
A Linear-Time Algorithm for the Perfect Phylogeny

Haplotyping (PPH) Problem

Zhihong Ding∗, Vladimir Filkov, and Dan Gusfield

Department of Computer Science, University of California, Davis, CA 95616, USA

dingz@cs.ucdavis.edu, filkov@cs.ucdavis.edu, gusfield@cs.ucdavis.edu

* Correspondence to: Zhihong Ding, Department of Computer Science, University of California,

Davis, One Shields Avenue, Davis, CA 95616. E-mail: dingz@cs.ucdavis.edu Tel: (530) 752-

8819. Fax: (530) 752-4767.

1



Abstract

Since the introduction of the Perfect Phylogeny Haplotyping (PPH) Problem in

Recomb 2002 (Gusfield, 2002), the problem of finding a linear-time (deterministic,

worst-case) solution for it has remained open, despite broad interest in the PPH prob-

lem and a series of papers on various aspects of it. In this paper we solve the open

problem, giving a practical, deterministic linear-time algorithm based on a simple data-

structure and simple operations on it. The method is straightforward to program and

has been fully implemented. Simulations show that it is much faster in practice than

prior nonlinear methods. The value of a linear-time solution to the PPH problem is

partly conceptual and partly for use in the inner-loop of algorithms for more complex

problems, where the PPH problem must be solved repeatedly.

Keywords: Perfect Phylogeny Haplotyping (PPH) problem, haplotype inference prob-

lem, linear-time algorithm, shadow tree.

2



1 Introduction

Haplotypes have recently become a key unit of data in genetics, particularly human genet-

ics. The international Haplotype Map Project (Helmuth, 2001; IHMC, 2003) is focussed on

determining the common SNP haplotypes in several diverse human populations. It is widely

expected that correlations between occurrences of specific haplotypes and specific pheno-

types (such as certain diseases) will allow the rapid location of genes that influence those

phenotypes, and there are already several successful examples of this strategy. However, col-

lecting haplotype data is difficult and expensive, while collecting genotype data is easy and

cheap. Hence, almost all approaches collect genotype data and then try to computationally

infer haplotype pairs from the genotype data.

1.1 Introduction to the PPH problem

In diploid organisms (such as humans) there are two (not completely identical) “copies” of

each chromosome, and hence of each region of interest. A description of the data from a

single copy is called a haplotype, while a description of the conflated (mixed) data on the two

copies is called a genotype. In complex diseases (those affected by more than a single gene)

it is often much more informative to have haplotype data (identifying a set of gene alleles

inherited together) than to have only genotype data.

Today, the underlying data that forms a haplotype is usually a vector of values of m

single nucleotide polymorphisms (SNP’s). A SNP is a single nucleotide site where exactly

two (of four) different nucleotides occur in a large percentage of the population. In general,

it is not feasible to examine the two haplotypes separately, and genotype data rather than

haplotype data is usually obtained. Then one tries to infer the original haplotype pairs from

the observed genotype data. We represent each of the n input genotypes as vectors, each

with m sites, where each site in a vector has value 0, 1, or 2. A site i in the genotype vector g

has a value of 0 (respectively 1) if site i has value 0 (or 1) on both the underlying haplotypes

that generate g. Otherwise, site i in g has value 2. Note that we do not know the underlying

3



haplotype pair that generates g, but we do know g.

Given an input set of n genotype vectors of length m, the Haplotype Inference (HI)

Problem is to find a set of n pairs of binary vectors (with values 0 and 1), one pair for

each genotype vector, such that each genotype vector is explained (can be generated by

the associated pair of haplotype vectors). The ultimate goal is to computationally infer the

true haplotype pairs that generated the genotypes. This would be impossible without the

implicit or explicit use of some genetic model, either to assess the biological fidelity of any

proposed solution, or to guide the algorithm in constructing a solution. The most powerful

such genetic model is the population-genetic concept of a coalescent (Tavare, 1995; Hudson,

1990). The coalescent model of SNP haplotype evolution says that without recombination

the evolutionary history of 2n haplotypes, one from each of 2n individuals, can be displayed

as a rooted tree with 2n leaves, where some ancestral sequence labels the root of the tree,

and where each of the m sites labels exactly one edge of the tree. A label i on an edge

indicates the (unique) point in history where a mutation at site i occurred. Sequences evolve

down the tree, starting from the ancestral sequence, changing along a branch e by changing

the state of any site that labels edge e. The tree “generates” the resulting sequences that

appear at its leaves. In terminology closer to computer science , the coalescent model says

that the 2n haplotype (binary) sequences fit a perfect phylogeny. See Gusfield (2002) for

further explanation and justification of the perfect phylogeny haplotype model.

Generally, most solutions to the HI problem will not fit a perfect phylogeny, and this

leads to

The Perfect Phylogeny Haplotyping (PPH) Problem: Given an n by m matrix

S that holds n genotypes from m sites, find n pairs of haplotypes that generate S and fit a

perfect phylogeny.

It is the requirement that the haplotypes fit a perfect phylogeny, and the fact that most

solutions to the HI problem will not, that enforce the coalescent model of haplotype evolution,

and make it plausible that a solution to the PPH problem (when there is one) is biologically

4



meaningful.

The PPH problem was introduced in Gusfield (2002) along with a solution whose worst-

case running time is O(nmα(nm)), where α is the extremely slowly growing inverse Ackerman

function. This nearly-linear-time solution is based on a linear-time reduction of the PPH

problem to the graph realization problem, a problem for which a near-linear-time method

(Bixby and Wagner, 1988) was known for over fifteen years. However, the near-linear-time

solution to the graph realization problem is very complex (only recently implemented), and

is based on other complex papers and methods, and so taken as a whole, this approach

to the PPH problem is hard to understand, to build on, and to program. Further, it was

conjectured in Gusfield (2002) that a truly linear-time (O(nm)) solution to the PPH problem

should be possible.

After the introduction of the PPH problem, a slower variation of graph-realization ap-

proach was implemented (Chung and Gusfield, 2003a), and two simpler, but also slower

methods (based on “conflict-pairs” rather than graph theory) were later introduced (Bafna

et al., 2003; Eskin et al., 2003). All three of these approaches have best and worst-case

running times of Θ(nm2). Another paper (Wiuf, 2004) developed similar insights about

conflict-pairs without presenting an algorithm to solve the PPH problem. The PPH problem

is now well-known (for example discussed in several surveys on haplotyping methods (Boniz-

zoni et al., 2003; Halldórsson et al., 2003a,b; Gusfield, 2004)). Related research has examined

extensions, modifications or specializations of the PPH problem (Kimmel and Shamir, 2004;

Halperin and Eskin, 2004; Eskin et al., 2004; Damaschke, 2003, 2004; Barzuza et al., 2004),

or examined the problem when the data or solutions are assumed to have some special form

(Halperin and Karp, 2004; Gramm et al., 2004a,b). Some of those methods run in linear

time, but only work for specializations of the full PPH problem (Gramm et al., 2004a,b),

or are only correct with high probability (with some model) (Damaschke, 2003, 2004). The

problem of finding a deterministic, linear-time algorithm for all data has remained open,

and a recent paper (Bafna et al., 2004) shows that conflict-pairs methods are unlikely to be

5



implementable in linear time.

1.2 Main Result

In this paper, we completely solve the open problem, giving a deterministic, linear-time

(worst-case) algorithm for the PPH problem, making no assumptions about the form of the

data or the solution. The algorithm is graph-theoretic, based on a simple data-structure and

standard operations on it. The linear-time bound is trivially verified, and the correctness

proofs are of moderate difficulty. The algorithm is straightforward to implement, and has

been fully implemented. Tests show it to be much faster in practice as well as in theory,

compared to other existing programs. As in some prior solutions, the method provides an

implicit representation of all PPH solutions.

In addition to the conceptual value of our solution, its practical value can be significant.

Currently, the full structure of haplotypes in human populations and subpopulations is not

known, and there are some genes with high linkage disequilibrium that extends over several

hundred kilobases (suggesting very long haplotype blocks with a perfect or near-perfect

phylogeny structure). So it is too early to know the full range of direct application of this

algorithm to long sequences (see Chung and Gusfield (2003b) for a more complete discussion).

Moreover, faster algorithms are of practical value when the PPH problem is repeatedly solved

in the inner-loop of an algorithm. For example, in Chung and Gusfield (2003b) and Wiuf

(2004), one finds, from every SNP site, the longest interval starting at that site for which

there is a PPH solution. Moreover, there are applications where one may examine subsets

of sites to find subsets for which there is a PPH solution. In such applications, efficiencies

in the inner loop will be significant, even if each subset is relatively small.

6



2 The Shadow Tree

Our algorithm builds and uses a directed, rooted graph, called a “shadow tree”, as its primary

data structure. There are two types of “edges” in the shadow tree: tree edges and shadow

edges, which are both directed towards the root. Tree and shadow edges are labeled by

column numbers from S (with shadow edges having bars over the labels). For each column i

in S there are a tree edge, labeled i, and a shadow edge, labeled i, in the shadow tree. The

end points of each tree and shadow edge are called connectors, and can be of two types: H

or T connectors, corresponding to the head or tail of the edge.

The shadow tree also contains directed “links”. From a graph theory standpoint these

are also edges, but we reserve the word “edge” for tree and shadow edges. Links are used to

connect certain tree and shadow edges, and are needed for linear-time manipulation of the

shadow tree. Each link is either free or fixed, and always points away from an H connector.

When we say edge E “links to” E ′, we mean there is a link from the H connector of E to a

connector of E ′.

Since links can point to either an H or a T connector, the “parent of” relationship

between edges is not the same as the “links to” relationship, and is defined recursively: if

an edge links to the root, then its parent is the root. If an edge E links to the T connector

of an edge Ep, then the parent of E, p(E), is defined as Ep. However, if E links to the H

connector of an edge E ′, p(E) is defined to be the same as p(E ′). For convenience, we define

the parent of a connector as the parent of the edge that contains the connector. See Fig. 1

for an illustration of all these elements.
Figure 1

is here.
Tree edges, shadow edges, and fixed links are organized into classes, which are subgraphs

of the shadow tree. Every free link connects two classes, while each fixed link is contained in

a single class. We will see later that each class in the shadow tree encodes a subgraph that

must be contained in all solutions to the PPH problem. In each class, if the links (which

are all fixed) are contracted, then the remaining edges form two rooted trees (except for the

7



root class which has only one rooted tree), where if one subtree contains a tree edge the

other contains its shadow edge. The roots of the two subtrees are called the “class roots” of

this class, and every class root is an H connector. Each class X (except for the root class)

attaches to one other unique “parent” class p(X) with two free links. Each link goes from a

class root of X to a distinct connector in p(X). The connectors in p(X) that are linked to

are called “join points”. As an example, see Fig. 1.

2.1 Operations on the Shadow Tree

As the algorithm processes the matrix S, new edges are added to the shadow tree and

information about old edges is updated. Three operations are used to update the shadow

tree, edge addition, class flipping, and class merging.

An edge is added to the shadow tree by creating a single edge class, consisting of the edge

and its shadow edge, and then linking both edges to certain connectors in the shadow tree.

Both edges of the first class created in the algorithm are linked to the root with fixed links.

A class X can flip relative to its parent class p(X) by switching the links that connect

X to p(X). A flip does not change any class roots or any join points, but simply switches

which of the two class roots links to which of the two join points. See Fig. 2 for an example.
Figure 2

is here.
The algorithm may choose to merge two classes yielding a larger class. A class X may

merge with its parent class p(X), or two classes having the same parent class may merge.

No other merges are possible. In the first case, the free links connecting X to p(X) are

changed to fixed links, and the class roots of p(X) become the class roots of the new class.

See Fig. 2 for an example. In the second case, when two classes X and X ′ have the same

parent class and edges that contain class roots of X and X ′ have same parent edges, the

links from the class roots of X become fixed, and are changed to point to the class roots of

X ′ (assuming that column numbers of edges that contain class roots of X ′ are smaller than

those of the class roots of X). After merging, the class roots of X ′ become the class roots of

8



the new class. See Fig. 3 for an example of this case. Three or more classes can be merged

by executing consecutive merges.
Figure 3

is here.
The algorithm can “walk up” in the shadow tree by following links from H connectors

of tree or shadow edges, until the walk reaches the root. The algorithm can efficiently find

class roots and join points of a class by walking up in the shadow tree and checking if a link

encountered is fixed or free.

2.2 Mapping the Shadow Tree to All PPH Solutions

We say that a tree is “contained in” a shadow tree if it can be obtained by flipping some

classes in the shadow tree followed by contracting all links and shadow edges. The following

is the KEY THEOREM that we establish in this paper. The proof is given in Sec. 4.5.

Theorem 2.1. Every PPH solution is contained in the final shadow tree produced by the

algorithm. Conversely, every tree contained in the final shadow tree is a distinct PPH solu-

tion.

For example (Fig. 4), by flipping the class of 2, 2, 3, and 3, and then performing the

required contractions, we get all PPH solutions for S, which are root(1(2), 3) and root(1(3),

2). Note that flipping the root class results in the same tree. Thus a final shadow tree with

p classes implicitly represents 2p−1 PPH solutions.
Figure 4

is here.
The KEY THEOREM implies that each class in the final shadow tree encodes a subgraph

that is contained in ALL solutions to the PPH problem. In fact, this is true throughout the

algorithm. That is, at any point in the algorithm (even in the middle of processing a row of

the input) if X is a class in the current shadow tree, and G is the graph (consisting of one

or two rooted trees) obtained from X by contracting all the links and shadow edges in X,

then every solution to the PPH problem contains the (one or) two trees in G.

9



2.3 Invariant Properties

The linear-time PPH algorithm processes the input matrix S one row at a time, starting at

the first row. At every step, the algorithm maintains certain properties of the shadow tree

which are necessary for the correctness and the running time.

We define three functions col, te, and se. Function col takes an edge or a connector as

input and returns the column number of that edge or the column number of the edge which

the connector is part of. Function te (or se) takes a column number or an edge as input and

returns the tree edge (or shadow edge respectively) of that column number or edge. If the

input is the root of the shadow tree, then function col, te, and se each returns the root.

For any column Ci in S we define the “leaf count” of column Ci as the number of 2’s

in column Ci plus twice the number of 1’s in column Ci. We assume throughout the paper

that the columns of S are arranged by decreasing leaf count, with the column containing the

largest leaf count on the left.

Theorem 2.2. The shadow tree has the following invariant properties:

Property 1: For any column i in S, the edge labeled by i is in the shadow tree if and only

if the shadow edge i is also in the shadow tree; i and i are in the same class, and are in

different subtrees of the class (except for the root class).

