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Abstract. We study the three state perfect phylogeny problem and
show that there is a three state perfect phylogeny for a set of input
sequences if and only if there is a perfect phylogeny for every subset
of three characters. In establishing these results, we prove fundamental
structural features of the perfect phylogeny problem on three state char-
acters and completely characterize the obstruction sets that must occur
in input sequences that do not have a perfect phylogeny. We also give a
proof for a stated lower bound involved in the conjectured generalization
of our main result to any number of states.

1 Introduction

One of the fundamental problems in biology is the construction of phylogenies, or
evolutionary trees, to describe ancestral relationships between a set of observed
taxa. Each taxon is represented by a sequence and the evolutionary tree provides
an explanation of branching patterns of mutation events transforming one se-
quence into another. There have been many elegant theoretical and algorithmic
results on the problem of reconstructing a plausible history of mutations that
generate a given set of observed sequences and to determine the minimum num-
ber of such events needed to explain the sequences. A widely used assumption in
phylogeny construction is based on the infinite sites model, in which each state
arises exactly once in the entire evolutionary history. In this case, the underlying
phylogeny is called perfect.

The construction of perfect phylogenies has been extensively studied and in
the case of binary sequences, the well-known Splits Equivalence Theorem (also
known as the four gamete condition) gives a necessary and sufficient condition
for the existence of a perfect phylogeny.

Theorem 1 (Splits Equivalence Theorem, Four Gamete Condition
[11,15,27]). A perfect phylogeny exists for binary input sequences if and only if
no pair of characters contains all four possible binary pairs 00, 01, 10, 11.

It follows from this theorem that for binary input, it is possible to either
construct a perfect phylogeny, or output a pair of characters containing all four
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gametes as an obstruction set witnessing the nonexistence of a perfect phylogeny.
This test is the building block for many theoretical results and practical algo-
rithms. Among the many applications of this theorem, Gusfield et al. [18,19]
and Huson et al. [24] apply the theorem to achieve decomposition theorems for
phylogenies, Gusfield, Hickerson, and Eddhu [21] Bafna and Bansal [1,2], and
Hudson and Kaplan [23] use it to obtain lower bounds for recombination events,
Gusfield et al. [17,20] use it to obtain algorithms for constructing networks
with constrained recombination, Sridhar et al. [5,32,33] and Satya et al. [29]
use it to achieve a faster near-perfect phylogeny reconstruction algorithm, Gus-
field [16] uses it to infer phase inference (with subsequent papers by Gusfield
et al. [3,4,9,18], Eskin, Halperin, and Karp [10,22], Satya and Mukherjee [28]
and Bonizzoni [7]), and Sridhar [31] et al. use it to obtain phylogenies from
genotypes.

This work focuses on extending results for the binary perfect phylogeny prob-
lem to the multiple state character case, addressing the following natural ques-
tions arising from the Splits Equivalence Theorem. Given a set of sequences on
r states (r ≥ 3), is there a necessary and sufficient condition for the existence of
a perfect phylogeny analogous to the Splits Equivalence Theorem? If no perfect
phylogeny exists, what is the size of the smallest witnessing obstruction set?

In 1975, Fitch gave an example of input S over three states such that every
pair of characters in S allows a perfect phylogeny while the entire set of char-
acters S does not [12,13,14,30]. In 1983, Meacham generalized these results to
characters over r states (r ≥ 3)[27], constructing a class of sequences called Fitch-
Mecham examples, which we examine in detail in Section 6. Mecham writes:

“The Fitch examples show that any algorithm to determine whether a
set of characters is compatible must consider the set as a whole and
cannot take the shortcut of only checking pairs of characters.” [27]

However, while the Fitch-Meacham construction does show that checking
pairs of characters is not sufficient for the existence of a perfect phylogeny, our
main result will show that for three state input, there is a sufficient condition
which does not need to consider the entire set of characters simultaneously. In
particular, we give a complete answer to the questions posed above for the three
state case, by

1. showing the existence of a necessary and sufficient condition analogous to
the Splits Equivalence Theorem (Sections 3, 4),

2. in the case no perfect phylogeny exists, proving the existence of a small
obstruction set as a witness (Section 4),

3. giving a complete characterization of all minimal obstruction sets (Section
5), and

4. giving the proof for a stated lower bound involved in the conjectured gener-
alization of our main result to any number of states (Section 6).

