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Abstract

A phylogenetimetworkis a genealization of a phylogenetidree, allowing structural propertiesthat are not tree-like
With the growth of genomicdata, mud of which doesnot fit ideal tree models,there is greater needto understandthe
algorithmicsand combinatoricsof phylogenetimetworkg17, 18]. However to date,verylittle hasbeenpublishedon this,
with the notableexceptionof the paperby Wangetal.[21]. Otherrelatedpapersinclude[9, 10,12, 20, 19].

Wanget al. [21] studiedthe problemof constructinga phylogenetimetworkfor a setof n binary sequenceslerived
from the all-0 ancestal sequencewhenead site in the sequencecan mutatefrom 0 to 1 at mostoncein the network,
and recombinatiorbetweersequencess allowed. They gavea polynomial-tmealgorithmthat wasintendedto determine
whetherthe sequencesould be derivedon sud a phylogenetimetworkwhele the recombinatiorcyclesare nodedisjoint.
In this paper wecall sut a phylogenetimetworka “galled-tree”. Thatworkis seminalin focusingon galled-trees andfor
its assertionthat reconstructiorof sud networkscan be donein polynomialtime Unfortunately the algorithmin [21] is
incompleteand doesnot constitutea necessaryestfor the existenceof a galled-treefor the data.

In this paper we completelysolvethe problemof determiningwhethera setof binary sequencesan be derivedon a
galled-tree By more deeplyanalyzingthe combinatorialconstaints on cycle-disjointphylogenetimetworkswe obtainan
efficientalgorithmthatis guaranteedto be botha necessanand suficienttestfor the existenceof a galled-treefor thedata.
If there is a galled-tree,the algorithm constructsonewhich is optimal, minimizingthe numberof recombinationsver all
phylogenetimetworksfor the data (usingthe all-0 ancestal sequence)gven phylogenetimetworksthat are not restricted
to begalled-trees,andevenif their recombinatioreventsallow multiple-ctossoverecombinations\\e also provethat when
there is a galled-treefor the data, the galled-tree minimizingthe numberof recombinationss “essentially unique”, with
only limited modificationgpermitted.\e also notetwo additional results: first, any setof sequencethat canbe derivedon
a galledtreecan be derivedon a true tree (withoutrecombinatiorcycles) whee at mostonebad mutationis allowedper
site; secondthe site compatibility problem(which is NP-haid in geneanl) can be solvedin polynomialtime for any setof
sequencethatcanbederivedon a galledtree

Thecombinatorialconstaints we develop apply (for the mostpart) to node-disjointcyclesin any phylogenetimetwork
(not just galled-trees),and can be usedfor exampleto provethat a given site cannotbe on a node-disjointcyclein any
phylogenetimetwork. Perhapsmore importantthan the specificresultsaboutgalled-trees,we introducean approadc that
canbe usedto studyrecombinatiorin phylogenetimetworkshat go beyondgalled-trees.

This papergreatly extendsthe confeenceversionthat appearsin [7]. PowerPint slidesof the confeencetalk canbe
foundat [6].

1 Intr oductionto phylogeneticnetworks and galled-trees

A phylogenetimetworkis ageneralizatiorof a phylogenetidree,allowing structurapropertieghatarenottree-like. With
thegrowth of genomicdata,muchof whichdoesnotfit idealtreemodels,andtheincreasingappreciatiorof thegenomicrole



of suchphenomenasrecombinationrecurrentand back mutation, horizontalgenetransfer geneconversion,and mobile
geneticelementsthereis greatemeedto understandhe algorithmicsandcombinatoricof phylogeneticmetworks[17, 18].
Recombinations particularlyimportant,becausét is the key elementeededor techniqueshatarewidely hopedto locate
genednfluencinggeneticdiseasesThekey to locatingthesegenesds to understan@dndusethe patternsof recombinatiorin
the genetic“experiments"doneby natureandhistory. However, to date,very little hasbeenpublishedon the combinatorial
structureof phylogenetimetworks with the notableexceptionof the paperby Wangetal.[21]. Otherrelatedpapersnclude
[9,10,12,20, 19].

1.1 Formal definition of a phylogeneticnetwork

Therearefive componentsieededo specifya phylogenetimetwork: a directedagyclic graph(no directedcycles,but the
underlyingundirectedgraphcanhave cycles); an assignmenbf mutationsor sites(integers)to edges;an assignmenof a
sequencéo eachnon-recombinatiomode;a specificatiorof a prefix-sequencanda suffix-sequencéor eachrecombination
node;andan assignmenbf arecombinatiorpoint anda recombinansequencéo eachrecombinatiomode.We will define
eachof thesecomponentsn turn. SeeFigure 1 for anexampleof a phylogenetimetwork.

Definition: An (n, m)-phylogenetimetworkV is built onadirectedagyclic graphcontainingexactly onenode(theroot)
with noincomingedgesa setof internalnodesthat have bothincomingandandoutgoingedgesandexactly n nodes(the
leares)with no outgoingedges.Eachnodeotherthanthe root haseitherone or two incomingedges.A nodezx with two
incomingedgesds calleda “recombination”node.

Eachinteger (site)from 1 to m is assignedo exactly oneedgein N, but for simplicity of exposition,noneareassignedo
ary edgeenteringa recombinatiomode. It is alsopossiblethat otheredgeswill receve no integerassignmentWe usethe
terms“column” and“site” interchangeably

Eachnodein N is labeledby an m-lengthbinary sequencestartingwith the root nodewhich is labeledwith the all-0
sequenceSinceN is ag/clic, thenodesn N canbetopologicallysortedinto alist, whereevery nodeoccursin thelist only
afterits parent(s).Usingthatlist, we canconstructvely definethe sequencethatlabelthe non-rootnodes,n orderof their
appearanci thelist, asfollows:

a) For a non-recombinatiomodev, let e bethe singleedgecominginto ». The sequencéabelingw is obtained
from thesequencéabelingy’s parentby changingrom 0 to 1 thevalueat positions, for every integeri assigned
to edgee. This correspond$o a mutationat site: occurringon edgee.

b) Eachrecombinatiomodez is associateavith anintegerr, (denotedr, whenz is clearby contet) between
2 andm inclusive, calledthe “recombinationpoint” for z. For the recombinatiorat nodez, one of the two
sequence$abeling the parentsof = mustbe designatedP and the other designatedS. Then the sequence
labelingz consistf thefirst », — 1 character®f P, followedby thelastm — r, + 1 character®f S. Hence
P contributesa Prefixand.S contributesa Sufix to 2’s sequenceT heresultingsequencéhatlabelsz is calleda
“recombinantsequence”.

Thesequenceklbelingtheleavesof NV arethe extantsequences,e., the sequencethatcanbe obsered. In this paper
the ancestrakequencéat the root of the phylogenetimetwork)is alwaysthe all-0 sequenceandall resultsarerelative to
thatassumptionWe will sometimesestatethis for emphasis.

Definition 1.1 An (n, m)-phylogenetimetwork N derives(or explains)a setof n sequenced/ if andonlyif eat sequence
in M labelsexactlyoneoftheleavesof V.

Whatwe have definedhereasa phylogeneticnetworkis often referredto asan “ancestralrecombinatiorgraph”in the
populationgeneticditerature(see[16] for atypical example).

The biologicalinterpretatiorof a phylogenetimetwork N thatderives M is that N is a possiblehistory of the evolution
of the sequencein M, underthe assumptionghat thereis a single, known ancestralsequencdassumedo be all-0 for
convenience)thatfor ary sitein thesequencethereis exactly onepointin the history (recordecbn anedge)wherethatstate
of that site mutates(dueto a point-mutatior) from O to 1; andthattwo sequencearepermittedto recombinen anequal-
cross@er event. Recombinationsccuratarecombinatiomodeandthis distinguishes changeof statedueto recombination
from a changeof statedueto mutation.With thesedefinitions,a classicperfectphylogety is a phylogenetimetworkwhich
is topologicallya directed rootedtree,i.e., lackingary cyclesin theunderlying(undirected)graph.
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Figure 1. A phylogenetic network N with two recombination nodes. The matrix of sequences M that
are derived by N is shown at the right. Note that the node with sequence label 01100 is sequence S for
the left recombination node, and is sequence P for the right recombination node. The recombination
points are 3 and 4 for the left and right recombination nodes respectivel y, and are written just above
the recombination nodes . In this example, every label of an interior node also labels a leaf, but that
is not a general property of phylogenetic netw orks.
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Figure 2. A galled-tree deriving the same sequences as the phylogenetic network in Figure 1. Unlike
the example shown here, in general the recombinant sequence exiting a gall may be on a path that
reaches another gall.



It is importantto notethat whenrecombinatioris allowed, the orderof the sitesin the sequencesonstrainthe possible
outcome®f arecombinatiorevent,andsothegivenorderof thesitesin a sequencés acritical featureof aprobleminstance.
This is in contrastto the classicperfectphylogery problem,andto recentwork on perfectphylogenieswith hybridization
[15], wherethe orderof thecharactersloesnot matter

Interestin phylogenetimetworkscomespartly from a desireto reconstructhe evolutionaryhistory undera modelthatis
morebiologically completethanthe perfectphylogery model. But therealsomore appliedusesof phylogenetimetworks.
For example,in a populationof “unrelated”individuals,we wantto determinewhich partsof theindividualsgenomesame
from a commonancestar This determinatiorhelpslocateregionsin the genomeassociatedvith genescontributing to an
obsenabletrait (for example,a disease).Recombinationn the populationis key to this determinationandunderstanding
thehistory of therecombinationss the key to doingthis kind of mapping.

Motivationfor binary sequencesomesfrom a numberof sourcesput the strongesturrentmotivation comesfrom data
whereeachsite is a single SNP (single nucleotidepolymorphism),i.e., a site wheretwo of the four possiblenucleotides
appeatin the populationwith afrequeng abore somesetthreshold.

1.2 Which PhylogeneticNetworks are Biologically Informative?

It is easyto shaw thatfor every binarymatrix M, thereis aphylogenetimetwork N thatderives M usingO(nm) recombi-
nationnodes put thatis not of greatinterestbecausén mostevolutionaryhistoriesthe numberof obsenablerecombinations
is thoughtto be relatively small. Hencea more biologically informative problemis to find, for input M, a phylogenetic
networkthatderives M, andthat eitherhassomebiologically-mofvatedstructure or usesthe minimumnumberof recom-
binations,over all phylogenetimetworkswith all-0 ancestrakequenceWe call thatnumbermy,;. Wangetal. [21] shoved
thatthe generalproblemof computingmys is NP-hard,andHudsonandKaplan[11], Myers and Griffiths [14], and Song
andHein[19] give combinatoriaimethodsor computinglowerboundson my, .

1.2.1 Galled-trees:A biological and algorithmically motivated structural restriction

Giventhe NP-hardnessf the problemof computingmy,, Wanget al. suggestea structuralrestrictionon the permitted
phylogenetimetworkswhich hasbothbiologicalandalgorithmicappeal.

Definition 1.2 In a phylogenetimetworkV, let w be a nodethat hastwo pathsout of it that meetat a recombinatiomode
z. Thosetwo pathstogetherdefinea “r ecombinatiorcycle” ). Nodew is calledthe “coalescentnode” of @, and z is the
recombinatiomodeof ().

Definition 1.3 A recombinatiorcyclein a phylogenetimetworkthat shaesno nodeswith any otherrecombinatiorcycleis
calleda “gall” (imaginea wasps gall in a tree). We saya site: “is on” or “appears” on a gall @ if i labelsoneof the
edgeof ). When: appearson ), wealsosaythat” @) containsi”. We usetheterm*“r ecombinatiorcycle” for phylogenetic
networks.

Definition 1.4 A phylogenetimetworkis calleda “galled-tree” if everyrecombinatiorcycleis a gall. SeeFigure 2.

Galled-TreeProblem: GivenasetM of n binary sequencesachof lengthm, determindf thereexists a galled-treer”
thatderives M, andif thereis one,construcione.

Wangetal. [21] give an O(nm + n*)-time algorithmthat wasintendedto solve the Galled-Tree Problem. This work
is seminalasit is thefirst paperto introducea biologically motivatedstructuralrestrictionfor a phylogenetimetworkthat
allows a polynomialtime algorithm. Unfortunately the algorithmin [21] is incorrect,andonly providesa sufficient testfor
the existenceof a galled-trefor M .

1.3 Main results

In this paperwe develop a fasteralgorithm (O(nm + n?)-time) that completelysolves the Galled-Tree Problem. In
particular thealgorithmproducesa galled-treeof a particularform, calleda “reducedgalled-tree”.

We will shaw thatif thereis agalled-tredfor M, thenthereis areducedjalled-treefor M, andthatevery reducedyalled-
treefor M usesxactly mj, gallsandrecombinationsMoreover, whenthereis agalled-tredor M, evenif multiple-crosswer
eventsareallowedat eachrecombinatiorevent, thereis no phylogenetimetworkthatderives M usingfewer recombination



events.We show thatreducedyalled-treesre“essentially-unique”allowing only easilycharacterizedariation. Thusif the
sequencedid derive historically on a galled-treethealgorithmwill correctlycapturethe essentiafeaturesof thathistory.