Property 2: Each class X (except for the root class) attaches to exactly one other class

p(X) by two free links, and the two join points j1 and j2 are in different subtrees of p(X)

unless p(X) is the root class. Links within a class are always fixed links.

Property 3: Along any directed path towards the root the column numbers of the edges (tree

or shadow edges) strictly decrease. Also, for any two edges E and E ′, if E was added to the

shadow tree while processing a row k, and E ′ was added when processing a row greater than

k, then E ′ can never be above E on any path to the root in the shadow tree.

Property 4: Let X, j1, and j2 be as in Property 2. At least one of j1 and j2 (say j1) is the

T connector of a tree edge in the parent class. If j2 is an H connector or the T connector of

a shadow edge, then col(j2) ≤ col(j1).

10



Property 5: For any column Ci, if the parent of te(Ci) (or of se(Ci) respectively) is shadow

edge se(Cj), then te(Cj) is on the path from se(Ci) (or te(Ci) respectively) to the root of the

shadow tree.

Property 6: Two edges that have the same parent in a shadow tree must have been added

to the growing shadow tree during the processing of different rows.

Property 7: Let TE be a tree edge in the shadow tree, and let SE be its corresponding

shadow edge. The union of the edges on the paths from TE and SE to the root of the shadow

tree is invariant. Also the set {p(TE), p(SE)} is invariant.

Proof. It is easy to verify that these properties hold for each tree edge i, shadow edge i,

and the class of edges i and i, after they are just added to the growing shadow tree by the

construction of Procedure NewEntries (see Sec. 4.4). Next we prove that the theorem holds

after every possible operation to the shadow tree. The only permitted operations that modify

the shadow tree are adding new edges, class flipping, and class merging. Adding new edges

to the shadow tree does not change anything originally in the shadow tree. Clearly it will not

affect any property. Class flipping switches which class root links to which join point, but

it keeps the same roots of the class and the same join points in its parent class. Therefore

these properties hold for edges i, i, and the class of edges i and i after every possible class

flipping. Class merging of two classes X1 and X2 results in one merged class X, and the

class roots and join points of one of classes X1 and X2, say X1, become the class roots and

join points of class X. In addition, class merging does not change the parent relation of each

edge in the shadow tree. Therefore these properties hold for edges i, i, and the class of edges

i and i after every possible class merging. Thus these properties are invariant throughout

the algorithm.

11



3 Some Definitions

We use Ei to denote an edge, and Ci to denote a column number (i is an integer between 1

and m). The “class of edge Ei” is defined as the class that contains Ei. The “class root of

Ei” is defined as the root of the subtree that contains Ei, in the class of Ei. The class of Ci

is defined as the class that contains te(Ci).

For two columns Ci and Cj, Cj < Ci means that column Cj is to the left of column Ci

in S. The root is defined as smaller than any column number.

A “2 entry Ci in row k” means that the entry at column Ci and row k in S has a value

2. A “new 2 entry Ci in row k” means that there is no 2 entry at Ci in rows 1 through k−1.

An “old 2 entry Ci in row k” means there is at least one 2 entry at Ci in rows 1 through

k − 1.

When we say “a PPH solution, restricted to the columns in shadow tree ST”, we mean a

tree obtained from a PPH solution after contracting all edges corresponding to columns not

in ST. We say that a tree T contained in shadow tree ST is “in ” a PPH solution if T can

be obtained from a PPH solution after contracting all edges corresponding to columns not

in ST. By saying that a column Ci is not in ST we mean that the tree edge and the shadow

edge labeled by Ci and Ci are not in ST .

We define the function cnt, which takes a pointer (used in the algorithm) as input and

returns the connector to which the pointer points.

12



4 Algorithm

For ease of exposition, in this section we first describe a linear-time algorithm for the PPH

problem where S is assumed to consist of distinct columns which only contain entries of

value 0 and 2, and the all-zero sequence is the ancestral sequence in any solution. We will

relax these assumptions, and solve the general PPH problem in Sec. 5. The following lemma

is immediate (proven in Gusfield (2002)):

Lemma 4.1. Given S, let T be a solution to the PPH problem for S (if one exists), and let

Ei be the edge in T labeled by Ci, i.e., the edge where site Ci mutates. Then the number of

leaves in T below Ei is exactly the leaf count of column Ci. It follows that along any path in

T to the root, the successive edges are labeled by columns with strictly increasing leaf counts.

The algorithm processes the input matrix S one row at a time, starting at the first row.

We let T (k) denote the shadow tree produced after processing the first k rows of S. For

row k + 1, the algorithm puts the column numbers of all old 2 entries in row k + 1 into a

list OldEntryList, and puts column numbers of all new 2 entries in row k + 1 into a list

NewEntryList.

The algorithm needs two observations. First, all edges labeled with columns that have

2 entries in row k + 1 must form two paths to the root in any PPH solution, and no edges

labeled with columns that have 0 entries in row k + 1 can be on either of these two paths.

Second, along any path to the root in any PPH solution, the successive edges are labeled by

columns with strictly increasing leaf counts (see Lemma 4.1). These two observations are

simple, but powerful, and intuitively are the reason why we can achieve linear time, while

no such solution exists for the general graph realization problem.

The algorithm processes a row k +1 from S using three procedures. The first procedure,

OldEntries, tries to create two directed paths to the root of T (k) that contain all the tree

edges in T (k) corresponding to columns in OldEntryList by manipulating existing classes in

T (k). Those two paths cannot have tree edges in common and may contain some shadow

edges. The subgraph defined by those two directed paths is called a “hyperpath”. The

13



process of creating a hyperpath may involve flipping some classes, and may also identify

classes that need to be merged, fixing the relative position of the edges in the merged class

in all PPH solutions. In the second procedure, FixTree, the algorithm locates any additional

class merges that are required. In the third procedure, NewEntries, the algorithm adds the

tree and shadow edges corresponding to the columns in NewEntryList, and may do additional

class merges. The resulting shadow tree is T (k + 1).

procedure PPH(S)
{
for k = 1 to n {

Put column numbers of all old 2 entries in row k into OldEntryList;
Put column numbers of all new 2 entries in row k into NewEntryList;
Initialize CheckList to an empty list;
call procedure OldEntries;
call procedure FixTree;
call procedure NewEntries;

}}

Procedure OldEntries is divided into two procedures, FirstPath followed by SecondPath.

Procedure FirstPath constructs a path (called FirstPath) to the root that consists of tree

edges of some column numbers in OldEntryList. The shadow tree produced after this pro-

cedure, applied to row k + 1, is denoted by TFP (k + 1).

4.1 Procedure FirstPath for Row k + 1

4.1.1 Procedure FirstPath at a high level

We assume that column numbers in OldEntryList (and other lists used later) are ordered

decreasingly, with the largest one, Ci, at the head of the list. By the definition of leaf count

column numbers in OldEntryList are also ordered by increasing leaf count, with Ci having the

smallest leaf count. The algorithm performs a front to back scan of OldEntryList, starting

from Ci, and a parallel walk up in T (k), starting from edge te(Ci). Let Cj denote the next

entry in OldEntryList, and let Ep be the parent of te(Ci) in T (k). If Ep and te(Ci) are not

in the same class, then let E ′
p denote the resulting parent of te(Ci) if we flip the class of Ci.

14



If E ′
p is a tree edge and col(Ep) ≤ col(E ′

p), then the algorithm will flip the class of Ci and

set Ep to E ′
p (by Property 4 of Theorem 2.2 if E ′

p is a shadow tree, then col(Ep) ≥ col(E ′
p)).

This class flipping is done to simplify the exposition in the paper and has the effect that the

parent of te(Ci) is the tree edge with the larger column number between Ep and E ′
p.

The ideal case is that Ep is the tree edge te(Cj), in which case we can move to the next

entry in OldEntryList, and simultaneously move up one edge in T (k). The ideal case contin-

ues as long as the next entries in OldEntryList correspond to the parent edges encountered

in the shadow tree, and those edges are tree edges. The procedure ends when there is no

entry left in OldEntryList, and we move to the root of the shadow tree.

However, there are three cases, besides the ideal case, that can happen. One case is that

Ep is a shadow edge, which can only happen when te(Ci) and Ep are in the same class (by

Property 4 of Theorem 2.2 and the class flipping above). Then we simply walk past Ep (i.e.

let Ep = p(Ep)), without moving past entry Ci in OldEntryList. The second case is that

Ep is a tree edge (denoted TEp), but col(TEp) < Cj. This indicates that te(Ci) and te(Cj)

can never be on the same path to the root (proven by Lemma 4.3), and the algorithm adds

Cj to the head of a list called CheckList, to be processed in Procedure SecondPath. The

third case is that Ep is a tree edge (denoted TEp), but col(TEp) > Cj (and hence col(TEp)

has a 0 entry in row k + 1). This indicates that edges te(Ci) and TEp must be on different

paths to the root of T (k + 1)(proven by Lemma 4.2), and the algorithm flips the class that

contains te(Ci) to avoid edge TEp. In that case, the algorithm will also merge the classes

containing te(Ci) and TEp to fix the relative position of those edges in any PPH solution.

However, if te(Ci) and TEp are in the same class when this case occurs, then even flipping

the class of te(Ci) will not avoid the problem, and hence the algorithm reports that no PPH

solution exists. As an example, see Fig. 5.
Figure 5

is here.

4.1.2 Procedure FirstPath in detail

procedure FirstPath

15



{
while (there are entries in OldEntryList not processed in this procedure) do {

Ci = the largest unprocessed column number in OldEntryList;
Cj = the second largest unprocessed entry in OldEntryList. If Ci is the only
unprocessed entry in OldEntryList, then let Cj = root.

/* We use pointer p1 to point to the end of the FirstPath that is closer to
the root. */

Let p1 point to the H connector of te(Ci);

repeat until encountering an "exit Repeat" or "exit Algorithm" statement {
/* Use a while loop to achieve the property that if there is a fixed link
from cnt(p1), then it links to a T connector. */

while (there is a fixed link from cnt(p1) to an H connector) do {
Let p1 point to the H connector which cnt(p1) links to;

}
if (there is a fixed link from cnt(p1) to a T connector), then {

/* The edge containing cnt(p1) and its parent edge are in the same
class. */

if (cnt(p1) links to a shadow edge), then {
Let p1 point to the H connector of the shadow edge which cnt(p1) links
to; /* skip the shadow edge */

}
else (cnt(p1) links to a tree edge), then {

TEp = the tree edge which cnt(p1) links to;
/* Since cnt(p1) and TEp are in the same class, by the definition of
a class, TEp must be on the path from te(Ci) to the root in the
shadow tree. */

if (col(TEp) == Cj), then {
record that te(Ci) is below TEp on FirstPath;
mark Ci as processed by this procedure;
exit Repeat;

}
else if (col(TEp) < Cj), then {

/* In this case te(Cj) and te(Ci) cannot be on the same path to the
root. This is because te(Ci) and TEp are in the same class, so
by the definition of a class no edge can be inserted between
them. But placing te(Cj) on a path above TEp or below te(Ci) would
violate Lemma 4.1. So, since te(Ci) is chosen to be on FirstPath,
te(Cj) must be on the second path. */

put Cj into CheckList, mark Cj as processed by this procedure;
Cj = the second largest unprocessed entry in OldEntryList. If Ci

is the only unprocessed entry in OldEntryList, then let Cj = root;
}
else (Cj < col(TEp)), then {

We claim no valid PPH solution exists, report failure and exit
Algorithm;

/* Because te(Ci) and TEp are in the same class, TEp must be on
the path from te(Ci) to the root, while col(TEp) has a 0 entry

16



in this row. */
}

} /* end else (cnt(p1) links to a tree edge) */
} /* end if (there is a fixed link from cnt(p1)) */

else (there is a free link from cnt(p1)), then {
/* cnt(p1) and its parent are in different classes. Clearly p1 now points
to the class root of te(Ci). */

Let root1 be the class root of te(Ci) and root2 be the class root of se(Ci).
/* Clearly root1 and root2 are different. root2 can be located by following
links from se(Ci) to the root, until a free link is encountered. */

if (root1 links to an H connector) or (root1 links to the T connector of a
shadow edge), then {

flip the class of Ci so that root1 links to the T connector of a tree
edge; /* Such a T connector exists by Property 4 of Theorem 2.2. */

}
else if (root2 links to the T connector of a tree edge with a larger
column number than that of the tree edge that root1 links to), then {

/* When this occurs, root1 links to a T connector of a tree edge. */
flip the class of Ci so that root1 links to the T connector of a tree
edge with a larger column number than that of the tree edge that root2
links to;

}
TEp = the tree edge which root1 links to;
Eq = the edge which root2 links to;

if (col(TEp) == Cj), then {
record that te(Ci) is below TEp on FirstPath;
mark Ci as processed by this procedure;
exit Repeat;

}
else if (col(TEp) < Cj), then {

/* We refer to this point in the algorithm as "Sibling Case 1", and
say that Ci "places" Cj into CheckList. In this case te(Cj) and
te(Ci) cannot be on the same path to the root. This is proven in
Lemma 4.3 below. */

put Cj into CheckList, mark Cj as processed by this procedure;
Cj = the second largest unprocessed entry in OldEntryList. If Ci

is the only unprocessed entry in OldEntryList, then let Cj = root;
}
else (Cj < col(TEp)), then {

/* col(TEp) has a 0 entry in this row, so TEp cannot be on the path
from te(Ci) to root. */

/* This flip and merge is denoted Flip/Merge Case 1, and is justified
in Lemma 4.2. */

flip the class of Ci to walk around TEp on the FirstPath to the root;
merge the class of Ci with the class of TEp by setting the links

17



from root1 and root2 as fixed;
}

} /* end else (there is a free link from cnt(p1)) */
} /* end repeat */

}} /* end while, end Procedure FirstPath */

At this point, we prove two lemmas that will be part of our overall proof of correctness

of the algorithm.

Lemma 4.2. Assume that every PPH solution, restricted to the columns in the shadow

tree T (k), is contained in T (k). Suppose the algorithm performs a flip/merge in Procedure

FirstPath for row k + 1. Let T ′(k) be the shadow tree T (k) after that flip/merge, and note

that as a result, T ′(k) contains some, but not all, trees contained in T (k). Then, a tree T

contained in T (k) is not contained in T ′(k) only if T is not in any PPH solution. In looser

terms, any tree contained in T (k) that is lost by doing the flip/merge is not in any solution

to the PPH problem.

Proof. When the flip/merge (Flip/Merge Case 1 in the pseudocode) occurs in Procedure

FirstPath, column Ci has a 2 entry in row k + 1, while col(TEp) has a 0 entry in row k + 1.

