinations in d(p, q) have been created in the column
pair (p, q):

C(p, q) ≥ B(p, q, 1, 1) + B(p, q, 0, 1)− 1

In general, the constant on the right-hand side of the inequality is one less
than the number of pairs in d(p, q). These inequalities assure that C(p, q) will be
forced to 1 if (but not only if) the missing values in columns (p, q) are imputed (by
the setting of the Y variables) in a way that makes site pair (p, q) incompatible.

The overall objective function for the ILP is therefore to Minimize [|F | +∑
(p,q)∈P C(p, q)], where F is the set of pairs of incompatibilities forced by the

initial 0 and 1 entries in matrix M . We include |F | in the objective for continuity
in a later section.

Because the objective function calls for minimizing, we do not need inequal-
ities to assure that C(p, q) will be set to 1 only if the missing values in columns
(p, q) are imputed in a way that makes site pair (p, q) incompatible. However,
such inequalities are possible, and would be added to (or used in place of) the
above inequalities if we want to solve the the problem of imputing missing val-
ues in order to maximize the resulting number of incompatible pairs. Details are
omitted for lack of space. The solution to the maximization problem, along with
the solution to Problem M1, bracket the number of incompatible pairs in the
true data from which M was derived.

If M is an n by m matrix, the above ILP formulation for problem M1 cre-
ates at most nm Y variables, 2m2 B variables, m2

2 C variables, and O(nm2)
inequalities, although all of these estimates are worst case and the numbers are
typically much smaller. For example, if I is the expected percentage of missing
entries (which is as low as 3% in many applications), then the expected number
of Y variables is nmI. The formulation as described can create redundant in-
equalities, but we have left them in our description for conceptual clarity, and in
practice we have found that the preprocessor in CPLEX removes such redundan-
cies as effectively as any of our more refined programs do. There are additional
practical reductions that are possible that we cannot discuss here due to limited
space.

Empirical results for Problem M1 We extensively tested the ILPs for Prob-
lem M1 to answer two questions: 1) How quickly are the ILPs for problem M1
solved when problem instances are generated using data from a population ge-
netic process; 2) When parts of the data are removed, and the missing data
imputed by the ILP solution, how accurately do those imputations reconstruct
the original values? In phylogenetic applications, missing data rates of up to
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30% are common, but in population genetic applications, rates from one to five
percent are more the norm.

We used the program ms created by Richard Hudson [15] to generate the
binary sequences. That program is the widely-used standard for generating se-
quences that reflect the population genetic coalescent model of binary sequence
evolution. The program allows one to control the level of recombination (defined
in Section 2.3) through a parameter r, and a modified version of the program
provided by Yun Song, allows one to control the level of homoplasy (recurrent or
back mutations violating the infinite sites assumption). After a complete dataset
was generated, each value in the data was chosen for removal with probability
p, varied in the study; we use I = p × 100 to denote the expected percent of
missing values. All computations were done on a 1.5 ghz Intel itanium, and the
ILPs were solved using CPLEX 9.1. The time needed to generate the ILPs was
minimal and only the time used to solve the ILP is reported. We tested our ILP
solution to Problem M1 on all combinations of n (# rows) = {30, 60, 90, 120,
150}; m (# columns) = {30, 60, 90}; r = {0, 4, 16, 30}; and I (expected percent
missing values) = {5%, 10%, 15%, 20%, 25%, 30%}3. We generated and tested
fifty datasets for each parameter combination.

The running times were slightly more influenced by m than by n, and mildly
influenced by r, but were mostly a function of n×m and I (increasing with n×m
and I, and decreasing with r). The largest average execution time (averaged over
all 50 datasets) occurred when n, m and I, were at their maximum values and r
was zero, but that average time was only 3.98 seconds. Figure 1 (a) shows average
running times as a function of I. Hence, despite being NP-hard, problem M1
can be solved very efficiently on a wide range of data whose parameters reflect
datasets of current interest in phylogenetics and population genetics.

The imputation accuracy was also excellent, when the product n×m is large.
Error is the percentage of missing values that were incorrectly imputed. The case
of 5% missing data illustrates this. When n = m = 30, and r = 4, the missing
values were imputed with an average error of 6.4%, but when n = 120, m = 90
the average error dropped to 1.8%. In general, error increased with increasing r,
and fell with increasing n×m. The likely reason for such good results when n×m
is large is the high level of redundancy in the data, and that these redundancies
are exploited when the objective is to minimize incompatibilities. Figure 1 (b)
shows error rates as a function of n×m.