In establishing these results, we prove fundamental structural features of the
perfect phylogeny problem on three state characters.



2 Perfect Phylogenies and Partition Intersection Graphs

The input to our problem is a set of n sequences (representing taxa), where
each sequence is a string of length m over r states. Throughout this paper, the
states under consideration will be the set {0, 1, 2, . . . r − 1} (in particular, in
the case r = 2, the input are sequences over {0, 1}). The input can be con-
sidered as a matrix of size n × m, where each row corresponds to a sequence
and each column corresponds to a character (or site). We denote characters by
C = {χ1, χ2, χ3, . . . χm} and the states of character χi by χi

j for 0 ≤ j ≤ r − 1.
A species is a sequence s1, s2, . . . sm ∈ χ1

j1
× χ2

j2
× · · ·χm

jm
, where si is the state

of character χi for s.
The perfect phylogeny problem is to determine whether an input set S can

be displayed on a tree such that

1. each sequence in input set S labels exactly one leaf in T
2. each vertex of T is labeled by a species
3. for every character χi and for every state χi

j of character χi, the set of all
vertices in T such that the state of character χi is χi

j forms a connected
subtree of T .

Definition 1 ([8,30]). For a set of input sequences S, the partition intersection
graph G(S) is obtained by associating a vertex for each character state and an
edge between two vertices χi

j and χk
l if there exists a sequence s with state j

in character χi ∈ C and state l in character χk ∈ C. We say s is a row that
witnesses edge (χi

j , χ
k
l ). For a subset of characters Φ = {χi1 , χi2 , . . . χik}, let

G(Φ) denote the partition intersection graph G(S) restricted to the characters in
Φ.

Note that by definition, there are no edges in the partition intersection graph
between states of the same character.

Definition 2. A graph H is chordal, or triangulated, if there are no induced
chordless cycles of length four or greater in H.

Consider coloring the vertices of the partition intersection graph G(S) in
the following way. For each character χi, assign a single color to the vertices
χi

0, χ
i
1, . . . χ

i
r−1. A proper triangulation of the partition intersection graph G(S)

is a chordal supergraph of G(S) such that every edge has endpoints with dif-
ferent colors. In [8], Buneman established the following fundamental connection
between the perfect phylogeny problem and triangulations of the partition in-
tersection graph.

Theorem 2. [8,30] A set of taxa S admits a perfect phylogeny if and only if the
corresponding partition intersection graph G(S) has a proper triangulation.

We will use Theorem 2 to extend the Splits Equivalence Theorem to a test
for the existence of a perfect phylogeny on trinary state characters. To outline



our approach, suppose a perfect phylogeny exists for S and consider every subset
of three characters. Then each of these

(
m
3

)
subsets also has a perfect phylogeny.

We show that this necessary condition is also sufficient and moreover, we can
systematically piece together the proper triangulations for each triple of char-
acters to obtain a triangulation for the entire set of characters. On the other
hand, if no perfect phylogeny exists, then we show there exists a witness set of
three characters for which no perfect phylogeny exists. This extends the Splits
Equivalence Theorem to show that for binary and trinary state input, the num-
ber of characters needed for a witness obstruction set is equal to the number of
character states. The following is the main theorem of the paper.

Theorem 3. Given an input set S on m characters with at most three states
per character (r ≤ 3), S admits a perfect phylogeny if and only if every subset
of three characters of S admits a perfect phylogeny.

This theorem demonstrates that to verify that a trinary state input matrix
S has a perfect phylogeny, it suffices to verify that partition intersection graphs
G[χi, χj , χk] have proper triangulations for all triples χi, χj , χk ∈ C. In Section
6, we will show that the Fitch-Meacham examples [13,27] demonstrate that the
size of the witness set in Theorem 3 is best possible.

3 Structure of Partition Intersection Graphs for Three
Characters

We begin by studying the structure of partition intersection graphs on three
characters with at most three states per character (m ≤ 3, r ≤ 3). For conve-
nience, we will denote the three characters by the letters a, b, c (interchangeably
referring to them as characters and colors) and denote the states of these char-
acters by ai, bi, ci (i ∈ {0, 1, 2}).