So TEp cannot be on the path from te(Ci) to the root in any PPH solution that explains

S. However, before doing the flip/merge, TEp is on the path from te(Ci) to the root in the

shadow tree. So any tree contained in T (k) where the class of Ci is not first flipped relative

to the class of TEp, will not be in any PPH solution. It follows that any tree contained in

T (k) that is lost by doing the flip/merge is not in any PPH solution.

Lemma 4.3. Assume that every PPH solution, restricted to the columns in the shadow tree

T (k), is contained in T (k). If Sibling Case 1 (in pseudocode of Procedure FirstPath) is

reached during the processing of row k + 1, then te(Cj) and te(Ci) cannot be on the same

path to the root in any solution of the PPH problem.

Proof. Let root1 and root2 be as given in the algorithm when Sibling Case 1 is reached.

Let Er denote the edge that contains root1. By the actions of the algorithm before Sibling

18



Case 1 is reached, either root2 links to an H connector or to a T connector of a shadow

edge, or both root1 and root2 link to T connectors of tree edges (three cases). By definition,

TEp (the parent edge of Er at this point) denotes the edge that root1 is linked to, and Eq

denotes the edge that root2 is linked to. By Property 4 of Theorem 2.2 in the first and

second cases above, and by the explicit action of the algorithm in the third case, it follows

that col(Eq) ≤ col(TEp). At Sibling Case 1, col(TEp) < Cj < Ci by the explicit actions of

the algorithm. Hence, col(Eq) ≤ col(TEp) < Cj < Ci.

By the lemma assumption, every PPH solution, restricted to the columns in the shadow

tree T (k), is contained in T (k). Hence it suffices to prove that no matter how the classes of

T (k) are flipped, edges te(Ci) and te(Cj) are never on the same path to the root in T (k).

By Property 2 of Theorem 2.2, the parent of Er is either edge TEp or edge Eq no matter

how the classes of T (k) are flipped. Hence te(Cj) can never be the parent of Er in any way

that the classes of T (k) are flipped. But by Property 3 of Theorem 2.2, and the fact that

col(Eq) ≤ col(TEp) < Cj, te(Cj) cannot be above TEp or Eq. Similarly, since Cj < Ci,

te(Cj) cannot be below te(Ci) in any way that the classes of T (k) are flipped. Since Er and

te(Ci) are in the same class, by the definition of a class te(Cj) cannot be in-between te(Ci)

and Er. No matter how the classes of T (k) are flipped, edges te(Ci) and te(Cj) are never on

the same path to the root in T (k). Hence, te(Ci) and te(Cj) cannot be on the same path to

the root in any PPH solution.

Lemmas 4.2 and 4.3 together essentially say that when Procedure FirstPath takes any

“non-obvious” action, either flipping and merging classes or putting a column number into

Checklist, it is “forced” to do so. The algorithm may perform other class flips and merges in

other procedures described later. The correctness of those actions will be proven by lemmas

similar to Lemma 4.2 and 4.3.

19



4.2 Procedure SecondPath for Row k + 1

4.2.1 Procedure SecondPath at a high level

At the end of Procedure FirstPath, any columns in OldEntryList, whose corresponding tree

edges are not on FirstPath, have been placed into CheckList. In the simple case Procedure

SecondPath tries to construct a second path (called SecondPath) to the root that contains

all the tree edges in T (k) corresponding to columns in CheckList. In general Procedure

SecondPath constructs a SecondPath and may modify the FirstPath constructed previously.

The goal is that FirstPath and SecondPath together contain all the tree edges in T (k)

corresponding to columns in OldEntryList, and the two paths have no tree edges in common.

The shadow tree produced after this procedure is denoted by TSP (k + 1), and it contains a

hyperpath for row k + 1.

Procedure SecondPath: Let Ci be the largest column number in CheckList, and let

Cj denote the next entry in CheckList. The algorithm performs a front to back scan of

CheckList, starting from column Ci, and a parallel walk up in TFP (k+1), starting from edge

te(Ci). The parent of te(Ci) in TFP (k + 1), denoted Ep, is obtained in the same way as in

Procedure FirstPath.

The rest of the algorithm is similar to Procedure FirstPath, with two major differences.

First, the second case in Procedure FirstPath (when Ep is a tree edge, and col(Ep) < Cj)

now causes the algorithm to determine that no PPH solution exists. Second, the third case

in Procedure FirstPath (when Ep is a tree edge, denoted TEp, and col(TEp) > Cj), now

indicates two possible subcases. In the first subcase, if col(TEp) has a 0 entry in row k + 1,

then as in Procedure FirstPath, the algorithm determines that edges te(Ci) and TEp must be

on different paths to the root of T (k+1), and it does a flip/merge as in Procedure FirstPath.

In the second subcase, if col(TEp) is in OldEntryList, but not in CheckList, then it must be

that TEp is on FirstPath. Therefore, SecondPath is about to use a tree edge that is already

on FirstPath, and hence some action must be taken to avoid this conflict. In this case, there

is a direct way to complete the construction of SecondPath. The algorithm calls Procedure

20



DirectSecondPath, and ends Procedure SecondPath.

Procedure DirectSecondPath decides whether TEp must stay on FirstPath, or whether

it must be on SecondPath, or whether it can be on either path to the root (it can be

shown that only these three cases yield valid PPH solutions). The procedure also performs

the appropriate class flips and merges to ensure that TEp stays on the path chosen by

the algorithm regardless of later class flips, in the first two cases, or that FirstPath and

SecondPath have no tree edge in common, in the third case.

Procedure DirectSecondPath: Recall that te(Ci) is the tree edge on SecondPath

whose parent edge is TEp. Let TEpc denote the tree edge on FirstPath whose parent edge

is TEp at the end of Procedure FirstPath. The following tests determine which path to put

TEp on.

Test1: If after flipping the class of Ci and the class of TEpc, TEp is either on both

FirstPath and SecondPath, or on none of them, then no hyperpath exists for row k + 1, and

hence no solution exists for the PPH problem.

Test2: If TEp is in the same class as TEpc (respectively te(Ci)), then TEp must be on

FirstPath (respectively SecondPath).

Test3: First try to flip the class of Ci and the class of TEpc so that TEp is on FirstPath

(respectively SecondPath), but not on SecondPath (respectively FirstPath). If the try suc-

ceeds and there does not exist a hyperpath in the shadow tree after the flip, then TEp must

be on SecondPath (respectively FirstPath). See Fig. 6 for an example.

If the test results indicate that TEp must be on both FirstPath and SecondPath, then

no hyperpath exists for row k + 1, and hence no solution exists for the PPH problem.

If the test results indicate that TEp must be on FirstPath (respectively SecondPath),

then flip the class of Ci and/or the class of TEpc so that TEp is on FirstPath (respectively

SecondPath), but not on SecondPath (respectively FirstPath), and merge the classes of TEp,

Ci, and TEpc.

If the test results show that TEp can be on either path, then for concreteness, flip either

21



the class of Ci or the class of TEpc so that TEp is on FirstPath, but not on SecondPath, and

merge the class of Ci with the class of TEpc.

As an example, the shadow tree at the end of Procedure SecondPath for row 3 of the

matrix in Fig. 5 is shown in Fig. 3. In this example the algorithm determines that tree edge

1 can be on either FirstPath or SecondPath.
Figure 6

is here.

4.2.2 Procedure SecondPath in detail

procedure SecondPath
{
while (there are entries in CheckList not processed in this procedure) do {

Ci = the largest unprocessed unprocessed column number in CheckList;
Cj = the second largest unprocessed entry in CheckList. If Ci is the only
unprocessed entry in CheckList, then let Cj = root.

/* Pointer p1 is used to locate the end of the SecondPath that is closer to
the root. */

Let p1 point to the H connector of te(Ci);

repeat until encountering an "exit" statement {
/* Use a while loop to achieve the property that if there is a fixed link
from cnt(p1), it links to a T connector. */

while (there is a fixed link from cnt(p1) to an H connector) do {
Let p1 point to the H connector which cnt(p1) links to;

}
if (there is a fixed link from cnt(p1) to a T connector), then {

/* The edge containing cnt(p1) and its parent edge are in the same class. */
if (cnt(p1) links to a shadow edge ), then {

Let p1 point to the H connector of the shadow edge which cnt(p1) links
to; /* skip the shadow edge */

}
else (cnt(p1) links to a tree edge), then {

TEp = the tree edge which cnt(p1) links to;
/* Since cnt(p1) and TEp are in one class, by the definition of a class,

TEp must be on the path from te(Ci) to root in the shadow tree. */
if (col(TEp) == Cj), then {

mark Ci as processed by this procedure;
exit Repeat;

}
else if (col(TEp) < Cj or col(TEp) is not in OldEntryList), then {

We claim no PPH solution exists, report failure and exit Algorithm;
/* We refer to the above step as Step NoSib 1 and justify it in

Lemma 4.5. */

22



}
else (Cj < col(TEp) and col(TEp) is in OldEntryList), then {

/* col(TEp) is not in CheckList but is in OldEntryList, so TEp is
on FirstPath. SecondPath cannot also include it and some action
must be taken to change one of the two paths. That change is
determined in Procedure DirectSecondPath. */

call procedure DirectSecondPath;
exit procedure SecondPath;

}
} /* end else (cnt(p1) links to a tree edge) */

} /* end if (there is a fixed link from cnt(p1)) */

else (there is a free link from cnt(p1) ), then {
/* cnt(p1) and its parent are in different classes. Clearly p1 points to
the class root of te(Ci). */

Let root1 be the class root of te(Ci) and root2 be the class root of se(Ci).
if (root1 links to an H connector) or (root1 links to the T connector of
a shadow edge), then {

flip the class of Ci so that root1 links to the T connector of a tree
edge; /* Such a T connector exists by Property 4 of Theorem 2.2. */

}
else if (root2 links to the T connector of a tree edge with a larger
column number than that of the tree edge that root1 links to), then {

/* When this occurs, root1 links to a T connector of a tree edge. */
flip the class of Ci so that root1 links to the T connector of a tree
edge with a larger column number than that of the tree edge that root2
links to;

}
TEp = the tree edge which root1 links to;
Eq = the edge which root2 links to; /* col(Eq) ≤ col(TEp) */

if (col(TEp) == Cj), then {
mark Ci as processed by this procedure;
exit repeat;

}
else if (col(TEp) < Cj), then {

We claim no PPH solution exists, report failure and exit algorithm;
/* We refer to the above step as Step NoSib 2 and justify it in
Lemma 4.4 */

}
else if (Cj < col(TEp), and col(TEp) is not in OldEntryList), then {

/* This flip and merge is another instance of Flip/Merge Case 1, and
is justified by Lemma 4.2. */

flip the class of Ci to walk around TEp on the SecondPath to the root;
merge the class of Ci with the class of TEp by setting the links

from root1 and root2 as fixed links;
}
else (Cj < col(TEp), and col(TEp) is in OldEntryList), then {

23



/* col(TEp) is not in CheckList but is in OldEntryList, so TEp is on
FirstPath. SecondPath cannot also include it and some action must
be taken to change one of the two paths. That change is determined
in Procedure DirectSecondPath. */

call procedure DirectSecondPath;
exit procedure SecondPath;

}
} /* end else (there is a free link from cnt(p1)) */

} /* end repeat */
}} /* end while, end Procedure SecondPath */

procedure DirectSecondPath
{
/* This procedure gives a direct way to finish the construction of the hyperpath
for row k + 1 in situations where it is called. All variables in this procedure
initially have same values as in Procedure SecondPath before this procedure is
called. */

Mark Ci as processed by Procedure SecondPath;
Find the tree edge (denoted TEpc) which is recorded as below TEp on FirstPath
(in Procedure FirstPath) and let Cpc denote its column number; /* TEpc may not
presently be a child of TEp. Ci, Cpc, and col(TEp) are all in OldEntryList. */

if (te(Ci) and TEpc are in the same class, and have the same class root), then no
PPH solution exists, because no hyperpath can contain all the edges te(Ci), TEpc,
and TEp. exit Algorithm;

if (te(Ci) and TEp are in the same class), then {
Set flag1; /* indicating that TEp must be on the path from te(Ci) to the root
in any PPH solution */

}
else if (the set of tree edges on the path from root2 to the root of the shadow
tree is NOT identical to the set of tree edges of all unprocessed column numbers
in CheckList), then {

Set flag1; /* See Fig. 6 for an example. */
}
if (te(Cpc) and TEp are in the same class), then {

Set flag2; /* indicating that TEp must be on the path from TEpc to the root
in any PPH solution */

}
else {

The class of Cpc has two class roots. One of them links to TEp. Let rootpc1 be
that class root, and let rootpc2 be the other class root.
/* rootpc1 and rootpc2 can be located by following links from TEpc and se(Cpc)
until two free links are encountered. */

/* The next condition can be checked in linear time because edges on the path

24



from rootpc2 to the root of the shadow tree are labeled by decreasing column
numbers. */

if (the set of tree edges on the path from rootpc2 to the root of the shadow
tree is NOT identical to the set of tree edges of all unprocessed column
numbers in CheckList), then {

Set flag2; /* See Fig. 6 for an example. */
}

}

if (both flag1 and flag2 are set) then {
No PPH solution exists (see Lemma 4.7), report failure and exit Algorithm;

}
else if (flag1 is set and flag2 is not set) then {

/* This flip and merge is denoted Flip/Merge Case 2, and is justified by
Lemma 4.8. */

flip, if necessary, the class of Cpc, so that TEp is not on the path from TEpc

to the root;
merge the class of Ci with the class of TEp and the class of Cpc by setting

links from root1, root2, rootpc1, rootpc2 as fixed;
}
else if (flag2 is set and flag1 is not set) then {

/* This flip and merge is another instance of Flip/Merge Case 2, and is
justified by Lemma 4.8. */

flip, if necessary, the class of Cpc, so that TEp is on the path from TEpc to
the root;

flip the class of Ci, so that TEp is not on the path from te(Ci) to the root;
merge the class of Ci with the class of TEp and the class of Cpc by setting

links from root1, root2, rootpc1, rootpc2 as fixed;
}
else (neither flag1 nor flag2 are set, i.e. neither te(Ci) nor TEpc are forced to
be on the same path as TEp to the root), then {

/* In this case the parent edges of the class roots of classes Ci and Cpc are
the same (see Lemma 4.9) */

/* This flip and merge is denoted Flip/Merge Case 3, and is justified by
Lemma 4.10. */

flip the class of Ci to walk around TEp on the second path to the root;
merge the class of Ci with the class of Cpc by removing links from rootpc1 and

rootpc2, and adding a fixed link from rootpc1 to root2, and a fixed link from
rootpc2 to root1;

} } /* end Procedure DirectSecondPath */

Lemma 4.4. Assume that every PPH solution, restricted to the columns in the shadow tree

T (k), is contained in T (k). If Step NoSib 2 (in pseudocode of Procedure SecondPath) is

reached during the processing of row k + 1, then there is no solution to the PPH problem.