2.2 Imputing values to minimize site-removals

In this section we discuss another natural objective function related to Problem
M1. We first define the Site-Removal problem on complete data: Given a binary
matrix M with no missing entries but some pairs of incompatible sites, find the
smallest set of sites to remove from M so that no remaining pair of sites is
incompatible.
3 We had earlier studied the case of I = 1% using a slower ILP formulation, but almost

all of the computations took zero recorded time (to three decimal places) on that
data, and so we started with a higher percentage of missing data for this study.
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(a) (b)

Fig. 1. (a) Average time (in seconds) needed to solve the ILP for Problem M1 as a
function of I, the expected percentage of missing data. Each diamond is the average of
50 datasets for a particular combination of the parameters n, m, r and I. (b) Average
imputation error rates (percentages) in the solution of the ILP for Problem M1, as
a function of n × m. Each diamond is the average of 50 datasets for a particular
combination of the parameters n, m, r and I.

Finding a small(est) set of sites to remove so that no remaining pairs are
incompatible is often suggested and employed (particularly in phylogenetic stud-
ies) as a means to clean up data that does not perfectly conform to the Perfect
Phylogeny model. The expectation is that while there may be some sites where
homoplasy is observed (due to recurrent or back mutations at that site), a Per-
fect Phylogeny constructed from the remaining sites will give valid evolutionary
information about the taxa. There are similar scenarios in population genetics.
Of course, in order to get the most informative phylogeny, we want to remove as
few sites as possible, motivating the Site-Removal problem. The Site-Removal
Problem is NP-hard and is typically formulated as a Node-Cover problem in a
graph where each node represents a site and each edge connects an incompatible
pair of sites [25, 7].

When M has missing entries, the Site-Removal problem is generalized to:
Problem S1: Over all matrices created by imputing missing values in M , find
the matrix M ′ to minimize the the solution to the Site-Removal problem on M ′.

An ILP formulation for Problem S1 is easily obtained from the ILP formu-
lation for Problem M1 as follows: Let D(i) be a binary variable used to indicate
whether or not site i will be removed. Then for each pair (p, q) ∈ P , add the
inequality D(p) + D(q) − C(p, q) ≥ 0, which says that if the missing values
are imputed so that site pair (p, q) becomes incompatible, then either site p
or site q must be removed. Also, for each pair (p, q) ∈ F , add the inequality
D(p) + D(q) ≥ 1. Finally, change the objective function in the formulation for
M1 to Minimize

∑m
i=1 D(i).
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Problem S1 can be solved efficiently on the range of data considered in Section
2.1 (with most computations taking less than one second) but slightly slower than
for Problem M1, and with a higher error rate. For example, the average time
and error of the 50 datasets with n = 120, m = 90, r = 16, I = 15, was 0.53
seconds and 3.1% for Problem M1 and 0.75 seconds and 5.4% for Problem S1.

2.3 Estimating recombination in data with missing values

Recombination (crossing-over) is a fundamental molecular phenomena, where
during meiosis two equal length sequences produce a third sequence of the same
length consisting of a prefix of one of the sequences followed by a suffix of the
other sequence. A central problem is to determine the minimum number of re-
combinations, denoted Rmin(M), needed to generate a set of binary sequences
M from some known or unknown ancestral sequence, when the infinite sites as-
sumption applies [16]. There is a large literature on this problem, but there is
no known efficient algorithm to exactly compute Rmin(M). However, there are
efficient algorithms that give relatively good lower bounds on Rmin, and there
are biological questions concerning recombination (for example, finding recom-
bination hotspots) that have been successfully addressed using lower bounds on
Rmin rather than using Rmin itself [1],[5]. The first published, and most basic
lower bound, called the HK bound [16], is obtained as follows: Consider the m
sites of M to be integer points 1...m on the real line and pick a minimum number
of non-integer points R so that for every pair of incompatible sites (p, q) in M ,
there is at least one point in R (strictly) between p and q. It is easy to show
that |R| ≤ Rmin(M). When the data in M is complete, the HK bound |R| can
be computed in polynomial-time by a greedy-like algorithm. However, under the
realistic situation that some entries in M are missing, we have Problem R1:
Over all matrices created by imputing missing values in M , find the matrix M ′

to minimize the resulting HK lower bound on the Rmin(M ′).
The reason for minimizing is that the result is then a valid lower bound on

the number of recombinations needed to generate the true underlying data, when
the infinite sites assumption applies.