The problem of finding proper triangulations for graphs on at most three
colors and arbitrary number of states (m = 3, r arbitrary) has been studied
in a series of papers [6,25,26]. However, it will be unnecessary in our problem
to employ these triangulation algorithms, as our instances will be restricted to
those arising from character data on at most three states (m = 3, r ≤ 3). In such
instances, we will show that if a proper triangulation exists, then the structure
of the triangulation is very simple. We begin by proving a sequence of lemmas
characterizing the possible cycles contained in the partition intersection graph.

Lemma 1. Let S be a set of input species on three characters a, b, and c with
at most three states per character. Suppose every pair of characters induces a
properly triangulatable character partition intersection graph (i.e., G[a, b], G[b, c]
and G[a, c] are properly triangulatable) and let C be a chordless cycle in G[a, b, c].
Then C cannot contain all three states of any character.

Proof. Suppose there is a color, say a, such that all three states a0, a1 and a2

appear in C. Note that C must contain all three colors a, b, and c (since any pair
of colors induces a properly triangulatable graph). We have the following cases.



Case I. Suppose there is an edge e in C neither of whose endpoints have color
a (without loss of generality, let e = (b0, c0)). The row that witnesses this edge
must contain some state in a, say a0. This implies that the vertices a0, b0, and c0
form a triangle in G[a, b, c], a contradiction since C is assumed to be chordless
(see Figure 1).

0

00
c

a

b

Fig. 1. The row witnessing edge (b0, c0) must contain a state in character a .

Case II. Otherwise, every edge has an endpoint of color a and implying each
edge has color pattern either (a, b) or (a, c). Since all three states of a appear,
the color pattern up to relabeling must be as shown in Figure 2(a) (in the figure,
color b appears twice and color c appears once).
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Fig. 2. The row witnesses for edges (a0, c0) and (c0, a2) must share the same
state of b.

In this case, the row witness for edge (a0, c0) must contain the final state b2
of b (otherwise there would be an edge between c0 and either b0 or b1, a con-
tradiction since C is chordless). Similarly, the row witness for edge (c0, a2) must
also be state b2. As shown in Figure 2(b), this gives a cycle (a0, b2), (b2, a2),
(a2, b1), (b1, a1), (a1, b0), (b0, a0) on two colors. Such a cycle is not properly tri-
angulatable, and therefore G[a, b] is not properly triangulatable, a contradiction.



Since Case I and Case II cannot occur, it follows that a0, a1 and a2 cannot
all appear in C, proving the lemma. ut

Before stating the next lemma, we give the following definition.

Definition 3. Suppose the endpoints of edge e have colors χi and χj. Then any
other edge whose endpoints also have colors χi and χj is called color equivalent
to e. Two edges are called nonadjacent if they do not share a common endpoint.

For example, the edges (c1, a2) and (c0, a1) in Figure 1 are nonadjacent and
color equivalent.

Lemma 2. Let S be a set of input species on three characters a, b, and c with
at most three states per character. If the partition intersection graph G[a, b, c] is
properly triangulatable, then for every chordless cycle C in G[a, b, c], there exists
a color (a, b, or c) that appears exactly once in C.

Proof. Consider any chordless cycle C of G[a, b, c]. By Lemma 1, no color
appears in all three states in C. To obtain a contradiction, suppose each color
a, b, and c appears exactly twice in C and relabel the states so that the vertices
appearing on the cycle are a0, a1, b0, b1, c0, and c1. We first show that C has a pair
of nonadjacent edges that are color equivalent. Up to symmetry and relabelling
of colors, there are two cases for the color pattern of C as follows.

Case 1. There is a vertex in the cycle whose neighbors in the cycle have
the same color. Up to relabeling, we can assume this vertex has color a
(say in state a0) and the two adjacent vertices have color b. The states for
the remaining vertices of the cycle are a1, c0, and c1. Now, consider the
vertices adjacent to b0 and b1 other than a0. These vertices must be c0 and
c1 (otherwise, the two states of c would be adjacent in the cycle). This color
pattern is shown in Figure 3(a).

Case 2. No vertex in the cycle is adjacent to two vertices of the same color.
Then the two neighbors of a vertex with color a must have colors b and c.
Then the vertex following b in the cycle must have color c (otherwise vertex
b is adjacent to two vertices of the same color). By working this way around
the cycle, the only color pattern possible is as shown in Figure 3(b).