Thealgorithmcanbe usedto countandrepresentll thereducedjalled-treedor M, andto produceeachoneefficiently.
We alsoshaow thatif M canbe derived on a galled-tree thenit canbe derived on a true tree (without underlyingcycles)
with at mostonebackmutationper site, andthatthe problemof removing the minimum numberof sitesof M, sothatthe
remainingsiteshave a perfectphylogery (an NP-hardproblemin general)canbe solvedin polynomialtime.

In obtainingtheseresults,we develop combinatoriakconstraintghatapplyto gallsin arny phylogenetimetwork(whether
a galled-treeor not). Thisis usefulasa first stepin understandinghylogenetimetworksin generalandfor specifictasks,
suchasproving thata given site cannotbe on ary gall in ary phylogeneticnetwork. Someof thesegeneralconstraintsare
morefully examinedin [8].

1.4 Motivation for Galled-Trees

Thereareseveralreasondor interestin galled-treesA galled-treedefinesa phylogeneticistorywheretherecombination
cyclesarenode-disjoint,usinga modestnumberof recombinationsat mostm /2. A phylogeneticnetworkis likely to be
a galled-treeif the level of recombinatioris moderatepr if mostof the obsenable recombinationg@rerecent. In Human
populations both conditionsare believed to hold. Otherexamplesof galled-treesarisein the datareportedin [13]. The
simplestsituationis the caseof aninterval in the genomewhereonly a singlerecombinatiorhasoccurred.In thatcase the
true history of the sequencem thatinterval takesthe form of a galled-tree andour algorithmwill correctlyreconstructhe
essentiafeaturesof thathistory. More generallyit is important(in diseaseassociatiorstudies for example)to find regions
of thegenomewherethe subsequences a populationexhibit moderateecombinationandthe galled-treealgorithmcanbe
usedto find suchregions.

Furthermotivationfor galled-treesomesfrom the fact thatif A canbederived on a galled-treethenit canbe derived
onatruetree(no underlyingundirectedcycles)with at mostonebackmutationpersite. A treewith limited backmutations
is anothemodel of interestthat deviatesfrom the perfectphylogery model. But perhapghe mostcompellingmotivation
for galled-treescomesfrom the main resultsin this paper namelythat when a set of sequences/ canbe derived on a
galled-treean efficient algorithmwill find sucha galled-tree andthe galled-treeconstructedisesthe minimum numberof
recombination®ver ary phylogenetimmetworkfor M (with the all-0 ancestrakequence)even phylogeneticnetworksthat
allow multiple-crosswer eventsat eachrecombinatiomode. Hence,galled-treegprovide the only known non-trivial case
whereoptimal (with respecto the numberof recombinationsphylogenetimetworkscanbe efficiently constructedrom a
setof sequences.

2 Combinatorial definitions and observations

We organizeM into a matrix, whereeachrow containsasequencén M, andassumehereareno duplicatecolumnsand
thateachcolumnhasatleastoneentrythatis 1.

2.1 Combinatorial Background and Major Combinatorial Tool

Definition 2.1 Two columns(or sites)in M are saidto “conflict” if and only if the two columnscontainthreerows with
the pairs 1,1; 0,1; and 1,0. A siteis called “conflicted” if it is involvedin at leastone conflict, and is otherwisecalled
“unconflicted”.

Recallthat a perfectphylogety is a phylogeneticnetworkwithout recombinations.Hence,asa graph,it is a directed
rootedtree. Thefollowing is the classicnecessarandsufficient conditionfor the existenceof a perfectphylogery deriving
asetof sequenced/. Seg[3, 4] for oneexposition.

Theorem 2.1 Thee is a perfectphylogenyderiving M if andonly if matrix M containsno conflictedsites.Further, if there
is a perfectphylogenyfor M andall columnsof M are distinct, thenthere is a uniqueperfectphylogenyfor A/, and each
edgeis labeledby at mostonesite If there are identical columnsthenthe perfectphylogenyis uniqueup to any ordering
givento multiple sitesthatlabel the sameedge

Henceit is the existenceof conflictsin M thatrequirea deviation from the perfectphylogery model,andin this paper
requirerecombinationsn orderto derive a history of M. We will shov thatwhenthereis a galled-treefor M, thereis a
galledtreeof a particularform, asfollows:



Definition 2.2 A galled-treeis called “r educedgalled-tree” if every gall containsat leastone conflictedpair of sites,and
containsno unconflictedsites.

Major Tool: The Conflict Graph and its ConnectedComponents

Thecentraltechnicalcontribution of this paperis to obsere thatthereis combinatoriaktructurein the patternof conflicts
betweercolumnsandthatthis structurecanberepresentedndexploited to obtaininsightsaboutrecombinatiorin phyloge-
neticnetworks.We now introducethe conflictgraph, which representandexposessomeof the combinatoriaktructure.

Definition 2.3 TheconflictgraphG containsonenodefor ead sitein M. We label eat nodeof G by thesiteit represents.
Two nodesi andj are connectedy an undirectededgeif and only if sitesi andj conflict. SeeFigure 2.

Overview: The connecteccomponent®f G reveal importantstructuralinformation aboutgalled-trees.We will shav
thatthereis aone-onecorrespondenckeetweerthe non-trivial connectedcomponent®f G andthegallsin areducedyalled-
tree. More generally every gall in ary phylogenetimetworkthatcontainssomeconflictedsites,containsall the sitesof one
non-trivial connecteccomponentandcontainsno sitesfrom anothemon-trivial connectedcomponentFurther no gall need
containary unconflictedsites.It followsthatevery reducedyalled-treefor M (if thereis a galled-treeofr M) usesthesame
numberof galls, andthe samenumberof recombinationsWe will shaw thatthis numberis my;, the minimum numberof
recombinationsieededy ary phylogenetimetworkthatderives M, andhastheall-0 ancestrakequence.

2.2 Combinatorial Constraints on Galls

In orderto prove the claimsmadein the overview, we begin anexaminationof the combinatorialconstraintson gallsand
galled-trees.

Definition 2.4 If anodeq is reahablefroma nodep via a directedpath,thenp is an ancestorof ¢, andq is a descendanof
P

Lemma2.1 Let@ bea gall in a phylogenetimetwork N, and assumehat () containsa sitei. Letv bea nodeon @ and
defineN’ asthe subnetworlof N consistingof all nodesand edgeseadableby directedpathsfromwv, notusinganyedges
in Q. Thatis, N’ is the maximalsubnetworlof N brancing off of  at v. Thenthe state(0 or 1) of site: at every nodein

N’ isthesameasat nodev.

Proof Supposdhatatsomenodein N’, the stateof : is differentthanit is atv. Let z’ be sucha nodewith the property
thatat every ancestoof z’ in N’, the stateof 7 is the sameasat nodev. Since: only mutatesonce,andnot on anedgein
N’, thestateof i cannotchangen N’ dueto mutation,andcanthereforeonly changedueto recombinationHence,z’ must
bearecombinatiomode.Now if bothparentf =’ werein N’, thenby thechoiceof z’, the stateof 7 atbothparentswvould
bethe sameasthe stateat v, andthatstatewould be unchangedt =’ regardlessof wherethe recombinatiorpoint . is. So
oneof the parentf z’, call it p, mustbe outsideof N’. By definitionof z’ and N/, all pathsfrom therootof N to z’ either
avoid v, or gothroughtheedgeon @ outof v. In thefirst caselet y bethelastancestoof v onthatpath. Thenthe pathfrom
y to =’ thatgoesthroughp, togethewith the pathfrom y to =’ throughv (and N’) form arecombinatiorcycle thatsharesan
edgewith ). In thesecondcase)et y bethechild of » on ). Thenthepathfrom v to =’ in N’ togethemwith the pathfrom »
to ' throughy form arecombinatiorcycle that sharesan edgewith . Both contradicttheassumptiorthat@ is a gall, and
sothe stateof site: at every nodein N’ mustbethesameasatnodev. O

In asimilar way, we canprove

Lemma 2.2 If a site mutateson a directededge(v, v') thatis not on any gall, thenthe stateof i is the sameat any node
reahablefromy’.

Definition 2.5 Let C' be a setof siteson a gall (2, and let the matrix M (C') be matrix M restrictedto the sitesin C'. Let
M (C) — 0 denotethe sequencem M (C) that are unequalto the all-0 sequenceGivena phylogenetimetwork NV for M,
let .S, (C') denotethesequencéabelingnodewv in NV, restrictedto thesitesin C'.

Notethat M (C') — 0 equalsM (C) if theall-0 sequencés notin M (C'). Lemmaz2.1limpliesthefollowing



Corollary 2.1 For the coalescenhodew of @, S, (C) is the all-0 sequenceA sequencés in M (C') — 0 if andonlyif it
is the sequences, (C') for somenodev # w on (). Stateddifferently, the nodelabelsof the non-coalescenhodeson @,
restrictedto sitesin C', are exactlythesequences M (C) — 0.

Proof Clearly, S, (C) is the all-0 sequencesinceno siteson C' mutateon the path(s)from the root of N to w. The
sequencem M (C) arethe sequencekbelingthe leavesof N, restrictedto C. If aleaf z is reachabldrom anodev in @,
notusinganedgein @, thenby Lemma2.1, S, (C') andS, (C') arethesamellf leafz is notreachabldérom ary nodev in @,
thenit musthave state0 for every sites thatmutateson (. In thatcasesS, (C) is all zeros.O

Corollary2.1is importantbecauseét saysthatinformationaboutthe nodelabelson a gall is reflectedin the sequenceat
theleaves,andhencethatinformationis containedn extant sequencesThis is a propertyof gallsthatdoesnot generalize
to every non-gallrecombinatiorcycle, andis intuitively one of the reasonsvhy problemsconcerninggallsandgalled-trees
have efficient solutions.

Definition 2.6 A nodev on a recombinatiorcycle @ is calleda “br anching node” if there is a directededge(v, v') whee
v’ isnoton Q. Theedge(v, v') is calleda “br andching edge”.

Thefollowing theoremis thetechnicalkey to mostof the analysisof the combinatoriaktructureof galled-trees.

Theorem 2.2 LetT" bea galled-treefor matrix A . Twosites: andj > ¢ in M conflictif andonlyif thefollowing conditions
hold:

a) ¢ andj aretogetheronthesamegall (callit Q) in ", with recombinatiomodez, and: < r, < j.
b) Sitesi andj arearrayedon () in oneof thefollowing threeways(seeFigure3):

W1: Site: is onthe P-sideand;j is onthe S-sideof @, andthereis abranchinghodebetween andz, andabranchingnode
betweenj andz. Note: In this casethei, j state-paiin therecombinansequencés 1,1.

W2: Sites:i andj arebothonthe P-sidewith j above i (i.e.,j mutatedbeforei does)andthereis abranchingnodebetween
j andi, anda branchingnodebetween andz. In this casethei, j state-paiin therecombinansequencés 1,0.

Wa3: Sitesi andj arebothon the S-sidewith i above j, andthereis a branchingnodebetweeni andj, anda branching
nodebetweery andz. The state-paiiin this caseis 0,1.

Proof of Theorem 2.2 We first establishthe necessarylirection,i.e., startingwith the assumptiorthat: and j conflict
in M. We prove a generalffact, namelythatif i andj conflictand N is a phylogeneticnetworkfor M (not necessarilya
galled-tree)theni andj mustbetogetheron somerecombinatiorcycle in N. Thatfact, specializedo galled-treesimplies
thefirst claimin the necessargirectionof parta). The proofis by contradiction.

Supposeéhe sitesi and j arenot togetheron somerecombinatiorcycle in N. This could eitherbe becausehey areon
separateecombinatiorcycles,or becaus®neor bothareon edgesutsideof ary recombinatiorcycle. Letusremove all the
sitesfrom N exceptfor i andj. Certainly theresultingphylogenetimetworkderivesthe sequences/, restrictedo thetwo
sitesi andj. Now contractary edgee unlesse is labeledwith i or j, or e is on arecombinatiorcycle thatcontainseither:
or j. Theresultingnetwork N’ againcorrectlyderivesthe sequencesf M, restrictedto sites: andj. Network N’ is either
aperfectphylogery (if it containsno recombinatiorcycles),or it is a phylogenetimetworkwith recombinationwhereeach
recombinatiorcycle containsexactly onemutation,eitheri or j.