Problem R1 is NP-hard [30], but an ILP formulation for it can be easily
obtained from the formulation for Problem M1: For each c from 1 to m− 1, let
R(c) be a binary variable used to indicate whether a point in R should be chosen
in the open interval (c, c + 1). Then, for every pair of sites (p, q) in F ∪ P , add
the inequality

∑
p≤c<q R(c) ≥ C(p, q) to the ILP for Problem M1, and change

the objective function to Minimize
∑m−1

c=1 R(c).
In our computations (details omitted due to space limitations), we have es-

tablished that Problem R1 can be solved in practice over the same range of data
discussed in Section 2.1; the computation times were longer than for Problem
M1, but generally not more than twice as long. Of greater interest is the quality
of the imputed values obtained in the solution to Problem R1 on data generated
with recombination. Because Problem R1 more explicitly reflects recombination
than does Problem M1, we conjectured that the solutions to Problem R1 would
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impute the original values better than solutions to Problem M1. Surprisingly,
the average error for solutions to Problem R1 was somewhat larger than for
Problem M1. For example, the average error over all datasets with n = 150 was
4% for Problem M1 and 4.75% for problem R1.

3 Haplotyping Problems

One of the key technical problems in the acquisition of variation data in pop-
ulations is called the “Haplotype Inference (HI) Problem”, or the problem of
determining the “phase” of unphased genotype data. A very large literature
now exists on this problem (see [12] for one survey). Abstractly, input to the HI
problem consists of n genotype vectors, each of length m, where each value in the
vector is either 0,1, or 2. A site with value 2 is called a “heterozygous” site, while
the other sites are called “homozygous” sites. In the context of this problem, a
vector with only entries of 0 and 1 is called a “haplotype”. Given an input set of
n genotype vectors, a solution to the HI Problem is a set of n pairs of haplotypes,
one pair for each genotype vector. For any genotype vector g, the associated hap-
lotypes v1, v2 must both have value 0 (or 1) at any position where g has value 0
(or 1); but for any position where g has value 2, exactly one of v1, v2 must have
value 0, while the other has value 1. Hence, for an individual with h heterozy-
gous sites there are 2h−1 pairs of haplotypes that could appear in a solution to
the HI problem. For example, if the observed genotype g is 0212, then the pair
of haplotypes 0110, 0011 is one feasible solution out of two feasible solutions.
Of course, we want to find the HI solution that is most biologically plausible,
and for that we need additional criteria to to guide the algorithm solving the HI
problem. The goal is to devise criteria that reflect biological reality and yet allow
efficient solution to the HI problem. Criteria have been previously proposed that
were encoded as optimization problems with precise objective functions. In this
paper, we discuss four additional biologically-motivated optimization problems
that have practical ILP solutions.

3.1 Haplotyping versions of M1, S1, R1

Each of the three problems M1, S1 and R1 has a natural analog as a haplotyp-
ing problem, and has biological and historical connections to other haplotyping
problems.

Problem HM1: Solve the HI problem so that the number of incompatible
pairs of sites in the HI solution is minimized over all HI solutions.

Problem HM1 is a natural extension of the following “Perfect Phylogeny
Haplotyping (PPH)” problem [10]: Find, if possible, a solution to the HI problem
so that the haplotypes in the solution can be derived on a perfect phylogeny; in
other words, so that there are no incompatible pairs of sites in the HI solution.
Such an HI solution is called a “PPH solution”, and if there is one, it can be found
in linear time [6, 22]. See [10] for a discussion of the biological justification of
the PPH problem. The PPH model is justified in some applications, but not all,
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and there are additional applications where the true haplotypes deviate by only
a small amount from the PPH model (low recombination “haplotype blocks”
are the prime example). In [13], a heuristic approach was developed to handle
small deviations from the PPH model. An attempt to more formally model
small deviations from the PPH model was explored in [26, 23]. Problem HM1 is
an alternative way to formalize, and quantify, deviations from the PPH model:
a set of genotypes that allow HI solutions with a small number of incompatible
pairs deviate less from the PPH model than do genotypes that only allow HI
solutions with a large number of incompatible pairs. We were therefore interested
in whether the HM1 problem can be solved efficiently in a range of biologically
relevant data, and how well the HI solutions obtained this way reconstruct the
correct haplotypes.