Note that both color patterns contain a pair of nonadjacent and color equiv-
alent edges (edges e and e′ in Figure 3).

Consider this pair of nonadjacent and color equivalent edges e and e′. Without
loss of generality, assume that the endpoints of these edges have colors b and c.
Let s be the row witness for e and s′ be the row witness for e′. Since cycle C is
chordless, the state in character a of row s cannot be a0 or a1. Similarly, the state
in character a of row s′ cannot be a0 or a1. Since a2 is the only remaining state
of character a, both s and s′ must contain a2. This implies that the partition
intersection graph G[a, b, c] must induce one of the two color patterns in Figure
4.
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Fig. 3. Color Patterns and nonadjacent color equivalent edges e and e′.
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Fig. 4. Induced Color Patterns

In the case illustrated in Figure 4(a), there is a cycle on four vertices induced
by the two characters a and b (see Figure 5(a)), implying G[a, b, c] is not properly
triangulatable. In the case illustrated in Figure 4(b), there are two edge-disjoint
cycles of length four with color pattern a, b, a, c. Since edges in a proper trian-
gulation cannot connect vertices of the same color, any proper triangulation of
G must contain the two edges f and f ′ connecting vertices of color b and c (see
Figure 5(b)). However, this induces a cycle of length four on the states of b and
c, which does not have a proper triangulation. This again shows that G[a, b, c]
is not properly triangulatable.
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Fig. 5. (a) Induced cycle of length four on two colors; (b) Forced Edges f and
f ′



Since all of these cases result in contradictions, it follows that there exists a
color that appears exactly once in C. ut

Lemmas 1 and 2 show that if C is a chordless cycle in a properly triangulat-
able graph G[a, b, c], then no color can appear in all three states and one color
appears uniquely. This leaves two possibilities for chordless cycles in G[a, b, c]
(see Figure 6):

• a chordless four cycle, with two colors appearing uniquely and the
remaining color appearing twice

• a chordless five cycle, with one color appearing uniquely and the
other two colors each appearing twice

1

0

0

1 0

0
0

0

1

b

a
c

a

c b

c

(a) (b)

c b

Fig. 6. The only possible chordless cycles in G[a, b, c]: (a) characters a and b ap-
pear uniquely while character c appears twice; (b) character a appears uniquely
while characters b and c each appear twice.

In the next lemma, we show that if G[a, b, c] is properly triangulatable, the
second case cannot occur, i.e., G[a, b, c] cannot contain a chordless five cycle.

Lemma 3. Let S be a set of input species on three characters a, b, and c with
at most three states per character. If the partition intersection graph G[a, b, c] is
properly triangulatable, then G[a, b, c] cannot contain chordless cycles of length
five or greater.

Proof. Lemmas 1 and 2 together show that G[a, b, c] cannot contain chordless
cycles of length six or greater, so it remains to show that G[a, b, c] cannot contain
chordless cycles of length equal to five.

Suppose C is a chordless cycle in G[a, b, c] of length five; without loss of
generality, let a be the color appearing exactly once in C (say in state a0), let
b0, b1 be the two states of b in C, and let c0, c1 be the two states of c in C. Up
to relabeling of the states, the cycle is as shown in Figure 6(b).

Now, any proper triangulation of G[a, b, c] must triangulate cycle C by edges
(a0, c0) and (a0, b1) shown in Figure 7 (since the only other edge between nonad-
jacent vertices of different colors is (b0, c1), which would create a non-triangulatable
four cycle on the two colors b and c.
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Fig. 7. Edges e and e′ are both witnessed by state ai.

The row witnesses for edges (b0, c0), (c0, b1), and (c1, b1) must contain a state
in color a that is one of a1 or a2 (otherwise, a0 would have an edge to a non-
adjacent vertex in cycle C, implying C is not chordless). Since there are three
edges and two possible witness states in color a, there are two edges among
(b0, c0), (c0, b1), (c1, b1) that share a witness ai. We denote these two edges by e
and e′; as shown in Figure 7, there are three ways to choose e and e′.

Figure 8 shows that all three cases induce a four cycle on two colors, a con-
tradiction since G[a, b, c] is properly triangulatable. Therefore, G[a, b, c] cannot
contain a chordless 5-cycle. ut
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Fig. 8. Forced cycles of length four on two colors.