If N’ containsrecombinatiorcycles,we furthermodify it. Suppose is on arecombinatiorcycle Q with recombination
nodez. If the stateof i is 0 at = (throughrecombination)thenwe remove the edgeinto z on the side of @) that: is on.
If the stateof 7 is 1 at =, thenwe remove the edgeinto = thatis on the side oppositethe sidethat is on. In eithercase,
theresultis a networkwith onefewer recombinatiorncycleswhoseleavesare labeledexactly asin N’. Continueto apply
this transformation(for  or j) to arny remainingrecombinationcycle in N/, until thereare no remainingrecombination
cycles. Theresultis a perfectphylogery which correctlyderivesthesequencem M, restrictedo sites: and;j. But aperfect
phylogery exists for a setof sitesif andonly if no pair of thosesitesconflict. This impliesthati andj do not conflict, a
contradiction.Hence, andj mustbetogetheron somerecombinatiorcyclein N. Specializedo thecasewhen M is derived
on agalled-treerl’, sites: andj mustbe togetheron onegall of T'. This provesthefirst claimin the necessargirection of
parta).
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Figure 3. The three cases for Theorem 2.2. In each case, the recombination point r, is between i and
Jj >

Let » be the recombinationpoint of gall . We will shav thati < r < j is forced. First, by Corollary 2.1 and the
assumptiorthati andj conflict, andthefact (just establishedjhat: andj aretogetheron somegall @, it follows thatall
threeof the required(:, j) state-pairanustoccurat branchingnodesof @. It alsofollows thatthe (i, j) state-pairat the
recombinatiomodez of ) mustbedifferentfromthe (i, j) state-pairsitary othernodeon @, for thosenodescanonly have
state-pair®),0andtwo of thethreepairs0,1;1,0;and1,1,sincei and;j eachonly mutateonce.Now supposédor contradiction
thati < j < r. If ¢ andj arebothon the P-sideof ), thenthe (¢, j) state-paimtz will be (1, 1) which alreadyoccursat
somebranchingnodeabove z. If bothareonthe S-side,thenthe state-paimatz will be0,0. If ¢ and; areon differentsidesof
@, thenatz, thestate-paiwill beidenticalto whatit is atthelastnodeonthe P-side,above z. In all casesthestate-paiat =
will beidenticalto somestate-paimatadifferentnodeon @, contradictinghe assumptiorthati and;j conflict. Theamgument
for when: andj; arelargerthanr is symmetric.Henceit mustbethat: < » < j. This completeghe proof of the necessary
directionfor parta).

Now we provethenecessardirectionfor partb). Sincesites: and; conflict,theremustbethreesequencem A, onewith
(4, 7) state-pail0,1; onewith pair 1,0; andonewith pair 1,1. We establishecbove thateachof thesethree(:, j) state-pairs
mustappeaiin asequencdabelingsomenodeon (). Sowe considethow thesepairscould be placedon @. If bothi andj
areonthe P-sideof ), andi appeardeforej, thenthenodesotherthanz will havethe (i, j) state-paird,0Oor 1,1,andnode
z will alsohave pair 1,0,sothepair 0,1 will be missing.Similarly, if : andj bothappearon the S-side,then: mustappear
above j, or elsethepair1,0will bemissing.If : and;j appeaondifferentsideswith j onthe P-side,and: onthe S-side,then
state-pair®,1and1,0will appeamn nodesof @, but pair 1,1 will be missing. Hencethe only possibilitiesfor therelative
placemenbf mutationsi and; aretheonesgivenin statement$V 1, W2 and}4/3. To finish proving the necessargideof b)
we needto establistthatthe branchingnodeson Q mustbe asclaimedin statement$V' 1, W2 and¥ 3. Considerstatement
W 1. If the claimedbranchingnodebetweery andthe recombinatiomodez is missing,thenno edgeout of () would pass
onthe(i, j) state-pai0,1,andsoby Corollary 2.1, no leaf sequencevould have that pair, contradictingthe assumptiorthat
i, j conflict. Similarly if thereis no branchingnodebetweeni andzx, thenthe pair 1,0 would not appeamat ary leaf. Hence
thebranchingnodesclaimedin statemeni?' 1 mustexist. The proofsfor statement$V'2 andW 3 aresimilar, andleft to the
reader This concludeghe proof of the necessargideof b).

To prove the sufficient directionof thetheoremassume and;j aretogetheron somegall @@ with recombinatiomodez,
where: < r, < j, and: andj arearrayedin oneof thethreewaysenumeratedh statemenb). Note (by inspection)thatin
eachof therelative placement®f i andj enumeratedy W1, W2 andW 3, all three(i, j) state-pair®,1;1,0;and1,1 are
foundat nodeson (. Then,with the specifiedbranchingedgeff of (2, andCorollary2.1, eachof thesepairsis foundat a



leafof 7', andhencein somesequencén M. Thereforeno matterwhetherthe (:, j) configurationis asgivenin W1, W2 or
W3, sites: andj will conflictin M. O

Notethatin all casesthei, j state-paimat z differsfrom thei, j state-paimat every othernodeon Q.

In the caseof phylogenetimetworks(not necessarilyalled-trees)partsof Theorem?2.2 continueto hold.

Theorem 2.3 Let N be a phylogeneticnetworkfor M. Supposesitesi and j > i are togetheron somegall @ (with
recombinatiomodez) in N. Thensites: andj conflictif andonlyif i < r, < j, andoneof the conditionsw1,W2or W3
hold.

We will not use Theorem?2.3 in this paper and leave the proof to the reader A deeperanalysisof gallsin general
phylogenetimetworksis developedin [8].

The algorithmin [21] is only a sufficient testfor the existenceof a galled-treethat derives M, becausat (implicitly)
assumethatapair of sitescanconflictonly dueto arrangemernitV1. Equivalently, thealgorithmin [21] correctlydetermines
whetheror nottheinput sequencesanbederivedonagalled-tre€l” having thefollowing addedconstraint:for eachsites, if
sites mutateson anedgee, thenthestateof i remainssetat 1 atall nodeswhich arereachabldrom the endof e. Henceonce
thestateof i mutatedrom 0 to 1, it never returnsto 0, eventhroughthe actionof recombinationThatis a severerestriction
comparedo whatis allowedby thegenerabefinitionof agalled-treeln thegalled-treen Figure2, the stateof site4 mutates
from O to 1, but thenis returnedo 0 throughrecombinatiorin the gall shovn on theleft.

We now developthetheoremdeadingto the one-onecorrespondendeetweerconnectedomponentén theconflictgraph
for M andthegallsin a galled-treefor M.

Theorem 2.4 For anynon-trivial connecteccomponent of the conflictgraph,andanygalledtree’l for M, all thesitesin
C mustoccurtogethemona singlegall in 7.

Proof Thisfollowsby transitvity from thenecessardirectionof parta) of Theoren2.2, andthefactthatfor ary pair of
sites: andj in C, theremustbea pathconnecting to j in C. O

Thefollowing theoremis thecomplemento Theorem2.4.

Theorem 2.5 LetT bea galled-treefor M. If sites: and:’ are ondifferentnon-trivial connectedcomponentsf the conflict
graph,thenthey mustappearon differentgalls of 7'.

We prove Theorem?2.5 by usingthefollowing lemma,which s of interestin its own right.

Lemma2.3 Let @ bea gall in T" with recombinatiomnodez, and recombinatiorpoint , andlet ¢, 7/, j, ' be siteson @,
wheee : conflictswith j > 7 and<’ conflictswith j* > /. Theneither: conflictswith j’, or i conflictswith j.

Proof First,by Theoren®.2,parta), 7’ mustbothbe smallerthantherecombinatiorpointr of @), andj, j/ mustbothbe
greateror equalto r.

Using Theorem?2.2, we considerthe threewaysthati andj canbearrayedon (). In eachcasewe will shov thateither
', j mustconflict, or 7, 7/ mustconflict.

Casel) Sitesi and j are arrayedasin W1, sosite i is on the P-side,andsite j is on the S-sideof ), andthereis a
branchinghodebelown each but above z. Sites:’ andj’ conflict, sono matterwherethey areon @, theremustbeabranching
nodebelow i andonebelow 5, but above z. Now to avoid conflict with 7, site s’ mustbe on the S-side of Q. But thento
createconflict between’ andj’, site ;/ mustalsobe on the S-side. Thatputs: on the P-sideand;’ onthe S-side,with a
branchinghodebelow each,andhenceby the suflicientdirectionof Theorem?2.2 caseW1, sites: and;j’ mustconflict.

Case?) Sitesi andj arearrayedasin W2, soi and;j arebothonthe P-side,with j above i, andthereis abranchingnode
betweerthem. Sincej’ conflictswith i/, theremustbe a branchingnodebelow ;. Hence by Theorem?2.2,to avoid conflict
with 7, site j/ mustbe onthe P-side eitherbelow , or above i but below the branchinghodebetween; and:. Eitherway, j/
mustbebelow j onthe P-side. But thenby Theorem?2.2, because’ andj’ conflict, sites’ mustbe on the P-sidebelow 5/,
andtheremustbe a branchingnodebelow i’. Therefore,j and:’ arearrayedon () asin caséW2, andhenceby Theorem?2.2
they conflict.

Case3) Sitesi andj arearrayedasin W3, sobothareonthe onthe S-side,with ¢« above j, andthereis a branchingnode
betweerthem. Since:’ conflictswith j/, theremustbea branchingnodebelow . Hence by Theorem?2.2,to avoid conflict
with j, sites’ mustbe on the S-side eitherbelow j, or above j but below the branchingnodebetweeni andj. Eitherway,
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i’ mustbe belaw i onthe S-side. But thenby Theorem?2.2, becauseé’ andj’ conflict, site j/ mustbe onthe S-sidebelow ¢/,
andtheremustbea branchingnodebelow j'. Therefore; andj’ arearrayedon @) asin caseW3, andhencethey conflict. O

Lemma2.3 canbegeneralizedo the casewhereno ancestratequencéasbeenspecifiedn advance.This hasbeendone
(independently)n Propositionl in [19].

Proof of Theorem 2.5: Let: and; > ¢ bea conflicting pair of siteson one non-trivial connecteccomponentands’
andj’ > i’ beaconflicting pair of siteson anothemon-trivial connecteccomponentlf thesefour sitesareall togetheron a
singlegall @, thenwith respecto therecombinatiorpoint» of thatgall, 7 and:’ arebelow r, andj andj’ areeachequalto
or above r. Soby Lemma2.3, either: conflictswith ;' or  conflictswith j. But thatcontradictdheassumptiornthat: andj
areon adifferentconnecteccomponentf the conflict graphthanare:’ and;j’. Hence: andj areononegall and:’ andj’
areon anotherBut by Theorem2.4, all sitesonthe sameconnectedomponentretogetheron asinglegall, soary two sites
ontwo differentconnectedcomponentsireon differentgalls. O

Theoremg.4and?2.5togetheimply

Theorem 2.6 In anygalled-tree" for M, there is a one-onecorrespondenceetweerthenon-trivial connectedcomponents
oftheconflictgraphandthegallsin 7" containingconflictedsites.Ead sud gall in 7" containsall thesitesof onenon-trivial
connectedomponen{dueto Theoem2.4), and containsno sitesfroma differentnon-trivial connecteccomponen{dueto
Theoem?2.5).

Theorem2.6is crucial for the efficiency andoptimality of the algorithmto constructgalled-treeswhenpossible.It also
leadsto thefollowing

Theorem 2.7 If theconflictgraphfor M hask non-trivial connectedcomponentsandthereis a galled-treefor M, thenany
galled-treethat minimizesthe numberof recombinationgover all galled-trees)usesexactly k¥ recombinations.Moreovey
anygalled-treefor M wheee eadt gall containssomeconflictedsites,usesexactly k£ recombinations.

Proof LetT beagalled-treefor M. If thereis agall Q in T thatonly containsunconflictedsites,the sequencekabeling
thenodeson @) canbederivedon aperfectphylogery wheretheroot of thephylogery is thesequencéabelingthecoalescent
nodeof ). Replacing@ with the perfectphylogery resultsin a galled-tregfor M thatusesonefewer recombinationghan
T. Hencein ary galled-treeusingthe minimum numberof recombinationsevery gall containsat leastoneconflicting pair
of sites.Thereforethe numberof gallsis exactly the numberof non-trivial connectedomponentsn the conflictgraph.C

Theorem2.4and?2.5generalizeo phylogenetimetworksasfollows.

Theorem 2.8 Let N be a phylogenetimetworkfor sequenced/. Everygall (if there is one)in N that containsconflicted
sitescontainsall the sitesof onenon-trivial connecteccomponenbf the conflictgraph, and containsno sitesfromanother
non-trivial connecteacomponent.

3 Arranging the gall @

Theone-oneorrespondendeetweemon-trivial connecte@omponenandgallsin areducedyalled-tregyreatlysimplifies
the task of creatinga galled-treefor /. We canfocusindependentlyon eachnon-trivial connectedccomponentC' of the
conflictgraph,to determinehow the siteson thatcomponentrearrayedon thegall @, andhow to selecttherecombination
pointfor . In this sectionwe shov how to efficiently accomplishthesetasks.