An ILP formulation for Problem HM1 can be easily obtained by modifying
the formulation for Problem M1: First, duplicate each row of M creating matrix
M , and create the ILP for Problem M1 using matrix M , treating each 2 as a
“?”. Then for each cell (i, q) where M(i, q) is 2, add the inequality Y (2i−1, q)+
Y (2i, q) = 1. This formulation can be further improved, and such improvements
have been implemented. For example, if M(i, p) = 2 and M(i, q) = 1 the binary
combinations 0,1 and 1,1 will definitely be generated in columns (p, q) and that
information may reduce the elements in d(p, q), and reduce the size of the ILP
formulation.

In the same way, we can modify the ILP for Problem S1 to obtain an ILP for
Problem HS1: Remove the minimum number of columns in the input geno-
types, so that there is a PPH solution to the HI problem on the remaining data.
That is another way to formalize, and quantify, deviation from the PPH model.
The same kind of modification also extends the ILP for Problem R1 to an ILP
for Problem HR1: Solve the HI problem in order to minimize the HK bound
on the haplotypes in the solution. That problem has been proposed as a way to
search for recombination hotspots in genotypic data rather than haplotypic data
[29]. It is interesting to note that Problem HR1 has a polynomial time solution
[29], as does the problem of solving the HI problem in order to maximize the
HK bound [31], even though Problem R1 is NP-hard.

Empirical results for Problem HM1 We extensively tested instances of
Problems HM1, HS1 and HR1 using datasets with n

2 genotypes created by pair-
ing n haplotypes output by the program ms described in Section 2.1. We tested
50 datasets for each combination of n, m and r that we examined. We observed
that we could solve these problems in practical time on a wide range of data, but
not as extensive as for Problem M1. Further, the computation times were longer
(considerably so for larger instances) for the same parameter combinations of
n, m and r. In general, the HI solutions given by Problem HM1 were better than
for HS1 and HR1, and so we will only discuss those here, although the running
times for HM1 were larger than for HR1. In our experiments, we stopped any
computations that exceeded three hours, and considered only combinations of
n = {10, 20, 30, 60, 80} haplotypes and m = {30, 60, 90} sites. As an example,
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when n = 80,m = 60, r = 16, 94% of the datasets terminated within the three
hour limit. However, for most of the parameter choices we examined, all of the
datasets terminated within the time limit, and most terminated well below that
limit.

In addition to the solution time, we were interested in the quality of the
haplotypes produced and how that quality varied depending on whether the de-
viation from the PPH model was due to recombination or to homoplasy. Datasets
with homoplasy were generated with 5, 10 or 20 sites where additional mutations
were forced to occur. Over these ranges of of n, m and r, we did not see a signif-
icant difference between the quality of the haplotypes produced from datasets
generated with recombination and those with homoplasy, and so we will discuss
only the recombination case.

To assess the quality of the solutions, we used the standard switch error
[17, 19] and the line error, comparing the haplotype pairs obtained from solving
Problem HM1 with the original pairs used to generate the genotype data. The
switch error is the minimum number of runs (blocks) of contiguous sites that
need to be exchanged between the computed haplotype pairs in order to make
the resulting haplotype pairs agree with the correct pairs, divided by the number
of hetrozygous sites in the data. The line error is simply the number of haplotype
pairs in the solution that do not agree completely with the corresponding correct
pair, divided by the number of genotypes. The ILP executions that were termi-
nated after three hours all found HI solutions, and so we could test their quality
also. Hence, no datasets were excluded from our accuracy analysis. We also com-
pared the accuracy of the HM1-computed haplotypes with the haplotypes found
by program FastPhase [24], the successor program of the widely-used program
PHASE [28].

We observed switch errors for the HI solutions produced by solving Problem
HM1 that were very good in some parameter ranges, often superior (by a small
amount) to the switch error of the solutions produced by FastPhase; in other
parameter ranges the observed switch errors were somewhat inferior to those
from FastPhase, and to accuracies reported for simulations using HapMap data
[20] (although in line with some real data [17]). The line errors of solutions from
both FastPhase and Problem HM1 were relatively large, but quite similar to
each other. Unlike imputation error, switch accuracy is highly influenced by r,
the recombination parameter; consistent with imputation error, all accuracies
improved with larger data sets, particularly as the number of rows increase. We
should note that in our tests we did not require that the minor allele appear
above a minimum frequency as is commonly done; it is well known [19] that
accuracies are improved by imposing that requirement.

Figure 2 (a) summarizes the switch and line errors of the HI solutions from
obtained Problem HM1 compared to solutions given by FastPhase; Figure 2 (b)
shows the time needed to solve Problem HM1.