Lemma 4. Let S be a set of input species on three characters a, b, and c with
at most three states per character. If the partition intersection graph G[a, b, c]
is properly triangulatable, then every chordless cycle in G[a, b, c] is uniquely
triangulatable.

Proof. By Lemma 3, if C is a chordless cycle in G[a, b, c], then C must be
a four cycle with the color pattern shown in Figure 9 (up to relabeling of the
colors). Then C is uniquely triangulatable by adding the edge between the two
colors appearing uniquely (in Figure 9, these are colors a and b).

ut
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Fig. 9. Color pattern for chordless cycle C.

For any three colors a, b, c, Lemma 4 gives a simple algorithm to properly
triangulate G[a, b, c]: for each chordless cycle C in G[a, b, c], check that C is a
four cycle with two nonadjacent vertices having colors that appear exactly once
in C and add an edge between these two vertices.

4 The 3-SNP test

4.1 Triangulating Triples of Characters

We now consider the case of trinary input sequences S on m characters (for
m greater or equal to 4). Our goal is to prove that the existence of proper
triangulations for all subsets of three characters at a time is a sufficient condition
to guarantee existence of a proper triangulation for all m characters.

By Lemma 2, if a set of three characters χi, χj , χk is properly triangulatable,
then there is a unique set of edges F (χi, χj , χk) that must be added to triangulate
the chordless cycles in G[χi, χj , χk]. Construct a new graph G′(S) on the same
vertices as G(S) with edge set E(G(S)) ∪ {∪1≤i<j<k≤mF (χi, χj , χk)}. G′(S) is
the partition intersection graph G(S) together with all of the additional edges
used to properly triangulate chordless cycles in G[χi, χj , χk] (1 ≤ i < j < k ≤
m). In G′(S), edges from the partition intersection graph G(S) are called E-
edges and edges that have been added as triangulation edges for some triple
of columns are called F -edges. We call a cycle consisting only of E-edges an
E-cycle.

Example 1. Input set S and partition intersection graph G(S) are shown in Fig-
ure 10. Each triple of characters in S induces a chordal graph while the en-
tire partition intersection graph G(S) contains a chordless cycle of length four.
Since each triple of characters induces a chordal graph, no F -edges are added
and G(S) = G′(S).

As Example 1 illustrates, the addition of F -edges alone may not be suffi-
cient to triangulate the entire partition intersection graph. We now turn to the
problem of triangulating the remaining chordless E-cycles in G′(S).

Consider any E-cycle C that is chordless in G′(S) satisfying the properties

1. C has length equal to four
2. all colors of C are distinct
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Fig. 10. Example 1. Partition intersection graph G′(S) contains a chordless four
cycle.

For every such chordless cycle, add the chords between the two pairs of
nonadjacent vertices in C (note that these are legal edges). Call this set of edges
F ′-edges and let G′′(S) denote the graph G′(S) with the addition of F ′-edges.
Note that the sets of E-edges, F -edges, and F ′-edges are pairwise disjoint; we
call the set of F and F ′-edges non-E edges.

We begin by investigating structural properties of cycles in G′(S) and G′′(S)
containing at least one F -edge or F ′-edge. Let C be a cycle in G′(S) or G′′(S)
containing an edge f that is an F -edge or F ′-edge (without loss of generality,
let f = (a0, b0)). This edge must be added due to an E-cycle D containing a0, b0
and two other vertices w and z as shown in Figure 11(a) (note that w and z
cannot have color a or b). If f is an F -edge, then w and z have the same color
and therefore cannot be adjacent in G′(S). If f is an F ′-edge, then since D is
a chordless E-cycle in G′(S), w and z are nonadjacent in G′(S). The cycle C
created by edge f is shown in Figure 11(b).
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z

ww

z

D

C

a b

(a) (b)

a b
f

Fig. 11. (a) Chordless cycle D (b) edge f = (a0, b0) creates cycle C (shown in
bold).



Since D is an E-cycle, each edge in D has a row witness. Consider first the
row witnesses for edges (a0, w) and (a0, z). These row witnesses must contain a
state of b other than b0 (since a0 and b0 are not connected by an E-edge). If
both row witnesses share the same state bi of b, then the cycle (bi, w), (w, b0),
(b0, z), (z, bi) is a chordless E-cycle on at most three colors in G′(S) as shown
in Figure 12 (as argued above, w and z are nonadjacent in G′(S)). However, all
chordless E-cycles on at most three colors have been triangulated in G′(S), a
contradiction.