25



Proof. By assumption, every PPH solution, restricted to the columns in the shadow tree

T (k), is contained in T (k). Hence it suffices to prove that if Step NoSib 2 is reached in

Procedure SecondPath, then no tree contained in T (k) is a PPH solution, restricted to the

columns in T (k).

Let root1 and root2 be as given in the algorithm when Step NoSib 2 is reached. Let Er

denote the edge that contains root1. If Step NoSib 2 is reached, then the parent of Er is

either edge TEp or edge Eq no matter how the classes of T (k) are flipped, Er and te(Ci) are

in the same class, and col(Eq) ≤ col(TEp) < Cj < Ci. These are exactly the same conditions

where Lemma 4.3 applies. Thus no matter how the classes of T (k) are flipped, edges te(Ci)

and te(Cj) are never on the same path to the root in T (k).

Let C1 be the column that places Ci into CheckList in Procedure FirstPath. We know

that Ci < C1, and by the proof of Lemma 4.3 edges te(Ci) and te(C1) are never on the same

path to the root in T (k), no matter how the classes of T (k) are flipped. If C1 also places Cj

into CheckList in Procedure FirstPath, then by the proof of Lemma 4.3 edges te(Cj) and

te(C1) are never on the same path to the root in T (k), no matter how the classes of T (k)

are flipped. Thus there cannot be a hyperpath containing te(Cj), te(Ci), and te(C1) in T (k),

and hence in any PPH solution. However, there are 2 entries in columns Cj, Ci, and C1

in row k + 1 of S, so every PPH solution must have a hyperpath that contains those three

edges. Hence, there is no PPH solution in this case.

Now suppose Cj is placed into CheckList in Procedure FirstPath by column C2 (C2 6= C1).

Note that neither C1 nor C2 is in CheckList. We know that Cj < C2, and by the proof of

Lemma 4.3 edges te(Cj) and te(C2) are never on the same path to the root in T (k), no

matter how the classes of T (k) are flipped. We can observe from Procedure FirstPath that

the set of columns placed into CheckList by C1 (or C2) is contiguous with C1 (respectively

C2) in OldEntryList. Then, since Cj < C2, Ci < C1, and Cj < Ci, it follows that Cj < C2 <

Ci < C1. When Step NoSib 2 is reached, col(Eq) ≤ col(TEp) < Cj < C2 < Ci. For column

C2 these are exactly the same conditions where Lemma 4.3 applies. Thus no matter how the

26



classes of T (k) are flipped, edges te(C2) and te(Ci) are never on the same path to the root.

Thus there cannot be a hyperpath containing te(Cj), te(Ci), and te(C2) in T (k), and hence

in any PPH solution. However, there are 2 entries in columns Cj, Ci, and C2 in row k + 1

of S, so every PPH solution must have a hyperpath that contains those three edges. Hence,

there is no PPH solution in this case.

Lemma 4.5. Assume that every PPH solution, restricted to the columns in the shadow

tree T (k), is contained in T (k). If Step NoSib 1(in pseudocode of Procedure SecondPath) is

reached during the processing of row k + 1, then there is no solution to the PPH problem.

Proof. When Step NoSib 1 is reached in Procedure SecondPath, edge TEp is the tree edge

which cnt(p1) links to. Let Ec be the edge that contains cnt(p1). Ec may or may not be the

same as te(Ci). However we know that edges TEp, Ec, and te(Ci) are in the same class, and

Ec is on the path from te(Ci) to the root in T (k). By the definition of a class, TEp will be

on the path from te(Ci) to the root in T (k) no matter how the classes of T (k) are flipped.

Edge TEp is in T (k), so if col(TEp) is not in OldEntryList, then there must be a 0 entry

in col(TEp). But, there is a 2 entry in column Ci in row k + 1, so when col(TEp) is not in

OldEntryList, there can be no solution to the PPH problem.

Now consider the case that col(TEp) is in OldEntryList. In that case, it must be that

col(TEp) < Cj < Ci. Next we prove that te(Ci) and te(Cj) cannot be on the same path to

the root in any PPH solution. By the lemma assumption, every PPH solution, restricted to

the columns in T (k), is contained in T (k). Hence it suffices to prove that no matter how

the classes of T (k) are flipped, edges te(Ci) and te(Cj) are never on the same path to the

root in T (k). Since TEp is on the path from te(Ci) to the root in T (k) and both edges are

in the same class, edge te(Cj) cannot be between TEp and te(Ci) no matter how the class

of T (k) are flipped. But by Property 3 of Theorem 2.2, and the fact that col(TEp) < Cj,

te(Cj) cannot be above TEp. Similarly, since Cj < Ci, te(Cj) cannot be below te(Ci) in any

way that the classes of T (k) are flipped. Hence, te(Ci) and te(Cj) cannot be on the same

path to the root in T (k) and in any PPH solution.

27



Further, Cj and Ci are both in Checklist. These are the same facts established in the

second paragraph of the proof of Lemma 4.4, and the only facts needed in the third and

fourth paragraphs of that proof. Hence, the remainder of the proof of Lemma 4.5 is identical

to third and fourth paragraphs of the proof of Lemma 4.4.

Lemma 4.6. Assume that every PPH solution, restricted to the columns in the shadow tree

T (k), is contained in T (k). If Procedure DirectSecondPath sets flag1 (respectively flag2), then

TEp must be on the path from te(Ci) (respectively TEpc) to the root in any PPH solution.

Proof. We will explicitly prove the lemma for flag1. The proof for flag2 is symmetric. By

the lemma assumption, if te(Ci) and TEp are in the same class when flag1 is set, then TEp

must be on the path from te(Ci) to the root in any PPH solution.

Next we prove that if TEp and te(Ci) are not in the same class when flag1 is set (and

so certainly are not in the same class in T (k)), then TEp must be on the path from te(Ci)

to the root in any PPH solution. By the lemma assumption, every PPH solution, restricted

to the columns in T (k), is contained in T (k). So, we can prove the lemma by proving that

TEp must be on the path from te(Ci) to the root in any way that the classes of T (k) can be

flipped to obtain a PPH solution, restricted to the columns in T (k). Equivalently, in order

for there to be a hyperpath in T (k) for row k +1, the classes of T (k) must be flipped so that

TEp is on the path from te(Ci) to the root.

By Property 1 of Theorem 2.2, the two roots of the class of Ci in T (k) link to join points,

call them j1 and j2, in a single parent class. Since TEp is the parent of root1 (the class root

of te(Ci)) when Procedure DirectSecondPath is called, either j1 or j2 is the T connector of

TEp (say j1). The class of TEp remains the parent class of Ci, and j1 and j2 remain the join

points of the class of Ci, no matter how the classes of T (k) are flipped. Again by Property

1 of Theorem 2.2, the roots of the class of TEp link to a single parent class. Let J be the

union of the edges on the paths from j1 and j2 to the root in T (k). It follows that after any

flip of classes in T (k), J remains the union of the edges on the resulting two paths from j1

and j2 to the root of the resulting shadow tree. The paths may change, but the union of the

28



edges on those paths cannot change from what it is in T (k).

Let CJ be the set of classes of T (k) that contain the edges in set J . Since Procedure

SecondPath works bottom up in T (k), at the time the algorithm calls Procedure DirectSec-

ondPath, no class in CJ has been flipped in Procedure SecondPath and so the path from j1

to the root is exactly the subpath of FirstPath from j1 to the root, and the path from j2 has

not changed since the end of Procedure FirstPath. Hence if the required hyperpath for row

k + 1 goes through both j1 and j2, then the tree edges in J must be exactly the tree edges

on FirstPath from j1 to the root, together with the edges that remain on CheckList at the

point flag1 is set. But flag1 is set under the condition that the set of tree edges on the path

from root2 (and hence from j2) to the root of the current shadow tree is not identical to the

set of tree edges of all the column numbers in CheckList. Hence, when flag1 is set, J does

not have exactly the required set of tree edges, and so the hyperpath for row k + 1 cannot

go through both j1 and j2 in order for PPH solutions to exist.

Now, both col(TEp) and Ci are old entries in row k + 1, so any hyperpath for row k + 1

must go through the tree edges TEp and te(Ci). Further, in any choice of flipping classes in

T (k), either TEp is on the path from te(Ci) to the root or the class root of te(Ci) will link

to j2. In the latter case the hyperpath will go through both j1 and j2. But as shown above

that is impossible when flag1 is set in order for PPH solutions to exist, and this completes

the proof of the lemma.

Lemma 4.7. Assume that every PPH solution, restricted to the columns in the shadow tree

T (k), is contained in T (k). Then (in Procedure DirectSecondPath) TEp must be on the path

from exactly one of te(Ci) and TEpc to the root in any PPH solution, and no valid PPH

solution exists if Procedure DirectSecondPath sets both flag1 and flag2.

Proof. First we prove that no matter how the classes of T (k) are flipped, edges te(Ci) and

TEpc cannot be on the same path to the root in T (k). Suppose Ci < Cpc. The proof for

the case that Cpc < Ci is symmetric. By Property 3 of Theorem 2.2, TEpc cannot be on

the path from te(Ci) to the root in T (k). So we only need to prove that te(Ci) cannot be

29



on the path from TEpc to the root in T (k) in any choice of flipping classes of T (k). The

proof is by contradiction. Suppose that te(Ci) can be on the path from TEpc to the root in

T (k) in some way of flipping classes. TEpc is recorded as below TEp in Procedure FirstPath,

and TEp is the first tree edge on the path from TEpc to the root (on FirstPath). Let E ′
p

denote the parent of the class root of TEpc after flipping the class of TEpc. By Property 3 of

Theorem 2.2, and the fact that col(TEp) < Ci, te(Ci) cannot be above TEp. Hence te(Ci)

is either the same as E ′
p, or on the path from E ′

p to the root. However as given in the proof

for Lemma 4.3 TEp has a larger column number than that of edge E ′
p. This is contradictory

to that col(TEp) < Ci.

Now all of col(TEp), Ci, and Cpc are in OldEntryList, so all three of the tree edges TEp,

te(Ci) and TEpc, must be on the hyperpath for row k + 1 in every PPH solution, restricted

to the columns in T (k). But a hyperpath must consist of two paths to the root that do

not contain tree edges in common. That is impossible when tree edge TEp is on the paths

from both te(Ci) and TEpc to the root, or when TEp is on neither of those paths, given that

te(Ci) and TEpc cannot be on the same path to the root in T (k). Therefore TEp must be

on exactly one of the paths: te(Ci) to root and TEpc to root, in any PPH solution.

By Lemma 4.6 if Procedure DirectSecondPath sets both flag1 and flag2, then in any PPH

solution TEp must be on the path from both te(Ci) and TEpc to the root. This causes a

contradiction, and hence no valid PPH solution exists.

Lemma 4.8. Assume that every PPH solution, restricted to the columns in the shadow tree

T (k), is contained in T (k). Suppose the algorithm performs a flip/merge in Flip/Merge

Case 2 when processing row k + 1. Then any tree contained in T (k) that is lost by doing the

flip/merge is not in any solution to the PPH problem.

Proof. By Lemma 4.7 TEp must be on the path to the root from either te(Ci) or TEpc

(denoted E) but not both, in any PPH solution. In Flip/Merge Case 2, exactly one of flag1

and flag2 is set. By Lemma 4.6 we know which one of te(Ci) and TEpc is E. After performing

a flip/merge in Flip/Merge Case 2, any tree contained in T (k) that is lost is a tree in which

30



TEp is not on the path from E to the root, and hence not in any PPH solution.

The analysis done so far for Procedure DirectSecondPath implies that when exactly one

of flag1 or flag2 is set, or when both are set, the algorithm takes a forced action, either a

forced flip and merge, or a forced conclusion that no PPH solution exists. What remains is

the case when neither flag1 nor flag2 are set. In this case, it seems reasonable that either

the class of Ci or the class of Cpc should be flipped, but not both, and that the choice is

arbitrary. Furthermore, after the flip, the two classes should be merged to maintain their

relative position. This is in fact true, and is proven by Lemma 4.10. The next lemma

establishes a fact which is needed to prove Lemma 4.10. Its proof needs familiarity with

Procedure NewEntries in Sec. 4.4 and is given in Sec. 4.5.

Lemma 4.9. Assume that every PPH solution, restricted to the columns in the shadow

tree T (k), is contained in T (k). Suppose that neither flag1 nor flag2 are set in Procedure

DirectSecondPath. Then the roots of the classes of Ci and Cpc in T (k) have the same parents.

Lemma 4.10. Assume that every PPH solution, restricted to the columns in the shadow

tree T (k), is contained in T (k). Suppose the algorithm performs a flip/merge in Flip/Merge

Case 3 when processing row k + 1. Then any tree contained in T (k) that is lost by doing the

flip/merge is not in any solution to the PPH problem.

Proof. By Lemma 4.7 TEp must be on the path from exactly one of te(Ci) and TEpc to the

root in any PPH solution. In Flip/Merge Case 3 neither flag1 nor flag2 are set. Therefore

TEp can be on the path from either one of te(Ci) and TEpc to the root. Any tree contained

in T (k) that is lost by doing the flip/merge is a tree in which TEp is not on the path from

exactly one of te(Ci) and TEpc to the root, and hence not in any solution to the PPH

problem.

By Lemma 4.9 the roots of the classes of Ci and Cpc in T (k) have the same parents, and

hence these two classes can be merged as described in Flip/Merge Case 3.

31



4.3 Procedure FixTree for Row k + 1

Procedure FixTree finds and merges more classes, if necessary, to remove trees contained

in TSP (k + 1) that are not in any PPH solutions. It first extends SecondPath with shadow

edges whose column numbers are in OldEntryList of row k + 1. The subgraph defined by

FirstPath and the extended SecondPath is called an “extended hyperpath”; it contains the

hyperpath found earlier. By utilizing the extended hyperpath the algorithm can determine

which additional classes need to be merged. The shadow tree produced after this procedure

is denoted by TFT (k + 1).

procedure FixTree
{
/* First we find two edges TE1 and E2 which are two ends of the extended
hyperpath. */

TE1 = the tree edge of the largest column number in OldEntryList, i.e. the lowest
edge of FirstPath; if OldEntryList is empty, then let TE1 = root;
Let SE1 = se(TE1);

TEt = the tree edge of the largest column number in OldEntryList whose tree edge
is not on FirstPath, i.e. the lowest edge of SecondPath; if no such tree edge
exists, then let TEt = root;

Find a maximal path from TEt toward leaves in TSP (k+1) consisting of shadow edges
whose column numbers are in OldEntryList. We prove in Lemma 4.11 that such a
maximal path is unique.