3.1 Selectingthe recombinationpoint r on Q

Lemma 3.1 If there is a galled-treefor M, thenevery non-trivial connecteccomponent’’ of the conflict graph mustbe
bipartite, and the bipartition is unique: the (indicesof the) siteson one side of the bipartite graph mustbe strictly smaller
thanthesiteson the otherside

Proof All the siteson C' mustmutateon a singlegall @, and@ hasonly a singlerecombinatiorpoint ». By Theorem
2.2a),i < r < j for ary conflicting pair ¢, j in C' wherei < j. Thereforeeachedgein C connectonesitewhoseindex is
below » andonesitewhoseindex is ator above r. O

Constructvely, it is easyto find the bipartitiondescribedn Lemma3.1: let p bethelargest(by index) nodein C whichis
connectednly to largernodesin C, andlet ¢ bethe smallestnodein C which is connectednly to smallernodes.Thenall
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thesiteswith index p or lessareon onesideof thebipartitegraph,andall thesiteswith index ¢ or largerareontheotherside
of thegraph.Moreover, therecombinatiorpoint » for the gall associatedvith the connectedcomponent”, canbechoserto

beary pointin theinterval [p + 1, q].
Definition 3.1 Theinterval [p + 1, q] is calledthe“r ecombinatiorinterval” of C.

Lemmas3.1 givesa necessargonditionthat canbe usedto prove that certainsetsof sequencesannotbe derived on a
galled-tree For example,seeFigures4 and5.

00000 M

a: 00010

b: 10010
5 ¢: 00100
d: 10100
e: 01100
f. 01101
g: 00001

a: 00010

b:10010 4:00001

¢: 00100

d: 10100 ¢ 01100 f. 01101

Figure 4. The phylogenetic network derives the sequences M shown to the right. Although this
network is similar to the one shown in Figure 1, and only sequence g is different, M cannot be
derived on a galled-tree . See Figure 5.

M
a: 00010

b: 10010 Conflict Graph for M
c: 00100

d: 10100 Q(\
e:01100 1 23 4 5
2 01101 K_/

g: 00001

Figure 5. The conflict graph of the sequences M from Figure 4 is bipartite, and the bipar tition is
unique, but it does not have the required properties stated in Lemma 3.1.

By a muchmoredetailedanalysisof the combinatorialstructureof galls,in [8], we prove a strongerresultthanLemma
3.1:
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Theorem 3.1 Let N bean arbitrary phylogenetimetworkfor /. Thesitesin a connecteccomponent”’ canappearon a
gallin N onlyif C' is a bipartite graphwith thebipartition describedn Lemma3.1,and C' is a bi-convexgraph. A bipartite
graphis bi-corvex if the nodesof the graph canberenumbegd sothat for anynodew, the setof nodesthat v is adjacentto
forma contiguoudnterval in the new nodenumbers.

Thisis avery useful,generatheorensinceit allowsusto identify moreconnectedomponentsvhosesitescannotappear
onagallin ary phylogenetimetwork.Onecandeterminef agraphwith m nodess bi-convex in O(m?) time andalsofind a
minimumnodecoverof abi-corvex graphin O(m?) time[2]. We conjecturehatalineartime boundis obtainablelt is easy
to seethatthe minimum numberof columnsto remove from M sothatno conflictsremain,is givenby the minimum node
cover of theconflictgraph.Thisis calledthe“site consisteng” problem,andit is NP-hardin general1]. However, thenode
cover problemcanbe solvedin polynomialtime (by networkflow) on ary bipartitegraph.Sowhenthereis a galled-treefor
M, the site-consistencproblemcanbe solved by networkflow in polynomialtime, andeven fasterby exploiting the fact
thateachconnectedcomponentnustbe bi-corvex.

3.2 Arranging the sitesof C' on @

We now describehow to arrangethesitesof C' onagall ). Corollary2.1will beacentraltool.

To understandhe methodfor arranginghesiteson a gall, considera fixedgalled-treel” for A, andfocusonthearrange-
mentof sitesof C' on gall @ in isolationof therestof 7. Now remove the recombinatiomodez from @), andthetwo edges
enteringz Theresultinggraphconsistof oneor two directedpathsstartingatthe coalescentodeof (), andcontainingall the
sitesin C. If it only containsonepath,thendenotethe coalescenbhodeasy, andthesingleendnodeasw; otherwisdet u and
y bethetwo endnodesof thetwo paths.For eachnodew otherthanthe coalescenhode ,addanedgefrom v branchingoff of
@, andlabelits leaf endwith .S, (C'). Theresultis a perfectphylogetry, denotedl'(Q), thatof course derivesthe sequences
labelingthe leavesof T'(Q). Further S;(C') canbe formedby a recombinatiorof the sequences, (C') and S, (C') atthe
recombinatiorpoint r determinedrom C'.

Now by Corollary2.1,theleaf labelsof T'(Q), restrictedto thesitesin C, areexactly thesequencem M (C), otherthan
thesequence, (C). Thatis, treeT'(Q), with sitesrestrictedto thesitesin C, is a perfectphylogety for all the sequencem
M (C) otherthanS; (C). Thisfactis the key to how we canactuallyfind 7'(¢)) knowing only M (C'). SeeFigures6 and?7.

000 M

Q00 CTY
|_\
o
H
o)
o

d: 110

Figure 6. @ is the gall for the connected component C'in Figure 2 containing sites 1,3, and 4. The
node labels shown on the gall are the node labels from Figure 2, restricted to the sites in C. The
sequences in M, restricted to the sites in C are also shown. Note that the set of node labels and the
set of sequences in M(C') are identical, which is assured by Corollary 2.1.
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000

M(C) -d
a: 001
b: 101
h: 101 cefg c. 010
010 d: 110
e: 010
f: 010
g: 010

Figure 7. After removal of the recombinant node from gall @ of Figure 6, the resulting graph is a
perfect phylogeny for the sequences M (C) — 110. Moreover, the mutations on the perfect phylogeny
are organized into two paths, and the removed sequence 110 can be created by recombining the two
sequences at the ends of those two paths, using the recombination point 3 determined earlier from
C, as shown in Figure 6.

Hencewe have

Theorem 3.2 Thee is a sequenceX in M (C'), sud that after removalof all copiesof X, there is a perfectphylogenyfor
theresultingmatrix; the labelededge=of that perfectphylogenycontainall sitesin C' organizedinto oneor two paths;and
the recombinatiorof the two “end” sequencegfrom either the root sequenc®f the perfectphylogenyand the single leaf
sequenceayr thetwo leaf sequencesjt therecombinatiorpoint » createssequencex.

Recallthattherecombinatiorpoint» canbecomputedrom €', soTheoren.2 suggestaneffective procedureHowever,
sinceC' might containa strict subsetof the sitesin A/, the meaningof » hasto adjustedto correctlyindicatethe correct
crosseer pointfor the sitesin C'. Whenappliedto a subsebf sitesC, ary index in C' whichis lessthanr will beto theleft
of therecombinationandary index in C' whichis equalor largerthanr will beto theright of therecombination.

Now, by Theoren?.1, ary matrix which hasa perfectphylogery hasa uniqueperfectphylogery aslong asno orderingis
givento multiple siteson the sameedge.Hence given M/ andC, if we couldguessX, we could createthe correct,unique,
perfectphylogery andexactly recreatdhe arrangementf siteson () asgivenin 7.

However, sincewe do not know X, if we remove from M (C') all copiesof a differentsequencé&’, andyet thereis
a (unique)perfectphylogery for the resultingmatrix, whereall the sitesin C' are containedin oneor two paths,andthe
recombinatiorof thetwo endsequenceat pointr creates”, thenthis new perfectphylogery canalsobeusedto arrangehe
siteon (. To seethis, notethatthenodelabelsonbotharrangementareexactly thesamerestrictedo €', botharrangements
labelthenodeswith the sequencem M (C'), andonly sitesin C' appeaon ). The stateof eachsitenotin C is identicalat
every nodeon ). Hence thetwo arrangementsf siteson C' inducea permutationof the nodeson ¢ andof the edgesout
of @, but areindistinguishableoutsideof (). Notethatin all arrangementsn @), the sequencéabelingthe coalescenhode
containsonly zerosat thesitesin C'. For example,removal of sequencé insteadof d from M (C') in Figure6 leavesa setof
sequencewith the perfectphylogery shovn in Figure8, andthearrangemenof gall ) shovnin Figure9.

Hence all arrangementsf the sitesin C' onagall @ canbefoundby thefollowing algorithm:

Site-Arrangement Algorithm
0) Determinetherecombinatiorpointr from C.
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a: 001
b: 101
110 c: 010
d: 110
e: 010
f: 010

d:110 9:010

Figure 8. The perfect phylogeny for M (C) — b.

000

M(C)-b
a: 001
b: 101
c. 010
d: 110
e: 010
f: 010

b: 101 d:110 9 010

Figure 9. The arrangement of gall @ derived from the perfect phylogeny for M (C) — b.
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1) Let M (C') bematrix M restrictedto thesitesin C.

2) For eachdistinctsequenceX in M (C) do:

3) Let M(C, X) be M(C) afterthe removal of all rows with sequenceX. Checkif thereis a perfectphylogery for
M (C, X), andif so,checkif all siteson C' arecontainedin oneor two pathswhoseendsequencesanbe recombinedat
pointr to createX.

If theanswelis “yes”, thenoutputanarrangemendf the siteson @ consistentvith this perfectphylogery.

Specializingo galled-treeswe have established,

Theorem 3.3 Assumingthat there is a galled-treefor M, every arrangemenof the sitesin C' on @ thatis usedin some
galled-treefor M, canbefoundasabove Thesetof sequencelmbelingnodesof @, restrictedto C, is invariantoverall the
arrangementsandall thegalled-treesfor M .

Time Analysis: Giventhe matrix M (C', X) with n rows andat most|C'| columns,the perfectphylogery algorithmsin
[3, 4] candetermindf thereis aperfectphylogery for M (C, X'), andconstrucit, in O(n|C|) time. So,all thearrangements
of @ thatareusedin ary galled-treefor M canbe foundin O(n?|C|) time, and over all the galls, the time to find all the
arrangementthat appearon ary galled-treeis O(n?m). It wasestablishedn [21] thatm canbe at most2n if thereis a
galled-tredfor M, sothetotaltimeis O(n?).

By a moredetailedanalysisof how the siteson a gall canbe arrangedwe have developedanalternatve algorithm[8] for
arrangingthe siteson a gall, whoserunningtime is only O (n?).

We have claimedthat the galled-treefor M is “essentially-unique”. The one-onecorrespondencbetweenconnected-
componentaindgallsestablisheshefirst partof thatclaim. We now shav thatthe numberof arrangementsf the sitesona
gallis very limited, further establishinghe “essential-uniqueness”.

Theorem 3.4 LetC' bea non-trivial connectedcomponenof the conflictgraphwhosesitescanbe arrangedon a gall @ in
somephylogenetimetworkfor input M. Thesitesin C' canbearrangedon @ in at mostthreedistinctways,aslong asno
orderingis givento multiple sitesonthe sameedge

Proof We have alreadyestablishedhateachdistinctarrangemenof siteson () is associatedvith onedistinctsequence
X in M (C), with thepropertythatwhenall copiesof X areremaovedfrom M (C'), theremainingsequenceim M (C') canbe
derived on a perfectphylogery. Moreover, whenno orderingis givento multiple siteson edgesa sequenceX is associated
with at mostonearrangemenof siteson ). Hence,whenall copiesof X areremoved from M (C'), all conflictsbetween
pairsin C arebroken,andwe canboundthe numberof distinct arrangementsf siteson @ by boundingthe numberof
distinctsequences M (C) whoseremoval (of all identicalcopies)oreaksall conflictsin C.

Let s, j bea conflicting pair of columnsin C'. In orderfor theremoval of X to breakthe, j conflict, therow for X in
M (C') mustcontainoneof thethreestate-pair®,1or 1,00r 1,1in columnsi, j, andno otherrow in M (C') cancontainthat
state-paitin columnsi, j. It followsthattherecanbe atmostthreerowsin M (C) whoseremoval canbreakthes, j conflict,
andhencetherecanbeat mostthreedistinctarrangementsf the sitesin C on@. O

We next show that C' can actually be arrangedon @ in threeways, only when C' hastwo sites,asin Theorem2.2.
Otherwise,() canonly be arrangedn two ways,andtypically will only have onearrangementFor simplicity, we assume
thatall but onecopyof ary duplicaterow hasbeendeleted. Theseresultsareobtainedusingthefollowing

Lemma 3.2 LetC bea connectecomponenin theconflictgraphwith at leastthreesitess, j, j/, whele i conflictswith both

j andj’. Supposehesitesin C' canbearrangedon a gall @ in a phylogenetimetworkfor theinput. If X is a sequence
whoseremovalbreaksall the conflictsin M (C'), andthe, j state-pairfor X is 0,1,thenthere is only onewayto arrange

thesitesof C' on Q.