0
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i

z

b
a

b

w

Fig. 12. If the row witnesses for (a0, w) and (a0, z) share a state of b, there is a
chordless E-cycle of length four on at most three colors.

Therefore, the row witnesses for (a0, w) and (a0, z) cannot share the same
state of b. Similarly, the row witnesses for (b0, w) and (b0, z) cannot share the
same state of a. This implies the following situation, up to relabeling of the
states, illustrated in Figure 13.
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Fig. 13. Pattern of forced witnesses for edges in D.

In particular, the following two conditions must be satisfied.

(1)a0 is adjacent to both b1 and b2

(∗)
(2)b0 is adjacent to both a1 and a2



We use this structure to prove a sequence of lemmas eliminating the possibili-
ties for chordless cycles in graph G′(S). This sequence of lemmas will show G′(S)
cannot contain a chordless cycle with exactly one non-E edge (Lemmas 5 and
6), a chordless cycle with two or more non-E edges (Lemma 7), or a chordless
E-cycle (Corollary 1).

Lemma 5. G′(S) cannot contain a chordless cycle with exactly one F -edge.

Proof. Suppose that C is a chordless cycle in G′(S) with exactly one F -edge,
say f = (a0, b0). Edge (a0, b0) must have been added due to a chordless E-
cycle D on three colors as shown in Figure 13, where w and z are states of the
same color. Note that edge (a0, b0) is a forced F -edge that creates cycle C (see
Figure 14). If C contains only the two colors a and b, the partition intersection
graph on the three colors a, b, and the shared color of w and z is not properly
triangulatable, a contradiction.
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1 1C

f
a b

b a

w

z

Fig. 14. Chordless cycle C on two colors with exactly one F -edge.

This implies any cycle C in G′(S) with exactly one F -edge must contain
three or more colors. As shown in Figure 15, if any of the edges (b1, a1), (b1, a2),
(b2, a1), and (b2, a2) are present, there would be a chordless cycle on two colors
with exactly one F -edge, which we have argued cannot occur. It follows that a1

and a2 are nonadjacent to b1 and b2 by E-edges.
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Fig. 15. If any of (b1, a1), (b1, a2), (b2, a1), or (b2, a2) are E-edges, there is a
chordless four cycle in G′(S) on two colors with exactly one F -edge.



Since a1 is nonadjacent to b1 or b2 by E-edges, any row that contains a1

must contain state b0 in character b. We call this condition (A1). By a similar
argument, the following conditions must be satisfied:

(A2) any row that contains a2 must contain state b0 in character b.
(B1) any row that contains b1 must contain state a0 in character a.
(B2) any row that contains b2 must contain state a0 in character a.

Now, let x be a vertex in C\{a0, b0} and consider the state of character a in
any row that witnesses x (see Figure 16(a)). If this state is a0, then x is adjacent
to a0 by an E-edge. Otherwise, if this state is either a1 or a2, then this row
witness for x must contain state b0 by (A1) and (A2). Since C is a chordless
cycle, at most one vertex on C\{a0, b0} can be adjacent to each of a0 and b0.
This shows there can be at most two such vertices x1 and x2 in C\{a0, b0}, one
of which is adjacent to a0 and the other which is adjacent to b0 (moreover, these
are adjacencies by E-edges). Therefore, C has length equal to four formed by
edges (a0, x1), (x1, x2), (x2, b0), and (b0, a0) (see Figure 16(b)).

0 0

1

0 0

11

00 0

1

0

x 2

(a) (b)

a ba

b a

a

b

C

a ba

b a

a

b

2
b

2

x 1

w

z

C

2
b

2

x

z

w

Fig. 16. Vertices on cycle C.

Edge (x1, x2) is an E-edge since f = (a0, b0) is the unique F -edge in C by
assumption. Furthermore, at least one of x1 or x2 has color different from a and
b since C has three or more colors. Without loss of generality, assume vertex
x1 has color different from a and b. The color of x2 is different from b since x2

and b0 are adjacent, implying edge (x1, x2) must have a witness in character b.
If this witness is b0, then x1 and b0 are adjacent by an E-edge, a contradiction
to the chordlessness of cycle C. If this witness is either b1 or b2, then (B1) or
(B2) imply that x2 and a0 are adjacent by an E-edge, again a contradiction to
the chordlessness of cycle C.