E2 = the edge that is the lower end of the maximal path found in the previous
step; if the path does not contain any edge, then let E2 = TEt;

/* col(TE1) ≥ col(E2) */

/* We can check if TE1 and E2 are in the same class by checking if they have
same class roots. */

while (TE1 and E2 are in different classes) and (E2 is not the parent of the
class root of SE1) do {

/* Merge-class cases below are justified by Lemmas 4.13 and 4.14. */
/* If E2 6= TEt, then te(E2) is on FirstPath and col(the class root of TE1) >

col(the class root of te(E2)) ≥ col(the class root of TEt). */
if (col(the class root of TE1) > col(the class root of TEt)), then

merge the class of TE1 with its attaching class;
else

merge the class of TEt with its attaching class;
}}

32



See Fig. 7 for an example. The proof of the next lemma needs familiarity with Procedure

NewEntries in Sec. 4.4 and is is given in Sec. 4.5.
Figure 7

is here.

Lemma 4.11. Assume that every PPH solution, restricted to the columns in the shadow

tree T (k), is contained in T (k). Then the maximal path found in Procedure FixTree for row

k + 1 is unique.

Lemma 4.12. Let ST denote the shadow tree at any stage of the algorithm. Let r1 and r2

denote the class roots of class X in ST . Let r′1 and r′2 denote the class roots of class X ′ in

ST . If max{col(r1),col(r2)} > min{col(r′1),col(r′2)}, then flipping class X does not change

the position of any edge in class X ′ in ST .

Proof. Without loss of generality we assume that max{col(r1),col(r2)} = col(r1) and min

{col(r′1), col(r′2)} = col(r′1). Flipping a class X in the shadow tree ST only affects the class

itself and all classes that directly or indirectly attach to it. Since X and X ′ are different

classes in ST , we only need to prove that class X ′ does not attach to class X directly or

through a series of classes. The proof is by contradiction. Suppose class X ′ attaches to class

X directly or through a series of classes. Then there is choice of class flips in the shadow

tree such that connector r1 is on the path from connector r′1 to the root of the shadow tree.

But that is contradictory to Property 3 of Theorem 2.2 given that col(r1) > col(r′1).

The proof of the next lemma needs familiarity with Procedure NewEntries in Sec. 4.4

and is is given in Sec. 4.5.

Lemma 4.13. Assume that every PPH solution, restricted to the columns in the shadow tree

T (k), is contained in T (k). Suppose the algorithm merges the class of TE1 with its attaching

class in Procedure FixTree for row k + 1. Then any tree contained in T (k) that is lost by

doing the class merge is not in any solution to the PPH problem.

Lemma 4.14. Assume that every PPH solution, restricted to the columns in the shadow tree

T (k), is contained in T (k). Suppose the algorithm merges the class of TEt with its attaching

33



class in Procedure FixTree for row k + 1. Then any tree contained in T (k) that is lost by

doing the class merge is not in any solution to the PPH problem.

Proof. Let TE1, SE1, TEt, and E2 be the same as in Procedure FixTree. Suppose that

the algorithm merges the class of TEt with its attaching class in Procedure FixTree when

processing row k + 1. This will only happen when TE1 and E2 are in different classes, E2 is

not the parent of the class root of SE1, and col(the class root of TE1) ≤ col(the class root

of TEt). The last condition indicates that E2 is the same as TEt, because if E2 is different

from TEt, and hence is a shadow edge whose column number is in OldEntryList, then te(E2)

is on FirstPath (in different class than TE1) and we must have col(the class root of TE1) >

col(the class root of te(E2)) ≥ col(the class root of TEt). By Lemma 4.12 the last condition

also indicates that flipping the class of TEt does not affect the class of TE1, and hence does

not change the positions of TE1 and SE1 in the shadow tree. We can also deduce that TEt

cannot be on the path from either SE1 or TE1 to the root from the last condition. By

Property 3 of Theorem 2.2, none of TE1 or SE1 can be on the path from TEt to the root.

So TE1 and TEt cannot be on the same path to the root in the shadow tree.

Next we do a case analysis. We will prove that in all three cases there does not exist a

hyperpath for row k + 1 if we flip the class of TEt, and hence any tree contained in T (k)

that is lost by doing the class merge is not in any solution to the PPH problem. Let SEt

denote se(TEt). Let r1 and r2 be the class roots of TEt and SEt respectively. Let j1 and j2

be the join points which r1 and r2 link to. By Property 4 of Theorem 2.2 at least one of j1

and j2 is the T connector of a tree edge.

In the first case, j2 is not the T connector of a tree edge, and hence j1 must be the T

connector of a tree edge, say TEj1. Since TEt is on SecondPath, TEj1 must be on SecondPath

and col(TEj1) is in OldEntryList. If we flip the class of TEt, TEt has to be on FirstPath in

order for a hyperpath for row k + 1 to exist. TE1 is on FirstPath, but TE1 and TEt cannot

be on the same path to the root as proven above. Therefore there does not exist a hyperpath

for row k + 1 if we flip the class of TEt. In the second case, j2 is the T connector of a tree

34



edge, say TEj2, whose column number is not in OldEntryList. If we flip the class of TEt,

TEj2 is on the path from TEt to the root, which causes no hyperpath for row k + 1 to exist.

In the third case, j2 is the T connector of a tree edge, say TEj2, whose column number is

in OldEntryList. In this subcase TEj2 is on FirstPath, and hence on the path from TE1 to

the root. If we flip the class of TEt, then TEj2 is on the path from both TE1 and TEt to

the root, because flipping the class of TEt does not affect the class of TE1. As proven above

TE1 and TEt cannot be on the same path to the root. So no hyperpath for row k +1 exists.

We have proven that in all three cases any tree contained in T (k) that is lost by doing

the class merge is not in any solution to the PPH problem. The proof is complete.

4.4 Procedure NewEntries for Row k + 1

4.4.1 Procedure NewEntries at a high level

Procedure NewEntries creates and adds edges corresponding to columns in NewEntryList of

row k + 1 to TFT (k + 1). Ideally it tries to attach new edges to the two ends of the extended

hyperpath found in Procedure FixTree. If some new edges cannot be added in this way, the

algorithm finds places to attach them. It then merges more classes, if necessary, so that there

are two directed paths to the root in T (k + 1) containing all the tree edges corresponding to

the columns that have 2 entries in row k + 1, no matter how classes are flipped.

Procedure NewEntries: If NewEntryList is empty, then exit this procedure. Oth-

erwise arrange column numbers in NewEntryList from left to right increasingly, with the

largest one on the right end of the list.

Create edges te(Ci) and se(Ci) for each Ci in NewEntryList. Create two free links

pointing from the H connector of te(Ci) (respectively se(Ci)) to the T connector of te(Cj)

(respectively se(Cj)), for each Ci and its left neighbor Cj in NewEntryList.

Let Ch denote the smallest column number in NewEntryList. At this point, each new

edge is attached, using a free link, to one other edge, except for te(Ch) and se(Ch). The

algorithm attaches them according to two cases. Let TE1, TEt, and E2 be the same as in

35



Procedure FixTree.

In the first case, when col(TE1) < Ch, te(Ch) and se(Ch) are attached to the two ends

of the extended hyperpath. It creates a free link pointing from the H connector of te(Ch) to

the T connector of TE1. It creates a free link pointing from the H connector of se(Ch) to

the T connector of E2, if E2 is in the class of TE1, and otherwise to a connector in the class

of TE1 whose parent is E2.

In the second case, when col(TE1) > Ch, by Property 3 of Theorem 2.2, none of te(Ch)

and se(Ch) can attach to TE1. If col(TEt) > Ch, then no PPH solution exists no matter

where new edges are attached; otherwise the algorithm finds two edges (TE ′
1 and E ′

2) to

attach te(Ch) and se(Ch), as follows.

Let TE ′
1 denote the tree edge of the largest column number in OldEntryList that is less

than Ch. Let TE ′
t denote the tree edge of the largest column number in OldEntryList that

is less than Ch, and not on the path from TE ′
1 to the root. If TE ′

1 or TE ′
t does not exist,

then let it be the root.

Similar to Procedure FixTree, the algorithm finds a maximal path from TE ′
t toward the

leaves in TFT (k +1), consisting of shadow edges whose column numbers are in OldEntryList

and less than Ch. Let E ′
2 denote the edge that is at the lower end of the maximal path.

If TE ′
1 is on the path from TE1 (respectively E2) to the root, then create a free link

pointing from the H connector of se(Ch) (respectively te(Ch)) to the T connector of TE ′
1,

and create a free link pointing from the H connector of te(Ch) (respectively se(Ch)) to the

T connector of E ′
2 if E ′

2 is in the class of TE ′
1, otherwise to a connector in the class of TE ′

1

whose parent is E ′
2.

If there are column numbers in NewEntryList that are larger than col(TE1), then let Ct

denote the smallest one among them (Ch < col(TE1) < Ct). se(Ct) is a new edge that has

been attached to an edge by the algorithm. As a special case, the algorithm changes the link

from the H connector of se(Ct) to point to the T connector of TE1.

All new edges are added to TFT (k + 1) according to cases 1 and 2. The algorithm then

36



merges the class of Ch with the classes of column numbers in NewEntryList that are less than

col(TE1), and merges the class of Ch with the classes of column numbers in OldEntryList

that are larger than Ch.

As an example, Fig. 8 shows the shadow tree T produced by the algorithm after pro-

cessing the first three rows of the matrix S in Fig. 5. T is also the final shadow tree for S.

It can be verified that Theorem 2.1 holds for S and T .
Figure 8

is here.

4.4.2 Procedure NewEntries in detail

procedure NewEntries
{
if (NewEntryList is empty), then exit procedure NewEntries; Otherwise arrange
column numbers in NewEntryList from left to right increasingly, with the largest
one on the right end of the list.

for each column number Ci in NewEntryList, create edges te(Ci) and se(Ci);
for each Ci and its left neighbor Cj in NewEntryList, let p(te(Ci)) = te(Cj),
p(se(Ci)) = se(Cj);

Let TE1, SE1, and E2 be the same edges as in Procedure FixTree;
Ch = the smallest column number in NewEntryList;

if (col(TE1) < Ch), then {
/* Now new edges can be attached directly to the two ends of the extended
hyperpath. */

if (TE1 and E2 are in the same class), then {
/* This is denoted Add-new-edges Case 1. */
p(te(Ch)) = TE1, p(se(Ch)) = E2;

}
else (TE1 and E2 are in different classes), then {

cr = the class root of SE1;
/* By Lemma 4.15 E2 is the parent of cr. */
/* This is denoted Add-new-edges Case 2, in which E2 is the parent of

se(Ch). */
p(te(Ch)) = TE1, let the H connector of se(Ch) link to cr;

}
}
else (Ch < col(TE1)), then {

/* In this case te(Ch) cannot link to the T connector of TE1 by Property 3 of
Theorem 2.2. We use the same way as to find TE1 and E2 in Procedure FixTree
to find two edges TE1’ and E2’ whose column numbers are less than Ch. */

37



TE1’ = the tree edge of the largest column number in OldEntryList that is less
than Ch; if no such tree edge exists, then let TE1’ = root;

SE1’ = se(TE1’);
TEt’ = the tree edge of the largest column number in OldEntryList that is less
than Ch, whose tree edge is not on the path from TE1’ to the root; if no
such tree edge exists, then let TEt’ = root;

Find a maximal path from TEt’ toward leaves in TFT (k) consisting of shadow
edges whose column numbers are in OldEntryList and less than Ch. By
Lemma 4.11 such a maximal path is unique.

E2’ = the edge that is the lower end of the maximal path found in the previous
step. If the path does not contain any edge, then let E2’ be the same as TEt’.

/* col(TE1’) ≥ col(E2’) */

if (TE1’ and E2’ are in the same class), then {
if (TE1’ is on the path from TE1 to the root), then {

p(te(Ch)) = E2’, p(se(Ch)) = TE1’; /* Add-new-edges Case 3 */
}
else (TE1’ is on the path from E2 to the root), then {

p(te(Ch)) = TE1’, p(se(Ch)) = E2’; /* Add-new-edges Case 4 */
}

}
else (TE1’ and E2’ are in different classes), then {

cr’ = the class root of SE1’;
/* By Lemma 4.15 E2’ is the parent of cr’. */
if (TE1’ is on the path from TE1 to the root), then {

/* Add-new-edges Case 5, in which E2’ is the parent of te(Ch). */
p(se(Ch)) = TE1’, let the H connector of te(Ch) link to cr’.

}
else (TE1’ is on the path from E2 to the root), then {

/* Add-new-edges Case 6, in which E2’ is the parent of se(Ch). */
p(te(Ch)) = TE1’, let the H connector of se(Ch) link to cr’.

}
}

Ct = the smallest column number in NewEntryList that is larger than col(TE1);
If no column number in NewEntryList is larger than col(TE1), then let
Ct = col(TE1);

/* The following two merge-class cases are justified by Lemma 4.16. */
merge the class of Ch with classes of column numbers in NewEntryList that are

less than Ct;
merge the class of Ch with classes of column numbers in OldEntryList that are

larger than Ch;
if (Ct > col(TE1)), then let p(se(Ct)) = TE1; /* Add-new-edges Case 7 */

} /* end else (Ch < col(TE1)) */
} /* end Procedure NewEntries */

Lemma 4.15. Assume that every PPH solution, restricted to the columns in the shadow

38



tree T (k), is contained in T (k). Then E2 is the parent of cr, and E ′
2 is the parent of cr′ in

Procedure NewEntries for row k + 1.

Proof. Recall that cr is the class root of SE1, and cr′ is the class root of SE ′
1. At the end

of Procedure FixTree for row k + 1, if TE1 and E2 are not in the same class, then E2 is the

parent of cr in TFT (k +1). In Procedure NewEntries for row k +1 where this lemma applies,

TE1 and E2 are not in the same class. So E2 must be the parent of cr.

We next prove that in Procedure NewEntries if TE ′
1 and E ′

2 are not in the same class,

E ′
2 must be the parent of cr′. Let Er2 be the edge that contains cr′. Assume that TE ′

1 is

on the path from E2 to the root in Procedure NewEntries. (The proof for the case where

TE ′
1 is on the path from TE1 to the root is similar.) The class of TE ′

1 is on the path from

E2 to the root, and hence is on the path from SE1 to the root. Therefore the class of SE ′
1

is on the path from TE1 to the root, i.e. cr′ is on the path from TE1 to the root. So the

parent of cr′, say Epr2, is also on the path from TE1 to the root. We claim that col(Epr2) is

in OldEntryList. Suppose it is not, then since Epr2 is on the path from TE1 to the root, it

cannot be a tree edge. So Epr2 must be a shadow edge. Epr2 is the parent of Er2. Let E ′
r2 =

te(Er2) if Er2 is a shadow edge, or let Er2′ = se(Er2) if Er2 is a tree edge. By Property 5 of

Theorem 2.2 te(Epr2) is on the path from E ′
r2 to the root. Since E ′

r2 and TE ′
1 are in the same

class and have the same class root, te(Epr2) is also on the path from TE ′
1 to the root, which

is contradictory to col(Epr2) not in OldEntryList. Thus col(Epr2) is in OldEntryList. Since

Epr2 is on the path from TE1 to the root, Procedure NewEntries will either choose Epr2 as

E ′
2, or choose an edge in the class of SE ′

1 as E ′
2. Since TE ′

1 and E ′
2 are not in the same class,

Epr2 must be chosen as E ′
2 by the algorithm, and hence E ′

2 is the parent of cr′.