As an illustration of the influence of n, when n = 20,m = 30, r = 4, the
average switch errors from HM1 and FastPhase were 0.1189 and 0.136 which are
relatively large, but when n increased to 60, the errors declined to 0.0532 and
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(a) (b)

Fig. 2. (a) Comparison of switch and line errors the HI solutions from Problem HM1
and FastPhase, as a function of n. In each simulated dataset the switch and line errors
of the HM1 solution were subtracted from switch and line errors of the FastPhase
solution. A positive result shows the HM1 solution superior to the FastPhase solution.
Each diamond (square) is the average difference of switch (line) errors from the 50
datasets for a particular combination of the parameters n, m and r. (b) Solution times
(over the terminating datasets) as a function of m, for three values of parameter r.
Each object is the average of 50 datasets with the same values of n.

0.068, and when n increased to 80, the errors were 0.0452 and 0.062. To see the
influence of the recombination parameter r, consider the case of n = 60,m = 30,
where the switch errors for HM1 were 0.046, 0.0532, 0.0984 with r = 0, 4 and 16
respectively, and the errors for FastPhase were 0.063, 0.068, and 0.083.

The comparison of individual HI solutions obtained from Problem HM1 and
from FastPhase often gave contradictory results, so we averaged the results over
all the data examined: the HI solutions from Problem HM1 had an average
switch error of 0.13, an average line error of 0.34 and required an average com-
putation time of 186.3 seconds for the terminating computations, while 4% of
the computations did not terminate in three hours. The FastPhase solutions had
an average switch error of 0.128, an average line error of 0.36 and required an
average of 38 seconds to compute. These results suggest that the qualities of the
two approaches are very similar. While the time needed to solve Problem HM1
is greater than the time for FastPhase, the main goal in solving HM1 was to see
how well this natural extension of perfect phylogeny haplotyping solves the HI
problem (although we would have been pleased to report that it solved faster
than FastPhase). Having a solvable, simple-to-state objective function allows one
to assess the biological fidelity of the model reflected by the objective function,
giving much cleaner and clearer semantics compared to more black-box methods
whose semantics may be very unclear. We consider the results based on HM1 to
be positive and informative.
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3.2 The MinPPH Problem

When there is a PPH solution to the HI problem, there may be several solutions,
and it is desirable to apply a secondary criterion to choose one. An appealing
approach, motivated both by theory and empirical observations, is to solve the
following problem called the MinPPH Problem: Find a PPH solution that
minimizes the number of distinct haplotypes used in any of the PPH solutions.

The MinPPH Problem is a mixture of the PPH problem and the problem of
Haplotype Inference by Pure Parsimony (denoted HIPP) [11, 4, 18]. The MinPPH
problem was defined and justified in [2] where it was shown to be NP-hard. An
ILP formulation for MinPPH (different than presented here) was described in [3],
but not implemented due to the expectation that it would not solve efficiently.

The idea of our ILP formulation is to modify the formulation for Problem
HM1 and combine it with the simplest ILP formulation for the HIPP problem
given in [4] (see also [12] for a description of that HIPP formulation, and [18]
for a similar formulation). We start with the HIPP formulation from [4], but
add to it the inequalities from the HM1 formulation along with the equality∑

(p,q)∈P C(p, q) = 0. The end result is an ILP formulation that solves the HI
problem using the minimum number of distinct haplotypes possible, subject to
the constraint that the HI solution is a PPH solution (assuming a PPH solution
exists).

We extensively tested this ILP formulation for solution speed and haplotype
accuracy, using genotypic data (created from ms with r = 0) where PPH solu-
tions were assured. We obtained two striking empirical results. The first result
is that the ILPs solve extremely fast (generally less than one second) over a
range of data up to 80 rows and 80 columns. This speed is even more notable
considering that the HIPP formulation from [4] requires hours or days to solve
the HI problem on the smaller instances, and cannot solve the larger instances
in practical time. Hence, it is the PPH constraints added to the HIPP formu-
lation that makes the resulting formulation solve so quickly. We also examined
the question of how the running times were influenced by the number of PPH
solutions, and we saw no clear pattern.

The second striking empirical result is that the accuracy of the HI solutions
given by the MinPPH solution is notably better than solutions obtained by
FastPhase (except for instances with a very small number of rows), while running
considerably faster. For example, when n = m = 80, the average MinPPH
solution time was 0.59 seconds with a switch-error of 0.045, while the run time for
FastPhase was 163 seconds with a switch-error of 0.074. In general, the MinPPH
switch and line errors decrease with increasing problem size, as measured either
by n or m×n. Figures 3 (a) and 3 (b) show the MinPPH runtime and switch-error
and line-error as a function of n×m.
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