This concludes the proof of Lemma 5. ut
A similar proof shows that the lemma can be extended to the graph G′′(S).

Lemma 6. G′′(S) cannot conatin a chordless cycle with exactly one non-E edge.



Proof. Suppose that C is a chordless cycle in G′′(S) with exactly one non-E
edge, say f = (a0, b0). If f is an F -edge, then C would be a chordless cycle
in G′(S) with exactly one F -edge, contradicting Lemma 5. Therefore f is an
F ′-edge that is added due to chordless cycle D as shown in Figure 13 (with w
and z different colors).
Case I. C contains only the two colors a and b. Since the graph in Figure 13
contains all the states of characters a and b, C must also contain one of the edges
(b1, a1), (b1, a2), (b2, a1), or (b2, a2) as an E-edge and we have the following cases.

Case I(i). C contains edge (b2, a2). This results in an E-cycle of length five
on at most three colors as shown in Figure 17(a). Such a cycle cannot be
chordless in G[a, b, w] by Lemma 3. Therefore, vertex w must be adjacent to
one of b2 or a2 by an E-edge. This creates a chordless E-cycle in G′(S) of
length four on three colors; either cycle (b2, w), (w, b0), (b0, z), (z, b2) shown
in Figure 17(b) or cycle (a0, w), (w, a2), (a2, z), (z, a0) shown in Figure 17(c)
(note that w and z are nonadjacent in G′(S) since cycle D is chordless). This
is a contradiction since all cycles on at most three colors are triangulated in
G′(S).
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Fig. 17. (a) Edge (b2, a2) gives a five cycle C on at most three colors C (b),(c)
Chordless cycle of length four containing three colors.

Case I(ii). C contains edge (b1, a1). This case is symmetric to Case I(i).
Case I(iii). C contains edge (b2, a1). This results in an E-cycle of length four
on at most three colors as shown in Figure 18(a). Such a cycle is triangu-
lated in G′(S), implying there is either an E-edge or an F -edge between b2
and w. Then the cycle (b2, w), (w, b0), (b0, z), (z, b2) is either a E-chordless
cycle in G′(S) (a contradiction since all E-cycles on at most three colors are
triangulated in G′(S)) or a chordless cycle in G′(S) with exactly one F -edge
(contradicting Lemma 5).
Case I(iv). C contains edge (b1, a2). This case is symmetric to Case I(iii).

It follows that none of the vertex pairs (b1, a1), (b1, a2), (b2, a1), and (b2, a2)
are adjacent by an E-edge and any cycle C in G′′(S) with exactly one non-E
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Fig. 18. (a) E-cycle of length four on three colors (b) Chordless cycle on three
colors with exactly one F ′-edge.

edge must contain three or more colors. Because of these nonadjacencies, the
statements (A1), (A2), (B1), (B2) from Lemma 5 hold.

(A1) any row that contains a1 must contain state b0 in character b.
(A2) any row that contains a2 must contain state b0 in character b.
(B1) any row that contains b1 must contain state a0 in character a.
(B2) any row that contains b2 must contain state a0 in character a.

As in the proof of Lemma 5, it follows that cycle C has length equal to four
formed by edges (a0, x1), (x1, x2), (x2, b0), and (b0, a0) (see Figure 19(b)).
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Fig. 19. Vertices on cycle C.

Now, edge (x1, x2) is an E-edge since f = (a0, b0) is the unique non-E edge
in C by assumption. The remainder of the proof follows exactly as in the proof
of Lemma 5. ut

We now consider chordless cycles in G′′(S) with two or more non-E edges.

Lemma 7. G′′(S) cannot contain a chordless cycle with two or more non-E
edges.



Proof. Suppose otherwise and let C be a chordless cycle in G′′(S) with two or
more non-E edges. Let f be one of the F or F ′-edges in C and without loss of
generality, let f = (a0, b0). This edge must have been added due to an E-cycle
D that is chordless in G(S) on a0, b0 and two other vertices w and z (see Figure
11(a)). If f is an F -edge, then w and z have the same color and therefore are
not adjacent in G′(S). If f is an F ′-edge, then w and z have different colors and
are nonadjacent in G′(S) (since they are nonadjacent vertices in chordless cycle
D).