Lemma 4.16. Assume that every PPH solution, restricted to the columns in the shadow tree

T (k), is contained in T (k). Suppose the algorithm performs a merge-class case in Procedure

NewEntries for row k + 1. Then any tree contained in T (k) that is lost by doing the merge-

class case is not in any PPH solution.

Proof. One critical observation is that running Procedure NewEntries where NewEntryList

39



contains l column numbers is equivalent to running Procedure NewEntries l times where each

time NewEntryList contains one increasing column number in the original NewEntryList,

starting from the smallest one in the original NewEntryList. Therefore we only need to prove

the lemma in the case that NewEntryList of row k + 1 contains one column number, Ch.

If col(TE1) < Ch (Add-new-edges Cases 1, 2, and 7), then no merge-class case happens.

The merge-class case only happens when Ch < col(TE1) (Add-new-edges Cases 3-6). In

these cases let C ′
h be any column number in OldEntryList of row k + 1 that is larger than

Ch. By the definition of a PPH solution there are two paths to the root (with no tree edge

in common) which pass through tree edges corresponding to all columns in OldEntryList of

row k + 1 plus Ch in any PPH solution. We call such two paths path1 and path2. path1

and path2 cannot have tree edges in common. By Property 3 of Theorem 2.2 te(C ′
h) cannot

be on the path from te(Ch) to the root on either path1 or path2. Since C ′
h is an old entry

and Ch is a new entry in row k + 1, there exists at least one row in S where C ′
h has a 2

entry and Ch has a 0 entry. So te(Ch) cannot be on the path from te(C ′
h) to the root on

either path1 or path2 in any PPH solution. Therefore te(Ch) and te(C ′
h) must be on different

paths between path1 and path2 in any PPH solution. In Procedure NewEntries, te(Ch) and

se(Ch) are added to the shadow tree in such a way that there are two paths to the root

(with no tree edge in common) which pass through tree edges corresponding to all columns

in OldEntryList of row k + 1 plus Ch, and te(Ch) and te(C ′
h) are on different paths between

path1 and path2. Any tree Tl contained in T (k) that is lost by doing the merge-class case is

a tree where either te(Ch) and te(C ′
h) are both on one of path1 and path2, or there do not

exist two paths to the root in Tl (with no tree edge in common) which pass through tree

edges corresponding to all columns in OldEntryList of row k + 1 plus Ch. Therefore Tl is

not in any PPH solution.

40



4.5 Correctness and Efficiency

For each row of S, the algorithm performs a fixed number of scans of the entries in that

row, and in parallel, a fixed number of walk-ups in the shadow tree. There are some steps in

the algorithm that require a traversal of the shadow tree (finding a maximal path from an

edge, for example), but such operations happen at most once in each procedure, and hence

at most once in the processing of each row. However, they can actually be implemented

efficiently without traversing the shadow tree (we omit the details). It takes constant time

to scan each entry in S, or to walk up one edge in the shadow tree. Each flip or merge is

associated with an edge in a walk, and each flip or merge is implemented in constant time.

Hence, the time for each row is O(m), and the total time bound is O(nm), where n and m

are the number of rows and the number of columns in S.

In the rest of this section we give proofs for lemmas and theorems that have not been

proven in the previous sections.

Lemma. 4.9. Assume that every PPH solution, restricted to the columns in the shadow

tree T (k), is contained in T (k). Suppose that neither flag1 nor flag2 are set in Procedure

DirectSecondPath. Then the roots of the classes of Ci and Cpc in T (k) have the same parents.

Proof. The lemma is trivially true if te(Ci) and TEpc are in the same class. Otherwise, they

are in different classes, and since Procedure DirectSecondPath was called, edge TEp is the

first tree edge on the path from TEpc to the root on FirstPath (in Procedure FirstPath) and

the first tree edge on the path from te(Ci) to the root on SecondPath. The class of TEp,

call it X, is the parent class of both the classes of Ci and Cpc. root1 and root2 are the class

roots of class Ci. rootpc1 and rootpc2 are the class roots of class Cpc. It is clear the TEp is

the parent of both root1 and rootpc1. Now suppose that root2 and rootpc2 do not have the

same parent edge.

Suppose that one of the paths from root2 and rootpc2, say from root2, to the root contains

a tree edge TE that is not on the path from rootpc2 to the root in T (k). If col(TE) is not in

CheckList, then flag1 should have been set, and if col(TE) is in CheckList, then flag2 should

41



have been set. But neither flag was set, so if either path contains a tree edge, then the two

paths must intersect and any tree edge on one of the paths must be in CheckList and must

be above the point of intersection. It follows that both paths contain only shadow edges (or

the path(s) contain no edges) below their point of intersection.

The two paths must intersect at or before the root of the shadow tree. If the two paths

have common edge(s), let E be the first common edge on the two paths from root2 and

rootpc2 to the root. Otherwise, let E denote the root of the shadow tree. We claim that

the column number of every (shadow) edge on the paths from root2 and rootpc2 to E is in

OldEntryList. That is, for any edge E ′′ on those paths, col(E ′′) has value 2 in row k + 1

(and certainly it has value 2 in some row before k + 1 since E ′′ is in T (k)). We prove this

explicitly for root2; the proof for rootpc2 is symmetric. Let SE ′ be the first (shadow) edge

on the path from root2, and assume SE ′ is not E since otherwise there are no edges from

root2 before E, and the claim is is vacuously true.

We now prove that col(SE ′) is in OldEntryList. Let Er2 denote any edge in the class

of Ci whose parent is SE ′. The simplest such case is that the H connector of Er2 is root2,

and root2 links to the T connector of SE ′. However, this need not be the case, by the

definition of “parent”, and Er2 could be connected to the T connector of SE ′ via a chain of

H connectors. Let E ′
r2 = te(Er2) if Er2 is a shadow edge, and let E ′

r2 = se(Er2) if Er2 is a

tree edge. By Property 5 of Theorem 2.2 (a simple case analysis based on whether E ′
r2 is a

tree or a shadow edge) te(SE ′) is on the path from E ′
r2 to the root. Edge te(Ci) is in the

same class as Er2 and the two edges have different roots in that class, so by Property 1 of

Theorem 2.2, te(Ci) and E ′
r2 are in the same class and have the same class root. So te(SE ′))

is on the path from te(Ci) to the root (and from TEp to the root), at the point when

Procedure DirectSecondPath is called. Hence te(SE ′) must be a tree edge on FirstPath, and

so col(SE ′) must be in OldEntryList.

Consider the path from SE ′ towards E, and recall that all the edges on that path before

E are shadow edges. By Property 1 of Theorem 2.2, SE ′ and te(SE ′) are not together on

42



any path to the root. Moreover, by repeatedly using Property 5 of Theorem 2.2, all of the

tree edges corresponding to shadow edges on the path from SE ′ to E are on a single path,

and te(SE ′) is the lowest of those tree edges. Edge SE ′ is in class X or in a class that is

an ancestor of X, so by Property 1 of Theorem 2.2, te(SE ′) is also in X or above. Since

Procedure SecondPath works bottom-up in the shadow tree, Procedure SecondPath has not

flipped class X or any class that is an ancestor of class X, and no edge in those classes is on

SecondPath. Similarly, since edge TEp is on FirstPath, when Procedure DirectSecondPath

is called, the entire path from root1 is on FirstPath. It follows that te(SE ′) cannot be on

SecondPath. Since col(SE ′) is in OldEntryList te(SE ′) must be on FirstPath, and the entire

path from te(SE ′) must be on FirstPath. Therefore the column number of every tree edge

on that path is in OldEntryList. This proves the claim that the columns numbers of all the

shadow edges on the path from SE ′ to E must be in OldEntryList, and their corresponding

tree edges must be on FirstPath.

Next, under the continuing assumption that E is not both p(root2) and p(rootpc2), there

are two cases to consider: either E is none of p(root2) and p(rootpc2), or it is one of them.

In the first case, E is the parent of two distinct shadow edges whose column numbers are in

OldEntryList. We call those two shadow edges SEii and SEjj, and assume that col(SEjj) <

col(SEii). Let TEii denote te(SEii), and let TEjj denote te(SEjj). As proven above, TEii

and TEjj are on FirstPath, i.e. the path from root1 to the root. Since col(SEjj) < col(SEii),

by Property 3 of Theorem 2.2 TEjj must be on the path from TEii to the root in T (k). Since

SEii and SEjj have the same parent E in the shadow tree, by Property 6 of Theorem 2.2

those two edges were added to the shadow tree during the processing of different rows.

Suppose SEii and TEii were added to the shadow tree during the processing of row k′,

k′ < k + 1. Since TEjj is on the path from TEii to the root, by Property 3 of Theorem 2.2

SEjj and TEjj must have been added to the shadow tree before SEii does, and so are in

T (k′ − 1).

Procedure NewEntries for row k′ finds two edges TEk′1 and Ek′2 which are two ends of

43



an extended hyperpath for row k′ (see Sec. 4.3 for the definition of an extended hyperpath).

By Property 7 of Theorem 2.2 the union of the edges on the paths from SEii and TEii to

the root of the shadow tree is invariant. Since E and TEjj are on paths from SEii and TEii

to the root in the shadow tree before doing Flip/Merge Case 3, both E and TEjj are on the

hyperpath from TEk′1 to Ek′2 in Procedure NewEntries for row k′. Therefore col(TEjj) is

in OldEntryList for row k′.

By Property 7 of Theorem 2.2 the set {p(TEii), p(SEii)} is invariant. Consider the parent

of TEii before Flip/Merge Case 3, and call it Eip. Then the set {p(TEii), p(SEii)} is {Eip,

E}. By Property 7 of Theorem 2.2 Eip and E are the TEk′1 and Ek′2 in Procedure NewEntries

for row k′. Eip is an edge on the path from TEii to TEjj. So col(Eip) ≥ col(TEjj) > col(E).

Therefore Eip is the TEk′1, and E is the Ek′2 in Procedure NewEntries for row k′, which

indicates that E is the edge that is the lower end of the maximal path found in Procedure

NewEntries for row k′. By Property 7 of Theorem 2.2 the set {p(TEjj), p(SEjj)} is invariant.

Since TEjj is on the hyperpath from TEk′1 to Ek′2 in Procedure NewEntries for row k′, E

is the parent of SEjj at that time. Thus SEjj instead of E should have been found as the

lower end of the maximal path in Procedure NewEntries for row k′. That is a contradiction.

In the second case E is either p(root2) or p(rootpc2). Assume E is p(root2). (The proof

for E = p(rootpc2) is symmetric.) Let Er2 denote any edge (in the class of Ci) whose parent

is E. Let E ′
r2 = te(Er2) if Er2 is a shadow edge, and let E ′

r2 = se(Er2) if Er2 is a tree edge.

E is the parent of Er2 and a shadow edges on the path from rootpc2 to the root, say SEjj,

whose column numbers is in OldEntryList. Let TEjj denote te(SEjj). As proven above

TEjj is on FirstPath, i.e. the path from root1 to the root. So TEjj is on the path from E ′
r2

to the root. Therefore col(SEjj) < col(Er2). (The rest of the proof is similar to the proof

for the first case by considering Er2 as the SEii above.)

Since Er2 and SEjj have the same parent E in the shadow tree, by Property 6 of The-

orem 2.2 those two edges were added to the shadow tree during the processing of different

rows. Suppose Er2 and E ′
r2 were added to the shadow tree during the processing of row k′,

44



k′ < k + 1. Since TEjj is on the path from E ′
r2 to the root before performing Flip/Merge

Case 3, we can deduce that SEjj and TEjj are in T (k′ − 1). Procedure NewEntries for row

k′ finds two edges TEk′1 and Ek′2 which are two ends of an extended hyperpath for row k′.

By Property 7 of Theorem 2.2, the set {p(Er2), p(E ′
r2)} is invariant. Consider the parent of

E ′
r2 before Flip/Merge Case 3, and call it Eip. Then the set {p(Er2), p(E ′

r2)} is {Eip, E}.
By Property 7 of Theorem 2.2, Eip and E are the TEk′1 and Ek′2 in Procedure NewEntries

for row k′. Eip is an edge on the path from E ′
r2 to TEjj. So col(Eip) ≥ col(TEjj) > col(E).

Therefore Eip is the TEk′1, and E is the Ek′2 in Procedure NewEntries for row k′, which

indicates that E is the edge that is the lower end of the maximal path found in Procedure

NewEntries for row k′. By Property 7 of Theorem 2.2, the set {p(TEjj), p(SEjj)} is invari-

ant. Since TEjj is on the hyperpath from TEk′1 to Ek′2 in Procedure NewEntries for row k′,

E is the parent of SEjj at that time. Thus SEjj instead of E should have been found as the

lower end of the maximal path in Procedure NewEntries for row k′. That is a contradiction.

We find a contradiction if the roots of the classes of Ci and Cpc in T (k) do not have the

same parents. The proof is complete.

Lemma. 4.11. Assume that every PPH solution, restricted to the columns in the shadow

tree T (k), is contained in T (k). Then the maximal path found in Procedure FixTree for row

k + 1 is unique.

Proof. We prove the lemma by contradiction. Suppose there are two maximal paths from

TEt toward leaves in TSP (k + 1) that consist of shadow edges whose column numbers are in

OldEntryList. We call these two paths path1 and path2. path1 and path2 must intersect at

or before TEt. If the two paths have common edge(s) before TEt, let E be the first common

edge. Otherwise, let E be the same as TEt. There are two shadow edges below E whose

column numbers are in OldEntryList on path1 and path2. We name the two shadow edges

as SEii and SEjj, and assume that col(SEjj) < col(SEii). Let TEii denote te(SEii), and

let TEjj denote te(SEjj). In TSP (k + 1) there is a hyperpath that passes through tree edges

corresponding to all columns in OldEntryList of row k + 1. The hyperpath consists of two

45



paths to the root that contain no tree edges in common. In TSP (k+1) every tree edge whose

column number is in OldEntryList is either on the path from TE1 to the root, or on the

path from TEt to the root. Since col(SEii) and col(SEjj) are in OldEntryList, and TEii and

TEjj are not on the path from TEt to the root, they must be on the path from TE1 to the

root. Since col(SEjj) < col(SEii), by Property 3 of Theorem 2.2 TEjj must be on the path

from TEii to the root in TSP (k + 1). Since SEii and SEjj have the same parent E in the

shadow tree, by Property 6 of Theorem 2.2 those two edges were added to the shadow tree

during the processing of different rows. Suppose SEii and TEii were added to the shadow

tree during the processing of row k′, k′ < k + 1. Since TEjj is on the path from TEii to the

root, by Property 3 of Theorem 2.2, SEjj and TEjj must have been added before SEii, and

so are in T (k′ − 1).