Proof First, the, j/ state-paimustalsobe 0,1 for otherwiseit would be 0,0 andthe removal of a 0,0 pair would not
breakthe s, j/ conflictin M (C'). Now supposeX is anothersequencevhoseremaval breaksall conflicts. The value of
entry (X2, ) mustbe 1, sinceif it were0, thenthe s, j state-pairfor X would eitherbe 0,1 or 0,0. The first possibility
would contradictthe assumptiorthatremoring X; breaksthe i, j conflict, andthe secondoossibility would contradictthe
assumptiorthatremaving X, breaksthes, j conflict. Solet 1, z, y denotethes, j, j’ state-triplefor X,. Sincei andj arein
conflict, theremustalsobe anotherrow X3 whosei, j state-paiiis 1, z, wherez is z + 1 mod 2. Also, thei, ;' state-pair
mustbe 1, y, sinceotherwiseit wouldbe1, y, andthenthe remaoval of X5 would not breakthe, 5’ conflict.
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If x = y, thencolumns; andj’ areidenticalin rows X, X5 and X3. Any otherrow S musthave the j, j' state-pairf
0,00r z, y. To seethis, considetthestateof ; in row S. When: is 0, the j, ;' state-paimustbe0,0for otherwiseeitheri, 7 or
i, 7' will be0,1andtheremoval of X; would notbreakall theconflicts. Wheni is 1in S, thej, j/ state-paimustbez, y or
elseoneof thes, j andi, j’ state-pairsn S would beidenticalto the correspondingpairin X -, andtheremoval of X would
not breakall conflicts. Sowhenz = y, columns;j andj’ areidentical,which contradicts¢he assumptiorthatall columnsin
theinputaredistinct.

Butif z # y (andhencez # y), thenthej, j;/ columnswould have all threepairs1,1;0,1;and1,0andsobein conflict.
Thatis a contradiction,becausg andj’ arebothin conflict with :, andhencemustbe on the sameside of the (bipartite)
conflictgraph.

Theconclusionis thatif ¢ isin conflict with two columns; andj’, andif X is asequencevhoseremoval breaksall the
conflictsin M (C'), andthe, j state-paifor X; is 0,1,then X, is the only sequencevhoseremoval breaksall conflictsin
M (C), andhencethearrangemendf C on @ is unique.O

Theorem 3.5 Let C bea connecteccomponenbf the conflictgraphwhosesitescanbearrangedon a gall @ in a phyloge-
neticnetworkfor theinput. If C' hasat leastthreesites thenthesitescanbearrangedon @) in at mosttwo distinctways,and
if C hasat leasttwo siteson ead sideof bipartite graph (i.e., on eat sideof therecombinatiorpointfor '), thenthesites
canbearrangedon @ in only oneway:.

Proof Whenthereareat leastthreesitesin ', theremustbe at leasttwo siteson onesideof the bipartitegraphC', and
sinceC is connectedtheremustbe at leastonesite, call it i thatis connectedo two distinctsites; andj’. Supposehere
arethreedistinctsequencefows) X, X, and X3 in M (C'), suchthattheremoval of ary of thesesequencebreaksall the
conflictsin M (C). Thenoneof thosethreerows mustcontainthepair 0, 1 for columnsi, j. Applying Lemma3.2leadsto a
contradictionsowhenC' hasat leastthreesites,therecanbe at mosttwo arrangementsf the sitesof C' on Q).

Now assumeahateachsideof the bipartitegraphC' hasat leasttwo sites,andsupposeherearetwo waysto arrangethe
sitesof C' on Q. Hencetherearetwo rows X; and X; whoseremoval breaksall conflictsin M (C'). SinceC' is connected,
theremustbeanedge(i, j) suchthat: is alsoadjacento anodej’ # j, andj is adjacento anodei’ # i. Applying Lemma
3.2to thei, j pair, the i, j state-paircannotbe 0,1 (andit cant be 0,0)in eitherrow X; or X,. Further thei, j state-pair
cannotbethesamein X; and X,. Soin oneof thosetwo rows, thei, j state-pairmustbe 1,0. But nodej is alsoadjacent
to node?’, so(afterrelabeling)we canapplyLemma3.2to obtaina contradictionto the assumptiorthatthe removal of both
X, and X, breakall conflicts.O

Hence exceptin degenerateasesthereis a uniquepermittedarrangementf the conflictedsiteson a gall, andotherwise,
all thearrangementsanbe compactlyrepresentedndeasilygenerated.

For example,in Figures2 and 9, we shoved two arrangementsf the sitesin the connecteccomponent” containing
{1, 3, 4}. Thesetwo arrangemente/ereassociateavith rows b andd in M (C'). However, thereis no otherrow of M/ (C) that
canbedeletedto breakall the conflictsin C.

4 Connectingthe gallsin a galled-tree

Now we explain how to connecthe gallstogetheiinto a singlegalled-treeLet 7' bea particulargalled-tredfor A/ andlet
@ and@’ betwo gallsin T'. Gall @ is an“ancestor”of agall @’ in T' if thereis adirectedpathin T from somenodeon @ to
thecoalescennhodeof @)’'. If neithergall is anancestoof theother thenwe saythatthey are“incomparable”. Thealgorithm
to connectthe gallswill first deducethe ancestryrelationsbetweerpairsof galls. We will seethattheancestryrelationsare
invariantover all the galled-treedor M.

SinceT is a particulargalled-treefor A, thearrangementf siteson @ and@’ is determinedln thatarrangementet fp
andfs bethefirst sitesonthe P andS sidesrespectiely on ). Define f5, and £ similarly for Q'. Assumewithout lossof
generalitythat fs and f§ exist. Theanalysisis symmetricfor the otherthreecombinationspneof which mustexist. Also,
leti, j beapairof siteson () thatconflictwith eachother Notethatattherecombinatiomodefor @), the stateof atleastone
of 7 or j is setto 1, sayi. Notethat: mightbe fp or f5. Similarly, thereis asitei’ thathasstatel attherecombinatiomode
for Q'.

Now let Z’ beary row of M with a1l in column f (theremustbe onesince f§ is involvedin a conflict). If @ is an
ancestoof ' thenZ’ musthave a 1 in atleastoneof thecolumnsfor fs, fp or:. Similarly, let 7 beary row of M with a
lin columnfs. If Q' is anancestoof () thenZ musthave a1 in atleastoneof the columnsfor f;, f5 ori'. SoQ andQ’
areincomparablef andonly if neitherof theseconditionshold for rows 7’ and 7.
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With the properdatastructurefor A, andaftersimple O (nm)-time preprocessingf M, rows .z’ andZ canbefoundin
constantime, andin constantime we cancheckthose(up to six) entriesin rows 7’ andZ. Soin constantime, we can
determinevhether® and@’ areincomparabler not. If comparablethenwe have foundarow which hasa 1 in acolumng
for asitethatappear®n ) andalin acolumng’ for asitethatappear®n @Q’. Thatmeanghatthereis a pathfrom theroot
of T thatpasseshroughboththe edgesvheresitesq andq’ mutate.We claim that@ is anancestoof @’ if andonly if siteq
hasstrictly more1'sin its columnthandoescolumng’. To seethis, notefirst thatby Lemma2.1, site ¢ appeardeforeq’ on
thepathif andonly if siteq hasa 1 in every row wheresiteq’ hasa 1. Moreover, for ary conflictedsiteonagall, theremust
beat leasttwo nodeson thatgall wherethatsite hasstatel, soatie for the largestnumberof 1'sin columnsg andq’ is not
possible Hence,

Theorem 4.1 After O(nm) prepiocessingtime, we can determineif @@ and ' are compaable in constanttime, and if
compaable, determinewhich is the ancestorof the other Theke are at mostO(m) = O(n) galls [21], sooverall the pairs
of galls, wecandetermineall theancestryrelationsin O(nm + n?) = O(n?) time

A gall @ is calledthe“immediateancestor'df agall Q' in T if () isanancestoof ()’ andnodescendentf () is anancestor
of @'. Everygallin T thathasanancestoin 7', hasa uniqueimmediateancestarandthe ancestorelationcomputedabore
is thetransitive closureof theimmediate-ancestaelation.Hence givena fixedarrangementf thesiteson eachgall, to find
the immediate-ancestdif ary) of eachgall, we find the transitive-reductiorof the ancestorelation. This canbe donein
O(n?) time (whichis fasterthanfor generatransitve-reductionpecausg¢hetransitvereductionis atreein this case soeach
gall hasa unigueimmediateancestarOneapproacltthenis to sortthe gallsby the numberof ancestorshey have. Thenthe
gall Q" with thelargestnumberof ancestorss a“leaf gall” in thetransitvereduction andwe identify its immediateancestor
astheancestoof @)’ which hasexactly onefewer ancestorshandoes()’.

This identifiesfor eachgall @', its immediateancestory in T, or determineghat (' hasno ancestar Sincewe are
ignoringunconflictedsites,every site appear®n somegall, soin 7" a gall is connectedo its immediateancestoby a single
edge(ratherthanapath).If @ is theimmediateancestoof @)’, we next wantto determinethe specificnode call it v(Q, Q’),
on @ whichis connectedy asingleedgeto the coalescenhodeof )’ in T

Leti, j beaconflictingpairon@ andlet F beasequencén M with alfor fi or fp. Weclaimthatthe:, j state-paif0,1;
1,0;0r 1,1)attherecombinatiomodez of () is foundatno othernodeon (). This wasnotedafterthe proof of Theorem?.2,
andfollowsfrom the detailsof thatproof. Hencev (@, Q') is nodez if andonly if F hasthesamei, j state-paithatis found
atz. If thatdeterminatiorfindsthat»(Q, Q') is notz, thenF musthave a1 for exactly oneof fp or fg, whichidentifiesthe
sideof @ thatv(Q, Q') is on. We thenwalk from the coalescentodeof ) alongthatsideuntil eitherencounteringhe edge
e into therecombinatiomode,or encounteringhefirst edgee containinga site: suchthat ' hasstate0 for ;. Nodev(Q, Q')
is thenodeat the headof edgee. Sinceeachof theO(n) sitesis on atmostonegall, thetotal time to find all thesenodesis
O(n).

Definition 4.1 Let T denotethe digraph determinedo this point, i.e., consistingof all the arrangedgalls connectedy the
immediateancestryedges.
Notethat7' mightbeaforestof galled-treestatherthana singlegalled-tree.

Now the abore exposition and determinationof ancestryrelationswasbasedon assuminga particulararrangemenof
siteson eachgall. But from Theorem3.3, differentarrangementsf the siteson a gall merely permutethe positionsof the
nodesandthebranchingedgesattachedo them. This clearlydoesnotchangeheancestnandimmediateancestryrelations.
Thereforewe canuseary permittedarrangemenof the siteson the gallsto determineT’, and

Theorem 4.2 ThedigraphT is uniqueup to the differentpermittedarrangementsf nodesinsidethe galls.
Theoremd.2is afurtherreflectionof the “essentiauniquenessbdf thereducedalled-treeshatderive A1 .

Corollary 4.1 Ignoring theissueof howto placethe unconflictedsites,if there are k¥ connecteccomponentsf the conflict

graph,andthesiteson component’, canbearrangedin A, differentways,thenthe numberof reducedyalled-treesfor A/
is e(actIyHZqu, whee 4, < 3.

We will shaw in the next sectionthatunconflictedsitesneednot be on ary galls,soalgorithmically Theoremd4.2implies
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Corollary 4.2 Giventhe galls, andan arrangemenbf the siteson the galls, 7' can be determinedn O(n?) time Further

if there is a galled-treefor M, any 7' determinedat this point can be extendedto a galled-treefor M, by placing the
unconflictedsiteson edgesof 7' betweergalls, and possiblyaddingnew edgescontainingunconflictedsites,or new edges
leadingto leaves.

A very differentapproacho connectinghe gallsis outlinedin the powerpointslides[6].

5 Unconflicted sitesneednot be on galls

Sofar, we have only detailedhow to handleconflictedsites.Now we focuson unconflictedsites.

First,if @ is a gall containingonly unconflictedsites,thenthereis a perfectphylogery for the siteson @, and@ canbe
replacedoy thatperfectphylogery, creatinga phylogenetimetworkfor A7 with onefewer gall. Sowe considetthe casethat
every gall containssomeconflictedsites.

Definition 5.1 Considera gall ¢ with recombinatiorpointr, anda particular arrangemenbf siteson ). We definel, to
beall thesiteson @ with index lessthanr, and R,. to beall the siteson ) with index equalor greaterto ». We definePy, to
betheconflictedsitesin L, onthe P-sideof (); Pr to betheconflictedsitesin R, onthe P-sideof ; Sy, to betheconflicted
sitesin L, onthe . S-sideof ); and Sk to betheconflictedsitesin R, onthe S-sideof (.

Lemma5.1 Let N be a phylogenetimetworkderiving M with a gall @ containingno conflictedsitesonits S-side Then
there is a phylogenetimetwork N/ deriving M with gall @ replacedby gall Q' whosesS-side containsno sitesand no
branching nodes A symmetriaesultholdsif the P-sidecontainsno conflictedsites.

Proof Sinceall conflictedsitesareon the P-side, P;, and P arenon-empty Moreover, by Theoren2.2 theremustbea
branchingedgebelow thelastconflictedsiteon P.

Let s beanunconflictedsitein R, onthe S-sideandsupposéhereis anothersitet below s. If ¢ isin R,., thentherewould
have to be a branchingnodebetweerthem,in orderfor the columnsin A for s and¢ to be different. But thens would be
in conflictwith ary conflictedsitein Py, acontradiction.If ¢ isin L, , but thereis a branchingnodebelow ¢, thenthereis a
branchingnodebelow s andagains would bein conflictwith ary sitein P;,. Butif thereis no branchingnodebelow ¢, and
sincethevalueof t is setto 0 at therecombinatiomodeof (), the columnfor ¢ mustbeall zeros,a contradiction.Hence,jf
the S-sidehasonly unconflictedsitesandcontainsasites in R,, s mustbethelastsiteon.S, andit mustnothave abranching
nodebelow it on Q.

Now, thevalueof sites is 1 attherecombinatiomodez of Q. If 2 hasasingleedgeoutof it, we canmove s off of () and
placeit onthatsingleedgeoutof z. If 2 hasmorethanoneedgeout of it, we createa new, singleedgee out of z attachedo
all theedgeghathadpreviously beenout of 2. We thenmove s to e, creatinga modifiedphylogenetimetworkthatderives
M.

After theremoval of site s from @, the only remainingsites(if ary) onthe S-sideof @) arein L,. If therearenone,then
thetransformatioris complete.Otherwise all of thosesiteshave value0 at therecombinatiomodez, sothe sequencéabel
atz is maintainedeven if we remove all thosesitesfrom @. But we needto maintainthe sequencéabel of ary branching
nodewv onthe S-side,andthe subgraptranchingoff of () atv. Hence we canmodify @) asfollows: remove theedgeinto z
onthe S-side,andadda new edgedirectly from the coalescenhodew of ) to nodez. Theresultis amodifiedphylogenetic
networkwhich derives M, wherethe S-sideof the modifiedgall @ hasno sitesandno nodes

In thetransformatiorabove, the partof the old S-sideof @ thatcontainsall the sitesandnodes,is now a pathbranching
from the coalescenhodew. For the modificationsof ¢ usedto prove the next theoremijt is usefulto maintainthe assertion
thatthereis no edgebranchingoff @ atw. Sowe furthermodify @ asfollows. Lete = (w', w) betheedgeinto w. Expand
e into two edges(w’, w') and(w"”, w) by insertinga new nodew’ on e, below ary sitesthatareon e. This createsa new
edgeinto w with no sites. Thendisconnectary branchingedgeout of w andreconnectt to w”. Theresultingphylogenetic
networkclearly derivesexactly the samesequenceasbefore.

Theorem 5.1 Let N bea phylogenetimetworkderiving M with a gall that containsboth unconflictedand conflictedsites.

Thenther is alsoa phylogenetimetwork N’ with the samenumberof galls as N, whee ead gall only containsconflicted
sites.
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Proof We considerasinglegall @, andexaminethe P-sideof () in detail. The agumentfor the S-sideis symmetric.If
the P-sideonly containsunconflictedsites,thentheseareremoved usingLemma5.1. So assumehatthe P-side contains
both conflictedandunconflictedsites.

Let v bethelastbranchinghodeonthe P-sideof ). By Theoren2.2,ary sitesbelow v mustbe unconflicted.Therecan
benositesin R, belov v, for ary suchsitewould have anall-0 columnin M, acontradiction.Any sitesin L, below v have
valuel attherecombinatiomodez andcanbemovedto theedgeoutof z, asin theproof of Lemma5.1. Hence we assume
thatall siteson P areabove nodew, andsothereis a branchingedgebelow every site onthe P-sideof Q.

If thereareno additionalunconflictedsiteson the P-sideof @), thenthe transformatioris complete.Otherwise et p be
anunconflictedsitein L, onthe P-sideof Q). If thereis ary siteq in Sg, thenby Theorem2.2 p andq would conflict, a
contradiction.So,if thereis anunconflictedsitein L, onthe P-side,thentherecanbenositein Sg, andhencenositein Sy,
(recallthatby definition, suchsitesareconflicted),andsotheremustnot be ary conflictedsiteson the S-sideof ). Butthen
by Lemmab5.1, all the unconflictedsitesandbranchingedgescanbe moved off of (), andwe assumehathasbeendone.

Now considerp*, the highestunconflictedsitein L, onthe P-side. Therecannotbe a conflictedsitei in Py, above p*,
sinceby Theorem?2.2,i would have to bein conflictwith asitej € Pgr above i with abranchingnodebetweery andi. That
would createthe conditionsfor p* andj to bein conflict,a contradiction.Sop* mustbeabove all sitesin Py.

Similarly, if thereis ary site j in R, above p*, thentherecanbe no branchingnodebetweenit andp*. This follows
becausehereis abranchingedgebelow p*, soby Theorem?.2,sites; andp* would bein conflict,a contradiction.Sothere
canbe no branchingnodesabore p* andno branchingnode(or sites)on the S-side of (. Therefore,we canmove p* to
the edgee enteringthe coalescenhodeof (), creatinga modifiedphylogenetimetwork N/ the derves M andcontainsone
fewer unconflictedsites.

If thereis a branchingnodew on the P-sideof ) with no sitesabore v on @, thenwe furthermodify N’ to preparefor
additionalsite removals. Let e = (w', w) bethe edgeinto the coalescenhodew. Expande into two edges(w’, w') and
(w", w) by insertinganev nodew” one, below ary sitesthatareon e. Thendisconnecary branchingedgesout of v and
reconnectheseedgedo w”.

Iteratingasabove, we canremove all unconflictedsitesin L, onthe P-sideof ). We let Q' denotetheresultinggall at
this point,andnow discusshow to handleary unconflictedsitesin R, onthe P-sideof @’.

We maketwo obsenations. First, the only sitesin L, onthe P-sideof @)’ areconflictedsites,i.e.,in Py. Secondgvery
unconflictedsitep in R, mustbebelow everysitej in Pg. To seethis, notethat; mustbein conflictwith asite: € Py, belov
J onthe P-sideof @', sotheremustbe a branchingnodebetweery and:, anda branchingedgebelow i. Henceif p were
above j, the conditionswould be satisfiedfor p to conflict with i, a contradiction.Soeitherall the unconflictedsiteson the
P-sideof ()’ aretogetherat the bottomof the P-sideof ', just above thelastbranchingnodew, or thereis anunconflicted
sitep in R, above aconflictedsite: in Py,.

In the later case,we transform@’ to conformto the former case,asfollows. Assumethatp is the first (topmost)un-
conflictedsitein R, onthe P-side,and: is thelastsitein P;. Therecannotbe a branchingnodebetweerp andi, or else
they would conflict. However, if p is notimmediatelyabove ¢, considera site ¢ betweerp andi. If ¢ isin R,., therewould
have to be a branchingnodebetweenp andq or they would have identicalcolumnsin M. If ¢ isin P, therewould have
to be abranchingnodebetweeny andi or elsethey would have identicalcolumnsin M. Henceif thereis anunconflicted
sitep € R, above asitein i € Pr, thereonly be onesuchpair, andthe two sitesmustbe adjacenwith no branchingnode
betweerthem. But then,we canflip the positionsof p andi andstill have a phylogenetimetworkthatderives A/. At that
point, all theunconflictedsitesin R, aretogetheratthe bottomof the P-sideof )’, justabore thelastbranchingnodevw.

Let k bethesite(if ary) justabove thefirst unconflictedsitep in R, onthe P-sideof @)’. If thereis a nodebetweenk and
p, callit v/, andotherwisecreatea nodev’ betweenrsitesk andp. If thereis no site k above p, thenset’ to the coalescent
nodew of )'. Thenremove the edgeinto = from nodewv, andcreateanedgefrom »’ to z containingno sites. Theresultis
aphylogenetimetworkthatderives M wheregall ) hasbeentransformedo a gall Q' thathasonly conflictedsites,andall
othergallsremainunchanged.

Thetheoremis provenby repeatinghis transformatiorfor every gall containingunconflictedsites.C]

Corollary 5.1 If there is a galled-treefor M, thenthere is a reducedgalled-treefor M. Moreovey the numberof recombi-
nationsusedby anyreducedjalled-treefor M is the numberof non-trivial connectedomponent# the conflictgraph,and
thisis the minimumnumberof recombinationpossibleoverall galled-treesfor M .

We will latershow thatary reducedjalled-treefor M usesexactly my, recombinations.
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6 Adding the leaf sequencesind the unconflicted sites

We assumehereis a galled-treel” thatderives M . To finish constructinga galled-tregfor M from 7', we mustextend 7’
by addingin ary unconflictedsites,andplacethe sequencesf M at specificleaves, possiblyaddingadditionaltreeedges
outsideof ary galls. We do thisin threemainphases.

6.1 Phasel

Let 7 beasequencéhathasstatel for a conflictedsite:. Thenin ary galled-treel” for M, theleaflabeledwith Z must
bebelav thegall containingi. Corversely ary sequencéabelingaleafin 7" below a gall, musthave a1 for atleastonesite
onthatgall (recallthatthereis no branchingoff the gall from the coalescenhode). Therefore we candivide the sequences
into thosethat have at leastone 1 for a conflictedsite, andthosethatdon’t. The sequence the secondset(if any) must
be derivable on a uniqueperfectphylogery U that mustbe the “upper part” of ary galled-treefor M. This follows from
Theorem2.1. If the secondsetis empty thenconsider/ to bea singlenode,whichwill betheroot nodeof ary galled-tree
for M.

We canefficiently constructl/, andthen (assuminghereis a galled-treefor /) determinewhereeachgall in T resides
relative to /. For example,let Q bea“maximal” gall (onewith no ancestorjn T, let i be eitherthefirst site on the P-side
or the S-sideof @), andlet Z be a sequencevhich hasstatel for site:. Thenwalk alonga uniquepathfrom theroot of I/
following edgedabeledwith siteswhich have statel in 7. If thatwalk endsatnodev (eitheraleafin U/ or Z hasstateO for
every siteonthe edgesout of v), thengall @ mustbea descendandf v in galled-treel’. Sothe sub-galled-treeootedat ()
hangsoff of I/ atnodew. We modify T' by finding the attachmennhodew on U/ for eachmaximalgall Q, andconnectinghe
coalescennodeof Q to v. T now is a singlegalled-treeratherthanaforest,sincel is a singletree. Moreaver, T correctly
derivesthe sequencem M, restrictedto the conflictedsitesandthe sitesin /. Notethatin thefull galled-treel” for M, @
might continueto be connectedo v by a singleedge,or may be connectedy a pathof unconflictedsitesthatwill beadded
in later, asdetailedbelow.

6.2 Phase?

Let Z beasequencevhich hasstatel for atleastoneconflictedsite,andhencetheleaffor Z in 7" mustbe a descendant
of somegallin T'. Let M’ denotethe setof suchsequenceszor eachsuchsequence’ in M’, we will find thenodev in T'
suchthatin ary galled-tregfor M, v is thelastnodein 7" onthe pathfrom therootto leaf Z.

To do this, we do a bottomup traversalof 7', only traversinga gall aftertraversingall its descendentsAt the startof the
bottomup traversal,all sequences M’ areunmarked.Let 7, 7 bea conflicting pair thatappearon agall Q. We traverse
gall @ asfollows. Declarethe recombinatiomodez to be nodevz for every unmarkedsequence” in M’ which hassame
i, j state-paimsdoesnodez; markevery suchsequence’. Thendo a bottom-uptraversalof onesideof (), andfor eachsite
p encountere@just above anodev), declarenodev to bewvz for eachunmarkedsequence’ in M’ which hasstatel for site
p; again, markevery suchsequenceThendo a bottom-uptraversalof the othersideof () in a similar manner Thetraversal
over 7' takesO(n?) time andfindsthe nodewv for eachsequence” in M’. We modify T by extendingan edgefrom v
to a leaf labeledZ, for eachsequence” in M’. This placesall theleavesfor the sequences M eitherin U, or at aleaf
connectedy anedgeto anodein 7. Notethatv; will notbea coalescennodefor ary galll.

For expositionpurposeswe furthermodify 7 asfollows. For anodev onagall ), let V bethesetof nodesoff of ( that
arechildrenof ». If |V| > 1, createanew edgefrom v to anew nodev’, andconnect’ to every nodein V. Theeffectis that
every nodev onagall will have only oneedgebranchingoff thegall from ». Notethatv canbearecombinatiomode.

Next, with anotherbottom-uptraversal(or folded into the previous traversal),label eachedgee with (the index of) one
sequencecall it Z(e), suchthattheleaffor 7 is below e. In casethereis morethanoneto chooserom, choosearbitrarily.