Procedure NewEntries for row k′ finds two edges TEk′1 and Ek′2 which are two ends of

the extended hyperpath for row k′. Since E and TEjj are on paths from SEii and TEii

to the root in TSP (k + 1), by Property 7 of Theorem 2.2 both E and TEjj are on the

extended hyperpath from TEk′1 to Ek′2 in Procedure NewEntries for row k′. By Property 7

of Theorem 2.2, the set {p(TEii), p(SEii)} is invariant. Consider the parent of TEii in

TSP (k + 1), and call it Eip. Then the set {p(TEii), p(SEii)} is {Eip, E}. By Property 7 of

Theorem 2.2, Eip and E are the TEk′1 and Ek′2 in Procedure NewEntries for row k′. Eip is

an edge on the path from TEii to TEjj. So col(Eip) ≥ col(TEjj) > col(E). Therefore Eip is

the TEk′1, and E is the Ek′2 in Procedure NewEntries for row k′. So E is the lower end of the

maximal path found in Procedure NewEntries for row k′. By Property 7 of Theorem 2.2, the

set {p(TEjj), p(SEjj)} is invariant. Since TEjj is on the extended hyperpath from TEk′1 to

Ek′2 in Procedure NewEntries for row k′, E is the parent of SEjj at that time. Thus SEjj

instead of E should have been found as the lower end of the maximal path in Procedure

NewEntries for row k′. That is a contradiction. We find a contradiction if the maximal path

found in Procedure FixTree for row k + 1 is not unique. The proof is complete.

Lemma. 4.13. Assume that every PPH solution, restricted to the columns in the shadow

46



tree T (k), is contained in T (k). Suppose the algorithm merges the class of TE1 with its

attaching class in Procedure FixTree for row k + 1. Then any tree contained in T (k) that is

lost by doing the class merge is not in any solution to the PPH problem.

Proof. Let TE1, SE1, TEt, and E2 be the same as in Procedure FixTree. Let r1 and r2 be

the class roots of TE1 and SE1 respectively. Let j1 and j2 be the join points which r1 and

r2 link to. The paths from SE1 and E2 to the root must intersect at or before the root of

the shadow tree. Let E be the first common edge or the root if they intersect at the root.

Suppose that the algorithm merges the class of TE1 with its attaching class in Procedure

FixTree when processing row k +1. This will only happen when TE1 and E2 are in different

classes, E2 is not the parent of r2, and col(the class root of TE1) > col(the class root of TEt).

The last condition indicates that a class flipping of the class of TE1 does not affect the class

of TEt, and hence does not change the position of TEt in the shadow tree (Lemma 4.12).

Next we do a case analysis. We prove that in all three cases there does not exist a hyperpath

for row k + 1 if we flip the class of TE1, and hence any tree contained in T (k) that is lost

by doing the class merge is not in any solution to the PPH problem.

In the first case, TEt is not on the path from SE1 to the root. By Property 4 of

Theorem 2.2, at least one of j1 and j2 is the T connector of a tree edge. We next prove that

there does not exist a hyperpath for row k + 1 if we flip the class of TE1. The proof has

three subcases. In subcase 1, j2 is not the T connector of a tree edge, and hence j1 must be

the T connector of a tree edge, say TEj1. Since TE1 is on FirstPath, col(TEj1) must be in

OldEntryList, and TEj1 is on FirstPath too. If we flip the class of TE1, TE1 has to be on

SecondPath in order for a hyperpath for row k + 1 to exist. TEt is on SecondPath and not

on the path from SE1 to the root before flipping. TEt is not on the path from TE1 to the

root after flipping, because flipping the class of TE1 does not affect the class of TEt. We also

know that TE1 cannot be on the path from TEt to the root by Property 3 of Theorem 2.2.

Therefore there does not exist a hyperpath for row k + 1 if we flip the class of TE1 in this

subcase. In subcase 2, j2 is the T connector of a tree edge, say TEj2, whose column number

47



is not in OldEntryList. If we flip the class of TE1, TEj2 is on the path from TE1 to the

root, which causes no hyperpath for row k + 1 to exist. In subcase 3, j2 is the T connector

of a tree edge, say TEj2, whose column number is in OldEntryList. TEj2 is on SecondPath,

and hence on the path from TEt to the root. If we flip the class of TE1, then TEj2 is on the

path from both TE1 and TEt to the root. As proven above TE1 and TEt cannot be on the

same path to the root. So no hyperpath for row k + 1 exists.

In the second case, TEt is on the path from SE1 to the root, and E is the parent of r2

before merging the class of TE1 with its attaching class. If TEt is the same as E2, then E

must be the same as E2, which is contradictory to that E2 is not the parent of r2. So E2

must be a shadow edge whose column number is in OldEntryList, and be different from E.

We know that if there are any edges on the path from E2 to TEt, these edges are shadow

edges whose column numbers are in OldEntryList. Since TEt is on the path from SE1 to

the root, TEt must be on the path from E to the root. Therefore every edge on the path

from E2 to E, including E2, is a shadow edge whose column number is in OldEntryList. The

tree edge of each such shadow edge must be on FirstPath, and hence on the path from r1 to

the root. By the same proof for the first case of Lemma 4.9 (paragraphs 7, 8, and 9 in the

proof), when the edge containing r2, say Er2, was added to the shadow tree, E2 became the

parent of Er2. That is a contradiction. Thus this case cannot really happen assuming that

every PPH solution, restricted to the columns in T (k), is contained in T (k).

In the third case, TEt is on the path from SE1 to the root, and E is not the parent

of r2 before merging the class of TE1 with its attaching class. Next we prove that there is

at least one tree edge on the path from Er2 to E before the class merge. The proof is by

contradiction. Suppose every edge on the path from Er2 to E before the class merge is a

shadow edge. Consider the shadow edge below E on the path from Er2 to E, say SE ′. E is

the parent of SE ′. By Lemma 4.11 and its proof col(SE ′) cannot be in OldEntryList. Next

consider the shadow edge below SE ′ on the path from Er2 to E, say SE ′′. SE ′ is the parent

of SE ′′. If col(SE ′′) is in OldEntryList, then by Property 5 of Theorem 2.2 te(SE ′) is on the

48



path from te(SE ′′) to the root, which is contradictory to col(SE ′) not being in OldEntryList.

So col(SE ′′) is not in OldEntryList. By the same reasoning the parent of r2, p(r2), must

be a shadow edge whose column number is not in OldEntryList. p(r2) is the parent of Er2.

Let E ′
r2 = te(Er2) if Er2 is a shadow edge, or let E ′

r2 = se(Er2) if Er2 is a tree edge. By

Property 5 of Theorem 2.2 tree edge te(p(r2)) is on the path from E ′
r2 to the root. E ′

r2 and

TE1 are in the same class and have the same class root. So te(p(r2)) is also on the path from

TE1 to the root, which is contradictory to col(p(r2)) not in OldEntryList. Therefore, there

is at least one tree edge, say TE, on the path from Er2 to E. Since TEt is the tree edge on

SecondPath that has the largest column number, col(TE) is not in OldEntryList.

Next we prove that no hyperpath exists for row k + 1 if we flip the class of TE1 in the

third case. The proof has two subcases. In subcase 1, j2 is not the T connector of a tree edge,

and hence j1 must be the T connector of a tree edge, say TEj1. Since TE1 is on FirstPath,

col(TEj1) must be in OldEntryList, and TEj1 is on FirstPath. Since TE is on the path from

Er2 to the root, and hence from SE1 to the root, by Property 7 of Theorem 2.2, TE must

be on the path from either SE1 or TE1 to the root at any stage in the algorithm. Since TE

and TE1 are not in the same class before the class merge, TE must be on the path from

either j1 or j2 to the root at any stage in the algorithm. If we flip the class of TE1, j2 is

now on the path from TE1 to the root. As a consequence TE must be on the path from

either TE1 or TEj1 to the root. But in neither case can a hyperpath exist for row k + 1, as

col(TE) is not in OldEntryList. In subcase 2, j2 is the T connector of a tree edge, say TEj2.

Since TEt is the tree edge on SecondPath that has the largest column number, col(TEj2) is

not in OldEntryList. If we flip the class of TE1, TEj2 is now on the path from TE1 to the

root, and hence no hyperpath for row k + 1 exists. The proof is complete.

Lemma 4.17. In every tree contained in TFT (k + 1), there are two paths to the root with

no edge in common that pass through edges corresponding to all columns in OldEntryList of

row k + 1.

Proof. Recall that at the end of Procedure FixTree for row k+1 there is an extended hyperpath

49



in TFT (k + 1), whose two ends are edges TE1 and E2. The extended hyperpath consists of

two directed paths to the root of TFT (k + 1) (with no tree edge in common) that contain all

the tree edges in TFT (k + 1) corresponding to columns in OldEntryList of row k + 1. Those

two paths may also contain some shadow edges. TE1 and E2 are either in the same class, or

E2 is the parent of the class root of SE1.

If TE1 and E2 are in the same class, then the extended hyperpath in TFT (k + 1) passes

through the class roots and the join points of classes of all edges on the extended hyperpath.

Let X be a class of an edge on the extended hyperpath. Let r1 and r2 be the class roots

of X, and let j1 and j2 be the join points of X which r1 and r2 link to. Assume that r1

and j1 are on the path from TE1 to the root in TFT (k + 1). We can divide the extended

hyperpath into four paths. Let path1 be the path from TE1 to r1, path2 be the path from

j1 to the root, path3 be the path from j2 to the root, and path4 be the path from E2 to r2

in TFT (k + 1). Tree edges on path1, path2, path3 and path4 correspond to all columns in

OldEntryList of row k + 1. Flipping class X lets r1 link to j2 and r2 link to j1. It is clear

that there is an extended hyperpath from TE1 to E2 consisting of path1, path3, path2, and

path4 after flipping class X. Therefore, there is an extended hyperpath in TFT (k + 1) after

flipping any class X of an edge on the path from TE1 to the root. By the same reasoning

there exists an extended hyperpath in TFT (k+1) in every way of class flipping in TFT (k+1).

It follows that the lemma holds.

If E2 is the parent of the class root of SE1, the proof is similar. Let r′1 and r′2 be the class

roots of TE1 and SE1. Let j′1 and j′2 be join points which r′1 and r′2 link to. We can divide

the extended hyperpath into three paths. Let path′1 be the path from j′1 to the root, path′2

be the path from j′2 to the root, and path′3 be the path from TE1 to r′1. When flipping classes

of edges on path′1 or path′2 in TFT (k + 1), the proof is the same as above. When flipping the

class of TE1, it is the same as letting r′1 link to j′2, and letting r′2 link to j′1. Now E2 becomes

the parent of r′1 after the flipping. It is clear that there is an extended hyperpath consisting

of path′2, path′1, and path′3 in TFT (k + 1) after flipping the class of TE1. Therefore there

50



exists an extended hyperpath in TFT (k + 1) in every way of class flipping in TFT (k + 1). It

follows that the lemma holds.

Lemma 4.18. In every tree contained in T (k + 1), there are two paths to the root with no

edge in common that pass through edges corresponding to all columns that have a 2 entry in

row k + 1.

Proof. At the end of Procedure NewEntries for row k +1 there are two directed paths to the

root in T (k + 1) (with no tree edge in common) that pass through tree edges corresponding

to all columns that have a 2 entry in row k + 1. Let C be the largest column number in

NewEntryList of row k+1. Then te(C) and se(C) are the two ends of those two paths. Since

te(C) and se(C) are in the same class, the two paths from te(C) and se(C) to the root pass

through the class roots and the join points of classes of all edges on the paths from te(C)

and se(C) to the root. By the proof of Lemma 4.17 there exist two directed paths to the

root in T (k + 1) (with no tree edge in common) that pass through tree edges corresponding

to all columns that have a 2 entry in row k + 1 in every way of class flipping in T (k + 1). It

follows that the lemma holds.

Theorem. 2.1. Every PPH solution is contained in the final shadow tree produced by the

algorithm. Conversely, every tree contained in the final shadow tree is a distinct PPH solu-

tion.

Proof. The theorem has two parts. We prove the second part first.

All new edges corresponding to new entries in row i + 1 are attached to leaves of T (i).

Any tree contained in T (i + 1), restricted to the columns in T (i), is contained in T (i). By

Lemma 4.18, in every tree contained in T (i + 1), there are two paths to the root with no

edge in common that pass through edges corresponding to all columns that have a 2 entry

in row i + 1. Thus in every tree contained in the final shadow tree, there are two paths

for each row to the root with no edge in common that pass through edges corresponding

to all columns that have a 2 entry in that row. In addition, by Property 3 of Theorem 2.2

51



along any directed path towards the root in every tree contained in the final shadow tree,

the successive edges are labeled by columns with strictly increasing leaf counts. Therefore

every tree contained in the final shadow tree is a solution to the PPH problem. Since each

distinct choice of class flipping, followed by the required shadow edge and link contractions,

leads to a distinct tree, the second part of the theorem is proven.

Next we prove the first part of the theorem by induction.

We first prove that every PPH solution, restricted to the columns in the shadow tree

T (1), is contained in T (1). All 2 entries in the first row of S are new entries. Procedure

NewEntries runs the simplest case: create a path to the root that consists of tree edges

of columns that have 2 entries in this row, and create a path to the root that consists of

shadow edges of these columns. All links between edges are free links. In every PPH solution,

restricted to the columns in T (1), there must be two paths to the root that pass through

edges corresponding to all new entries in the first row. It is easy to verify that T (1) contains

all possible trees that satisfy this constraint. Therefore every PPH solution, restricted to the

columns in the shadow tree T (1), is contained in T (1).

Assume that every PPH solution, restricted to the columns in the shadow tree T (i),

is contained in T (i). To complete the induction we next prove that every PPH solution,

restricted to the columns in the shadow tree T (i + 1), is contained in T (i + 1).