6.3 Phase3

Now we turn to theissueof addingin theremainingunconflictedsites.

Sitesthatarepartof U needno further attention.For ary otherunconflictedsite:, do the following: Find a sequenceZ
in M’ which hasa 1 for site i, andstartawalk on a pathfrom theleafin 7" labeledwith Z towardstherootof 7". We know
thatsite: mustbe placedsomevherealongthatpath,althoughwe mayneedto createa new edgethatit will label. Themain
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ideais to move up alongan edgeon that pathoncewe have determinedhat: mustbe above the currentedgein the walk.
Otherwise; mustbe placedon the currentedge. However therearesomesubtledetails.

Duringthewalk for i, let v beanodeenterechlonganedgee. Therearefour casesi) v is anodein the perfectphylogery
U, or 2) v isis arecombinatiomodeof agall Q; or 3) v isonagall @, butis nottherecombinatiomodeof @; or 4) v is not
on/ andnotonary gall.

In casel) site: mustbe placedon edgee. Wewill only bein this caseif we have alreadydeterminedhatall sequenceat
leavesbelow e have statel for site:. However, site: cannotbe placedhigher, for thentherewould beasequencataleafin
U with a1 for site:, andhencei would alreadyhave beenplacedin U.

Case®) and3) aresimilar. In eithercasei shouldbe placedon edgee, or i shouldbe placedsomevhereon thepathfrom
therootof 7' to the coalescenhodeof () (we know we neednot place: onary edgein ). To determinewhichis the proper
placementn case2), let p be abranchingnodeon @ (theremustbe onesince@ hassomeconflicting sites)andlet e’ bea
branchingedgeoff of () atp. To determinethe properplacementn case3) let ¢’ bethe edgeon () just below ». Thenin
eithercase2) or 3), site: shouldbe onedgee if andonly if thesequencé’ (¢’) hasstate0 for sitei. WhenZ(e’) hasstatel
for sitei, thewalk jumpsto the coalescenhodeof @ andresumegrom thatpoint.

In case4) (i.e, whenwv is not on a gall or on U7), examinethe sequence” (¢’) for eat edgee’ out of v otherthane. If
noneof thesesequencéave a 1 for site, thenplacesitei on edgee. If every oneof the sequencebave a 1 for site i, then
continuethe upwardwalk from ». If someof thesequencebave a 1 for sitei, andsomedo not, let p bethe parentnodeof »
onT. Createanew nodep’ andanew directededge(p, ). Thendisconnecfrom v every edgee’ whosesequence? (¢’) has
a0 for sitei, andreconnect’ to nodep’. Thenplacethesitei onthe (p, v) edge.T againdenotegshe modifiedgalled-tree.

The correctnessf algorithmfollows from Corollary 4.2 andTheoremb.1 andthe obsenationthatall decisionamadeby
thealgorithmareforcedif no unconflictedsitesareto be placedon galls. Thetime for placingthe unconflictedsitesis O(n)
persite,soO(n?) overall.

7 Time bound and Corr ectness

All of theresultsgivenabore assumehe existenceof a galled-treefor the input M. Theseresultsimply the correctness
of thealgorithmderivedfrom them,whenthereis a galled-tredor A/. Whenthereisn't one,thealgorithmeitherwill notbe
ableto executearequiredstep,or it will runto completionproducingsomegalled-tree At terminationthealgorithmchecks
whetheror notthegalled-treat produceddoesderive M andthateachsiteis ononly oneedge.If not,it correctlyreportsthat
thereis no galled-tredor M. Notethatthealgorithmproducesareducedjalled-treesinceeachgall only containsconflicted
sites.

Theoveralltime boundfor thealgorithmis O (nm+n?). If m > 2n, thenwefirst find andremaove all duplicatecolumnsin
O(nm) time usingradix sort(consideringeachcolumnto be a binarynumber).If the numberof remainingcolumnsis more
than2n then M hasno galledtree[21]. Next we build the conflict graphin O(n?) time andfind the non-trivial connected
componentsThetime to arrangeall of thegallswasshavn to be O(n?), but thatcanbereducedo O (n?) time[8]. All other
stepsrequireO(n?) time.

8 Optimality: Every reducedgalled-treeusesexactly m,; recombinations

Let M be a setof sequencethatarederivableon a galled-tree and supposehe conflict graphfor M hask non-trivial
connecteccomponents.Recallthat my; is the minimum numberof recombinationsieededn ary phylogeneticnetwork
(with all-0 ancestrakequencebhat derives M. We have alreadyestablishedCorollary 5.1) thatif thereis a galled-treefor
M, thenthereis a reducedgalled-treefor M, andthat every reducedgalled-treefor M usesexactly k& galls and hencek
recombinationsWe now prove thatmy; = k, i.e., no phylogenetimetworkfor M usesfewer thank recombinations To
prove this, we exploit a (modified) methodfrom Myers and Griffiths [14] that computesa lower boundon the numberof
recombinationieededoy ary phylogeneticnetworkfor A/. The modificationherespecializegheir algorithmto the case
whenthe ancestrakequencés known andassumedo be all-0. Othersmall changesaremadefor simplicity of exposition.
Their methodsuccessiely modifiesthe input matrix A/, andwe use M to denotethe modified matrix at ary pointin the
algorithm.Initially M is setto M.

1This claim was madefirst in [21], but the proof proposedhereonly relatesto the algorithmin that paper andalsoseemsncompletein thatit only
seemdo establishthat (in our language)any galled-treefor M needsat leastk recombinations.Thusit doesnot seemto establishthat no phylogenetic
networkcanusefewer recombinations
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The Myers and Griffiths lower boundmethodusesthreetypesof operationson M : columndeletion,sequenceleletion,
andsequenceemoval A columndeletionof column: from M is allowedif columni containszeroor onel’s. A sequence
deletionof sequence from M is allowedif sequence? is identicalto someothersequencén M. A sequenceemaval of
anarbitrarysequenceZ from M is allowedif neithera columndeletionnor a sequenceleletionis possible. The distinction
betweera sequencédeletion” anda sequencéremoval” is critical andthe wordswill never be usedinterchangeably(We
could definea fourth permittedoperation,deletingary columnthat containno 0’s. The methodwould be correctwith this
addedoperation,but it is not needed.)Matrix M is saidto be “eliminated” when M is empty The following algorithm
eliminatesi .

Elimination Algorithm
Until M is eliminated:

1) Successiely performsequencandcolumndeletionoperations
onM in ary orderuntil no furtherdeletions
arepossible.

2) Arbitrarily chooseoneremainingsequence? in M
andremove sequence from M.

3) Returnto stepl)

Notethatthis algorithmis non-deterministién thatit allows choicesin bothstepsl) and2). Hencedifferentexecutions
of thealgorithmcanresultin a differentnumbersequenceemovals,i.e., differenthnumberof timesthatstep?) is performed.
An executionof the Elimination Algorithm is calleda “minimum execution” if it usesthe minimum numberof sequence
removals over all possibleexecutionsof the algorithm.We use R, to denotethatminimumnumberof sequenceemovals.

Theorem 8.1 (Myersand Griffiths[14]) Rs; < mas, SO R, is alowerboundonmyy.

Theorem8.1 is actually a specializationto the casewhenthe ancestraequenceés known) of whatis provenin [14],
becausg14] concernsphylogeneticnetworkswhere no ancestralsequenceas known, and my; is the minimum over all
phylogenetimetworkswith the all-0 ancestrakequenceTheorem8.1 canbe proven by inductionon the numberof distinct
sequencem M, or by inductiononm,, . Althoughnot statedn [14], the proof canbe usedto establisra someavhatstronger
result.

Definition 8.1 Giventwo sequenceg and 7z’ of equallength,saym, a sequenceX of lengthm is createdat at recombi-
nation nodeby a “multiple-crossoverevent” of Z and Z’, if for every positionk, 1 < k < m, thevalueof sequenceX at
positionk is eitherequalto the valueat positionk in 7, or to thevalueat positionk in Z’. Thatis, at anypositionk, the
valuein X is takeneitherfrom Z or from 7.

A multiple-crossweer event generalizes single recombination. In a single recombinationwith recombinatiorpoint »,
sequenceX is createdby taking the valuesfrom onesequencéwhich we denotedas P) in positionsl throughr — 1, and
thentakingthevaluesfrom the othersequencégs) in positionsr throughm. Clearly, for ary M, if amultiple-crosswerevent
is permittedat eachrecombinatiomode,thenthe numberof recombinatiomodesneededo derive M is lessthanor equal
tomps.

Withoutobservinghis, theproofin [14] actuallyestablishethat R, is alowerboundontheminimumnumberof multiple-
crosseer eventsneededo derive M on ary phylogenetimetwork. We usethe phrase‘generalizedohylogenetimetwork”
to referto networksthatallow a multiple-crosswer eventat ary recombinatiomode.

WhenM issmallenough,R; canbecomputedy adirectapplicationof its definition,butin generalsuchanenumeratie
approachto finding a minimum executionis impractical. However, the methodcanbe usedasa conceptuatlevice, andwe
useit thatwayto prove thatary reducedgalled-treefor M usesexactly my; recombinations.
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8.1 A more graphical view of the Elimination Algorithm

It is usefulto have a graphicalinterpretatiorof theoperationsn the EliminationAlgorithm. Suchaninterpretatiorcanbe
developedin generalput we specializeit hereto reducedgalled-treesAs M changesluringthealgorithm,we let T denote
a reducedgalled-treethat derivesthe current M. We alsolet G be the conflict graphrepresentinghe conflicting pairs of
columnsin M. We makethefollowing claims:

Lemma8.1 If thereis only a singlel entryin columni in M, thensitei cannotbeonagall in 7.

Proof In areducedgalled-treethe only siteson ary gall areconflictedsites. Any conflictedsite musthave at leasttwo
1'sin its column.O

Lemma 8.2 Whena columni with onel is deletedfromﬁ_in the Elimination Algorithm, a reducedyalled-treefor the new
remainingsequencesan be createdby deletingsite: from7", andremovingthe i'th characterfromead sequencéabeling
anodein T'. A columndeletionnever resultsin the deletionof a siteona gall in 7', andit doesnot resultin the deletionof
anedgein G.

Proof Clearlythe modifiedgalled-treederivestheremainingsequencesBy Lemma8.1 no siteson ary gall aredeleted,
andsinceno edgesareremaved, Theorem2.2 impliesthatall the conflicting pairsin 7' continueto conflictin the modified
galledtree,hencenoedgein G is affected,andthe modifiedgalled-treds areducedyalled-tree [

Definition 8.2 A nodevw is a lowestcommonancestorof two leavesZ and Z’ if v is an ancestorof both 7 and 2/, and no
descendandf v hasthat property

Notethatin a galled-treetheremustbe a uniquelowestcommonancestofor ary two leaves Z and 7’.

Lemmaa8.3 If twosequenceg and 7’ in M areidentical,andv is their uniquelowestcommorancestarthenno pathfrom
v totheleaflabeled” in a reducedyalled-treeT cancontainan edgewith a siteor anedgeona gall. Thisis symmetrically
truefor Z’. Further, the pathfromwv to 7 is unique,asis thepathfromw to 7.

Proof Supposea pathfrom v to Z containsanedgeon a gall Q andlet e bethe lastsuchedge.If e is notanedgeinto
therecombinatiomodeof @), thene containsa site i abose a branchingnode,andby Lemma2.1, sequenceZ will have a
valueof 1 for 7. However, no pathfrom v to 7’ canshareanedgewith av to 7 pathsincev is thelowestcommonancestor
of Z andZ’. Sothewv to 7’ pathwill not containe andwill have a0 for 7, contradictingthe assumptionthat 7 and 7’ are
identical.If ¢ is anedgeinto the recombinatiomodez for @, let i, j beary conflictingpair of siteson Q. SinceT is reduced
therewill besuchapairi, j. Now thei, j state-paiatz is foundat no othernodesof ), andby Lemma2.1, 7 will have that
state-pairBut nov to 7’ pathcancontainz sincew is thelowestcommonancestoof 7 andZ’, so 7’ will nothave thei, j
statepair at z, againcontradictingthe assumeaqualityof 7 and”7’. Hencethewv to Z pathcannotuseanedgeonadgall. It
followsthatthe pathfrom v to 7 is unique.

Now supposehatthe uniquepathfrom v to Z containsasite: but noedgeonagall. By Theoren?2.2, 7 will have a1 for
1, andsinceno pathfrom v to 7’ cancontainan edgeof the v to 7 path, 7’ will have a0 for . Thisis againa contradiction.
O

Lemma 8.4 Letv betheuniquelowestcommorancestorof leavesZ and Z’. Whena sequence is deletedrom M in the
EliminationAlgorithm,a reducedyalled-treefor theremainingsequencesanbecreatedfrom in thefollowingway: delete
theleaf 7, andthensuccessivelgeleteedgesonthe 7 to » (badkwards) pathuntil reading a nodeq which is theancestor
of someremainingleafin 7. No edgein anygall in 7' will be deletedandno edgein G will bedeleted.

Proof Thenetworkcreatedy theedgedeletionsn T clearlyderivesall theremainingsequencesinceanedgeis deleted
only if thereis no remainingleaf reachabldrom it send.Nodey is eithernodew or adescendamf nodew, because¢heleaf
labeledby sequence?’ is reachablérom v. Soby Lemma8.3, no edgeson ary gall aredeleted,andif v is notonagall,
thenno edgesranchingrom agall aredeletedandtheresultinggalled-treeremainseducedby Theorem2.2. Theedgesn
G remainunchangedaswell. However, if v is anodeonagall @ andgq = v, thenv hasat leasttwo edgesbranchingoff of
@ (oneonthepathto 7 andadifferentoneonthepathto 7’). Soevenif theentirev to 7 pathis deletedevery nodeon )
will continueto have anedgebranchingfrom it, soby Theoren?2.2 all galls continueto containthe sameconflictedpairsof
sites,andthe new galled-treds reducedandno edgesn G aredeleted
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Lemma 8.5 Whena sequence is removedrom M in the EliminationAlgorithm,a galled-treefor the remainingsequences
canbe createdfrom7 by removingeaf Z and every edgee for which Z is theonly leaf belowe in 7. Thee is at mostone
gall @ in T sud that any of theremovecedgesare in () or are incidentwith a nodein @. Edgesin G are removedromat
mostonenon-trivial connectedcomponent.

Proof Anotherway to view the transformatiorof 7" is thatwe remove the leaf Z, andthensuccessiely remave edges
thatareancestrato 7, following ary suchpathbackwardsuntil eachpathreaches nodewhich is the ancestorof some
remainingleafin 7. It is againclearthatthe resultinggalled-treederivesthe remainingsequencessince” is theonly leaf
sequencén T thatthe removed edgescould reachvia a directedpath. Any edgethat could reacha differentleaf sequence
remainsin the galled-tree. Now if the transformatiorremaves an edge(s, t) onagall Q in T, thennodet mustbe the
recombinatiomodex of ). Otherwise would be a branchingnodeandtherewould be two disjoint pathsfrom ¢ to the
leavesof T' (oneusingthe branchingedgeoff of () att, andusingthe edgebelow ¢ on Q). Moreover, onesideof (, atleast,
musthave a branchingnode(or elseT would not be reduced) soif the edgesinto = areremoved, no edgein T above the
coalescenhodeof () canberemoved. Hence theonly edgeson agall thatcouldbe eliminatedarethe two edgesnteringits
recombinatiomode,andonly edgedrom onegall canberemoredin thetransformationSimilarly, therecanbe at mostone
gall with anodeincidentto a branchingedgethatis remored. Sinceonly onegall is affected,only onenon-trivial connected
componenbf G is affected.O]

Thekey point of Lemma8.5is thata sequenceemoval from M resultsin the removal of edgesfrom G in at mostone
non-trivial connecteccomponent.

NotethatLemma8.5doesnotclaimthatthenew galled-treds areducedjalled-tree However, we needto have areduced
galled-treethat derivesthe new sequence@ orderto be ableto continueto apply the Lemmaswhich assumea reduced
galled-treeBut ary subsebf asetof sequencethatcanbederivedon a galled-treecanalsobederivedon agalled-treeand
we shaved above thatif G hask non-trivial connecteccomponentsthenthe conflict graphfor the remainingsequencebas
eitherk or k — 1 non-trivial connectedcomponentsHence,

Lemma 8.6 LetT beareducedyalled-treewith & gallsfor a setof sequences/. Afterasequenceemovain theElimination
Algorithm,there is a reducedyalled-treethat derivestheremainingsequencessingeitherk or £ — 1 galls.

Theorem 8.2 Let M bea setof sequencethat canbederivedon a reducedyalled-treeusingk galls. ThenR; > k.

Proof Considerary executionof the Elimination Algorithm. After every stepof the algorithmwe have areducedyalled-
treeT that derivesthe currentsetof sequences/, anda conflict graphG that representshe conflictsin A7, asdetailed
above. At the startof theexecution, M is M, T is T, andG is G. At theendof the executionM andG areempty andT is
asinglenode.

Lemmas8.2and8.4shaw thatrow andcolumndeletionoperationslo not resultin the deletionof edgesn ary non-trivial
connectedomponenbf the conflict graph.Lemma8.5 shavs thateachsequenceemoval resultsin theremoval of edgesn
atmostonenon-trivial connectedomponenbf the conflictgraph.Hence theremustbe atleastk removal operationsn ary
executionof the Elimination Algorithm, andR; > k. O

Theorem 8.3 WhenM canbe derivedon a reducedgalled-treeusingk galls, then R, = mys = k. Moreovey evenif we
allow a multiple-ciossoverventat any recombinatiomode,there is no phylogenetimetworkderiving M that usesfewer
thank recombinatiomodes.Hence,a reducedyalled-treefor M is optimalin this strongerway aswell.

Proof R, is alower boundon the numberof neededrecombinationsand every reducedgalled-treederives M using
only £ galls,so R, < k. Togetherwith Theorem8.2, we have R, = k, andsompy = k& = R;. As notedearlier R, is a
lower boundonthe numberof multiple-crosseer eventsneededn ary generalizeghylogenetimetworkthatderives M, so
no generalizephylogeneticnetworkcan usefewer recombinatiomnodesthandoesa reducedgalled-treewhen M canbe
derivedon agalled-tree™

It is interestingto notethat the above argumentalsogivesan indirect way to prove that all reducedgalled-treedor M
have the samenumberof galls,afactthatwe have establishecarlier

It may be easyto misinterpretTheorem8.3. It saysthatif M canbe derived on a galled-tree then no generalized
phylogeneticnetworkcanhave fewer recombinatiomnodesthandoesa reducedgalled-treefor M. However, that doesnot
imply thatmultiple-crosswereventsarenever betterthansinglerecombinationslt certainlyis possibleo construcexamples
wherethereis no galled-treefor M, anda generalizedhylogeneticnetworkfor M usesfewer recombinatiomnodesthan
doesary phylogenetimetwork(i.e., usingonly singlecrosseers)for A1 .
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We note alsothat whenthe ancestrakequencaeednot be the all-0 sequencethereare exampleswhereone canfind
a differentancestrabequencehat allows a galled-treefor M, usingfewer thanmjy; recombinations.However, it canbe
shavn thatthe numberof recombinationsisedis atleastm; — 1. A polynomial-timealgorithmto choosehe bestancestral
sequenc&vill bedescribedn afuturepaper

9 Duplicate Columns

For simplicity of exposition,we have assumedhroughouthattheinput matrix A/ containsno duplicatecolumnsor rows.
The assumptiorof no duplicaterows is without loss of generality but the assumptiorof no duplicatecolumnsis a true
restriction. If 7 and:’ aretwo identicalconflictedcolumns(sites)in M which arenot adjacento eachother, it canhappen
thatthereis agalled-tregfor M wheni (say)is removed, but no galled-tredfor the completeoriginal M . This situationmay
beimportantin applicationgo realdata.However, it is easyto modify the algorithmto correctlyhandlethis possibility.

Theorem 9.1 Let: bea conflictedsite,andassumeéhere are duplicatesof columni in thefull input /. Let M* bethe matrix
obtainedfrom M beremovingall but onecopyofi. Supposehere is a galled-treeT for M*, let Q bethegall containing
i, andlet [p + 1, ¢] bethe recombinationinterval of Q. Thenthere is a galled-treefor the full input M, if and only if all
copiesof columni are at sitesstrictly abovep, or all are at sitesstrictly belowq. Thatis, if and only if all the copiesof i
canbeassignedo the samesideof somepermittedrecombinatiorpoint for ). Moreoverif there is a galled-treefor M, it
musthaveall copiesof i togetheron the sameedge,andplacingall thecopieson theedgein 7' containingthe singles, is a
permittedarrangement.

We canapply Theorem9.1inductively to handlethe caseof sereraldistinctcolumnsthathave duplicatecopies.We leave
theproof of this andof Theorem9.1to thereader

10 Non-Zero ancestralsequences

For simplicity of exposition, we have assumedhat the ancestrakequencés the all-zerosequence Thatassumptioris
not necessaryWhatis necessarys thatthe ancestrasequences specifiedat thetime the input matrix M is specified.Let
A representhe ancestrabequencelf A is nottheall-zerosequencéhenfor every sitei whichhasvaluel in A, reversethe
valueof every entryin columni in M, andthensolve the galled-tregproblemwherethe ancestrabequencés assumedo be
theall-zerosequencelf agalled-treel” is producedthenchangehevaluebackto 1 for every sitewhosevaluewaschanged,
in every sequencéabelinganodeof T'.

11 Relation to the back-mutation model

Anotherdeviation from theperfectphylogery modelthatis of interestis to allow alimited numberof back-mutationshut
no recombinationsA back-mutatioris a mutationfrom statel backto state0 thatoccursonanedge,i.e.,it is nota change
dueto recombination.

Theorem 11.1 Anysetof sequenced/ thatcanbederivedona galled-tree,canbederivedonatruetree(horecombinations
andhenceno underlyingundirectedcycles)with at mostonemutationand onebadk-mutationper site

Proof We takea galled-treel” for M andtransformeachgall @) separatelyso that no cyclesremain,but all the node
labelsarepresered. The simplestcaseis that () hasoneside,say S, which hasno mutations(sites). Remae the S-side
(which consistf justasingleedgeinto z) from Q. Let p denotethe P-sideparentof z. Thenfor ary site: which hasstate
1 atp, but hasstate0 at z, write aback-mutatiorfor : onthe (p, z) edge.Hence@ nolongeris acycle, but all thenodelabels
on @ remainunchanged.The more comple caseis thatboththe S and P sideshave at leastonemutation. In this case,
remove thefirst edgeon ) outof the coalescenhode,on eitherthe P or the S-side,saythe S-side,andreversethedirection
of all theremainingedgesonthe S-side. Next, for every site: thathasstatel at p but stateO at z, write a back-mutatiorfor
i onthe(p, z) edge.For every sitei thathasstate0 at p but statel at =, write themutationi onedge(p, z). Let s denotethe
parentof 2 onthe S-sideof (). For every sitei thathasstatel at s, but stateO at «, write the mutation: onthe (z, s) edge
(which now runsfrom z to s). For every sitei thathasa statel at z, but stateO at s, write the back-mutatiorfor i onthe
(z, s) edge.Finally, corvert eachoriginal mutationon a remainingedgeof the S-sideto abackmutation. Theresultis that
@ isnolongeragall, but all the nodelabelsarepresered. Processingachgall in this way creates truetreethatderives M
usingat mostoneback-mutatiorpersite. SeeFigure10 for anexample.O]
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Figure 10. Gall @ is shown on the left and the result of the transf ormation is shown on the right. The
recombination point for @ is 3, written above the recombination node. A number written on an edge
is a mutation; a number followed by the letter b denotes a back-mutation.

12 Program, Future Work and OpenQuestions

Ourinterestin phylogenetimetworkswith recombination(andothernon-tree-likepropertiesontinuesheyond the con-
tentof this paper

Program Gall.pl The methodin this paper combinedwith ideasfrom [8], hasbeenimplementedn a Perlprogramthat
constructa reducedgalled-treefor input A/, or determineghatno galled-treds possible.The programwill be availableat
wwwecsif.cs.ucdavis.edu/"gusfield/

Futur e Papers: The key ideasintroducedin this paperarethe one-onecorrespondencef connectedcomponent®f the
conflictgraphandgallsin a galled-treeandthe fact thatthe siteson a connecteccomponent” canappearmon agall in ary
phylogeneticnetworkonly if C' obeys certainstructuralconstraints.More generally propertiesof phylogeneticnetworks
more comple than galled-treescan also be elucidatedthroughstructuralpropertiesof the conflict graph. Someof these
resultsarereportedn [8]. Otherresults suchaslowerboundsonthenumberof recombinationsequiredin ary phylogenetic
networkfor M (wherethe recombinationcycles canintersectin unconstrainedvays), will be detailedin a future paper
Anotherfuturepapeiwill detailapolynomial-timesolutionto theroot-unknowrgalled-tregproblem:If noancestrabequence
is known in advance,find (if oneexists) a sequenceZ sothatthereis a galled-treefor A/ with ancestrabequence”, and
if sucha 7 exists, find onewherethe resultinggalled-treeminimizesthe numberof recombinationver all phylogenetic
networksfor M.

Open questions Thereare mary openguestions.Two importantquestionsare how to handlemissingdatain M, and
how to solve the perfectphylogery haplotypingproblem[5] whenthe underlyingsequenceéhaplotypeserederivedon a
galled-tree Thislatterproblemwastheoriginalmotivationfor beginningour studyof galled-treesindphylogeneticmetworks.
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