Three operations that modify the shadow tree in the algorithm are class flipping, class

merging, and edge addition. Class flipping does not change the set of trees contained in

the shadow tree. By adding new edges and corresponding new classes to T (i), the number

of choices of class flipping increases, i.e. the number of trees contained in the shadow tree

increases. Every time a new tree edge and its corresponding shadow edge are added to

T (i), a new class is created, and hence the number of trees contained in the shadow tree is

doubled. The increase of the number of trees contained in the shadow tree by class addition

is larger than or equal to the maximum possible increase of the number of PPH solutions,

restricted to the columns in T (i), to the number of solutions restricted to the columns in

52



T (i + 1). Thus, all possible solutions have been included. Class merging removes some trees

from the set of trees contained in the shadow tree. However by Lemmas 4.2, 4.8, 4.10, 4.13,

4.14, and 4.16 any tree contained in the shadow tree that is lost by doing the merge-class

in the algorithm for row i + 1 is not in any solution to the PPH problem. Thus no PPH

solution, restricted to the columns in the shadow tree T (i + 1), is lost from T (i + 1) by class

merging. Based on the analysis above we can conclude that every PPH solution, restricted

to the columns in the shadow tree T (i + 1), is contained in T (i + 1). This completes the

induction.

53



5 General PPH Problem

Now we solve the general PPH problem for S with entries of value 0, 1, and 2. We assume

that the rows of S are arranged by the position of rightmost 1 entry in each row decreasingly,

with the first row containing the rightmost 1 entry in S. It is easy to prove that if there

exists PPH solution(s) for S, then entries of value 1 are to the left of entries of value 2 in

each row of S.

To solve the general PPH problem, we need to first build an “initial perfect phylogeny”

Ti for S. The initial perfect phylogeny is described in detail in Gusfield (2002), and is built

as follows. Let C1 (respectively R1) denotes the set of columns (respectively rows) in S that

each contain at least one entry of value 1. We build Ti by first creating, for each row i in

R1, an ordered path to the root consisting of edges labeled by columns that have entries of

value 1 in row i, with the edge of the smallest column label attaching to the root. We can

then simply merge the identical initial segments of all these paths to create Ti. As shown in

Gusfield (2002), Ti can be built in linear time, and must be in every PPH solution for S.

We build an “initial shadow tree” STi based on Ti by changing each edge in Ti into a

tree edge in STi, creating an H connector and a T connector for each tree edge in STi, and

creating a fixed link pointing from the H connector of each tree edge, corresponding to an

edge E in Ti, to the T connector of the tree edge whose corresponding edge in Ti is the

parent of E. There are no shadow edges in STi, and the tree edges in STi form one class.

5.1 Algorithm with Entries of Value 1

The underlying idea of the algorithm is that in any PPH solution for S all the edges labeled

with columns that have entries of value 2 in row k + 1 must form two paths toward an edge

in the initial tree. From that edge, there is a path to the root consisting of edges labeled

with columns that have entries of value 1 in row k + 1.

The algorithm for the PPH problem with entries of value 1, denoted as the algorithm

with 1 entries, is very similar to the algorithm in Sec. 4. There are three differences. First,

54



the algorithm with 1 entries builds and uses an initial shadow tree STi. Second, we now call

an entry Ci an “old 2 entry Ci in row k+1” if there is at least one entry of either value 2 or 1

at Ci in rows 1 through k. The third difference is the most important one. In the algorithm

with 1 entries, whenever we use the term “root” during the processing of row k +1, we mean

the root for row k+1. The root for row k +1 is defined as the T connector of the tree edge in

the initial shadow tree STi whose column number has the rightmost 1 entry in row k + 1. If

there is no entry with value 1 in row k + 1, then the root for row k + 1 is defined as the root

of STi. Every new edge attached to the root for row k + 1 becomes part of the same class

as the root of STi. This is a simple generalization of the earlier algorithm, since earlier, the

root for each row is the root of the whole shadow tree.

5.2 Remaining Issues

Identical Columns: We use an example to demonstrate how to deal with identical columns.

Suppose that after arranging columns of the matrix S by decreasing leaf count, columns 5,

6, 7 are identical. We first remove columns 6, 7 from S, and obtain a new matrix S ′ with

distinct columns. Note that we use the same column indices of S to label columns in S ′,

i.e., column 5 of S ′ has a column label 5, but column 6 of S ′ has a column label 8. Then we

solve the PPH problem on S ′ by using our previous algorithm. Once a final shadow tree T ′

for S ′ is constructed, we can get a final shadow tree T for S according to two cases.

In the first case the class of column 5 in T ′ consists of just edge 5 and 5. We then split

tree edge 5 into three tree edges 5, 6, 7, and split shadow edge 5 into 5, 6, 7 in T . The result

is equivalent to saying that 7H free links to 6T, 6H free links to 5T, and the links that link

to 5T in T ′ now link to 7T in T . The same idea holds for shadow edges. In the second case,

the class of column 5 in T ′ consists of edges other than 5 and 5. Then we want 7H to link to

6T with a fixed link, and 6H to fix link to 5T, and the links that link to 5T in T ′ now link

to 7T in T . The same idea holds for shadow edges.

Unknown Ancestral Sequence: As mentioned in Gusfield (2002), the PPH problem

55



with unknown ancestral sequence can be solved by using the majority sequence as the root

sequence, and then applying our algorithm. See Gusfield (2002) for more details.

56



6 Results

We have implemented our algorithm for the general PPH problem in C, and compared it

with existing programs for the PPH problem. DPPH (Bafna et al., 2003) was previously

established as the fastest of the existing programs (Chung and Gusfield, 2003b). Some

representative examples are shown in Table 1. In the case of m = 2000 and n = 1000, our

program is about 250 times faster than DPPH, and the linear behavior of its running time

is clear. This result is an average of 10 test cases. As in Chung and Gusfield (2003b), our

test data is generated by the program ms (Hudson, 2002). That program is the widely-

used standard for generating sequences that reflect the coalescent model of SNP sequence

evolution.The cases of 50 and 100 sites and 1000 individuals are included because they

reflect the sizes of subproblems that are of current interest in larger genomic scans. In those

applications, there may be a huge number of such subproblems that will be examined. Our

program can be downloaded at http://wwwcsif.cs.ucdavis.edu/˜gusfield/lpph/.
Table 1

is here.

Acknowledgments

The authors thank Chuck Langley for helpful discussions. This research is partially supported

by grant EIA-0220154 from the National Science Foundation.

57



References

Bafna, V., Gusfield, D., Hannenhalli, S., and Yooseph, S. 2004. A note on efficient compu-

tation of haplotypes via perfect phylogeny. J. Comp. Bio., 11(5):858–866.

Bafna, V., Gusfield, D., Lancia, G., and Yooseph, S. 2003. Haplotyping as perfect phylogeny:

A direct approach. J. Computational Biology, 10:323–340.

Barzuza, T., Beckmann, J.S., Shamir, R., and Pe’er, I. 2004. Computational Problems in

Perfect Phylogeny Haplotyping: Xor-Genotypes and Tag SNP’s. In Proc. of CPM 2004.

Bixby, R.E., and Wagner, D.K. 1988. An almost linear-time algorithm for graph realization.

Mathematics of Operations Research, 13:99–123.

Bonizzoni, P., Vedova, G.D., Dondi, R., and Li, J. 2003. The haplotyping problem: Models

and solutions. J. Computer Science and Technology, 18:675–688.

Chung, R.H., and Gusfield, D. 2003a. Perfect phylogeny haplotyper: Haplotye inferral using

a tree model. Bioinformatics, 19(6):780–781.

Chung, R.H., and Gusfield, D. 2003b. Empirical Exploration of Perfect Phylogeny Haplo-

typing and Haplotypers. In Proc. the 9’th International Conference on Computing and

Combinatorics, volume 2697 of LNCS, pages 5–9.

Damaschke, P. 2003. Fast perfect phylogeny haplotype inference. 14th Symp. on Fundamen-

tals of Comp. Theory FCT’2003, LNCS 2751, 183–194.

Damaschke, P. 2004. Incremental haplotype inference, phylogeny and almost bipartite

graphs. 2nd RECOMB Satellite Workshop on Computational Methods for SNPs and Hap-

lotypes, pre-proceedings, 1–11, 2004.

Eskin, E., Halperin, E., and Karp, R.M. 2003. Efficient Reconstruction of Haplotype Struc-

ture via Perfect Phylogeny. J. Bioinformatics and Computational Biology, 1(1):1–20.

58



Eskin, E., Halperin, E., and Sharan, R. 2004. Optimally Phasing Long Genomic Regions

using Local Haplotype Predictions. In Proc. of the Second RECOMB Satellite Workshop

on Computational Methods for SNPs and Haplotypes, Pittsburg, USA, Feburary 20–21.

Gramm, J., Nierhoff, T., Tantau, T., and Sharan, R. 2004a. On the Complexity of Hap-

lotyping Via Perfect Phylogeny. Presented at the Second RECOMB Satellite Workshop

on Computational Methods for SNPs and Haplotypes, February 20–21, Pittsburgh, USA.

Proceedings to appear in LNBI, Springer.

Gramm, J., Nierhoff, T., and Tantau, T. 2004b. Perfect Path Phylogeny Haplotyping with

Missing Data is Fixed-Parameter Tractable. Accepted for the First International Work-

shop on Parametrized and Exact Computation (IWPEC), Bergen, Norway, September

2004. Proceedings to appear in LNCS, Springer.

Gusfield, D. 2002. Haplotyping as perfect phylogeny: Conceptual framework and efficient

solutions (extended abstract). In Proc. of RECOMB 2002, pages 166–175.

Gusfield, D. 2004. An overview of combinatorial methods for haplotype inference. In S. Istrail,

M. Waterman, and A. Clark, editors, Computational Methods for SNPs and Haplotype

Inference, volume 2983 of LNCS, pages 9–25. Springer.

Halldórsson, B.V., Bafna, V., Edwards, N., Lippert, R., Yooseph, S., and Istrail, S. 2003a.

A survey of computational methods for determining haplotypes. In Proc. of the First RE-

COMB Satellite on Computational Methods for SNPs and Haplotype Inference, Springer

LNBI 2983, pages 26–47.

Halldórsson, B.V., Bafna, V., Edwards, N., Lippert, R., Yooseph, S., and Istrail, S. 2003b.

Combinatorial problems arising in SNP and haplotype analysis. In C. Calude, M. Dinneen,

and V. Vajnovski, editors, Discrete Mathematics and Theoretical Computer Science. Proc.

of DMTCS, volume 2731 of Springer LNCS.

59



Halperin, E., and Eskin, E. 2004. Haplotype reconstruction from genotype data using Im-

perfect Phylogeny. Bioinformatics, 20:1842–1849.

Halperin, E., and Karp, R.M. 2004. Perfect Phylogeny and Haplotype Assignment. In Proc.

of RECOMB 2004, pages 10–19.

Helmuth, L. 2001. Genome research: Map of the human genome 3.0. Science, 293(5530):583–

585.

Hudson, R. 1990. Gene genealogies and the coalescent process. Oxford Survey of Evolutionary

Biology, 7:1–44.

Hudson, R. 2002. Generating samples under the Wright-Fisher neutral model of genetic

variation. Bioinformatics, 18(2):337-338.

International HapMap Consortium. 2003. The HapMap Project. Nature, 426:789–796.

Kimmel, G., and Shamir, R. 2004. The Incomplete Perfect Phylogeny Haplotype Problem.

Presented at the Second RECOMB Satellite Workshop on Computational Methods for

SNPs and Haplotypes, February 20–21, 2004, Pittsburgh, USA. To appear in J. Bioinfor-

matics and Computational Biology.

Tavare, S. 1995. Calibrating the clock: Using stochastic processes to measure the rate

of evolution. In E. Lander and M. Waterman, editors, Calculating the Secretes of Life.

National Academy Press.

Wiuf, C. 2004. Inference on Recombination and Block Structure Using Unphased Data.

Genetics, 166(1):537–545.

60



Figure 1: Edge 1 is the parent of edges 2 and 5. Each pair (i, i) forms a class. Class 2
attaches to its parent class 1 by linking its class root 2H to join point 1T, and 2H to join
point 1T. As a continuing example, edges 4 and 4 will be added later.

61



Figure 2: The result of flipping the class of edges 5 and 5, and flipping the class of edges 6
and 6 in Fig. 1, followed by merging these two classes. Free links are drawn as dotted lines
with arrows, while fixed links as solid lines with arrows.

62



Figure 3: The result of flipping the class of edges 2 and 2 in Fig. 2, followed by merging it
with the class of edges 5 and 5. The class roots of the merged class are 2H and 2H.

63



Figure 4: The final shadow tree after processing the given genotype matrix. It’s an implicit
representation of all PPH solutions for S.

64



Figure 5: The shadow tree after processing the first two rows of this genotype matrix is
shown in Fig. 1. The shadow tree at the end of Procedure FirstPath for row 3 is shown in
Fig. 2. Lists shown are for row 3.

65



Figure 6: Suppose this figure shows the shadow tree T (k) for some matrix S. If the Old-
EntryList of row k + 1 contains column indices 1, 3, 4, and 5, then in Procedure DirectSec-
ondPath for row k + 1 the FirstPath consists of tree edges 5, 3, and 1, TEp is edge 3, TEpc

is edge 5, Ci = 4, and the algorithm determines that TEp must be on the path from TEpc

to the root in any PPH solution (only flag2 will be set in Procedure DirectSecondPath in
detail). If the OldEntryList of row k + 1 contains column indices 1, 2, 3, 4, and 5, then in
Procedure DirectSecondPath for row k + 1 the FirstPath consists of tree edges 5, 3, and 1,
TEp is edge 3, TEpc is edge 5, Ci = 4, and the algorithm determines that TEp must be on
the path from te(Ci) to the root in any PPH solution (only flag1 will be set in Procedure
DirectSecondPath in detail).

66



Figure 7: The shadow tree at the end of Procedure FixTree for row 3 of the matrix in Fig. 5.
In Procedure FixTree for this example, TE1 = 6, TEt = E2 = 3, the class of edge 3 is merged
with the class of edge 2. The class roots of the merged class are 2H and 2H.

67



Figure 8: The shadow tree at the end of Procedure NewEntries for row 3 of the matrix in
Fig. 5. In Procedure NewEntries for this example, TE1 = 6, TEt = E2 = 3, Ch = 4, Ct = 7,
TE ′

1 = 3, TE ′
t = 1, E ′

2 = 3. Note that edge 7 links to edge 6 instead of edge 4.

68



Average Running Time
Sites (m) Individuals (n) number of test cases DPPH Our program

5 1000 20 0.01 0.006
50 1000 20 0.20 0.07
100 1000 20 1.06 0.11
500 250 30 5.72 0.13
1000 500 30 45.85 0.48
2000 1000 10 467.18 1.89

Table 1: Comparison of the running time measured in seconds on a P4 3GHz machine.

69