As argued previously, the situation up to relabeling of the states is illustrated
in Figure 13. Furthermore, the proofs of Lemmas 5 and 6 establish conditions
(A1), (A2), (B1), and (B2), implying C has length equal to four formed by edges
(a0, x1), (x1, x2), (x2, b0), and (b0, a0) (see Figure 19(b)). Then since C has two
or more non-E edges, the edge (x1, x2) in C is a non-E edge.

We have the following cases for the vertices of C.
Case I. One of x1 and x2 has color a and the other has color b. We can assume
without loss of generality that x1 = b2 and x2 = a2 as illustrated in Figure 20(a).
Since edge (x1, x2) is either an F -edge or an F ′-edge, it was added because of
a chordless E-cycle D′ containing a2, b2 and two other vertices y0 and y1 (see
Figure 20(a)). By (A2), both y0 and y1 are adjacent to a0, giving an E-cycle of
length four (a0, y0), (y0, a2), (a2, y1), (y1, a0) on at most three colors (see Figure
20(c)). This E-cycle must be triangulated in G′(S). However, this cannot be the
case since D′ is a chordless cycle in G′(S) and y0 and y1 are nonadjacent vertices
in D′.
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Fig. 20. Case I.

Case II. The color of x1 is different from a and b and the color of x2 is a or b.
Without loss of generality, assume x2 = a2 as illustrated in Figure 21(a). Since
edge (x1, x2)(= (x1, a2)) is an F -edge or F ′-edge, it was added due to a chordless
four cycle on x1, x2(= a2) and two other vertices y0 and y1. The row witnesses for
edges (x1, y0) and (x1, y1) must contain state a0 (otherwise, x1 would be adjacent
to b0 by (A1) or (A2)). Then we have the E-cycle of length four (a0, y0), (y0, a2),
(a2, y1), (y1, a0) on at most three colors. This E-cycle must be triangulated in



G′(S). However, this cannot happen since y0 and y1 are nonadjacent vertices in
cycle D′.
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Case II’. The color of x1 is a or b and the color of x2 is different from a and b.
This case is symmetric to that in Case II and is shown in Figure 22.
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Case III. Both x1 and x2 have colors different from a and b. Since edge (x1, x2)
is an F -edge or F ′-edge, it was added due to a chordless four cycle on x1, x2 and
two other vertices y0 and y1. The row witnesses for edges (x1, y0) and (x1, y1)
must contain state a0 (otherwise, x1 would be adjacent to b0 by (A1) or (A2)).
Then (a0, y0), (y0, x2), (x2, y1), (y1, a0) is an E-cycle of length four (see Figure
23(c)). Note that this cycle is chordless in G′(S), since a0 and x2 are nonadjacent
vertices in chordless cycle C and y0 and y1 are nonadjacent vertices in chordless
cycle D′. If y0 and y1 have the same color, then C has only three colors and this



would force edge (a0, x2) to be an F -edge, a contradiction to the assumption that
C is chordless in G′′(S). Therefore, the colors of a0, x2, y0, y1 are all distinct.
This cycle would force edges (a0, x2) and (y0, y1) to be added as F ′-edges, a
contradiction since cycle C is chordless in G′′(S) and a0 and x2 are nonadjacent
vertices in C.
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Fig. 23. Case III.

This proves the lemma. ut
Lemmas 5, 6, and 7 eliminate the possibility of chordless cycles in G′′(S)

containing non-E edges. To show thatG′′(S) is properly triangulated, we proceed
to show that G′′(S) does not contain chordless E-cycles. Suppose C is an E-cycle
of length five or greater that is chordless inG′(S) and suppose there is a character
a that appears exactly once (say in state a0) in C. Label the edges of the path
C\a0 in order of appearance by e1, e2, e3, . . . ek−1 with ei = (vi, vi+1). Since C
is chordless and all edges in C are E-edges, each edge ei (i = 1, 2, . . . k − 1)
must be witnessed by a row si which contains either state a1 or a2 in color a.
Without loss of generality, assume e1 is witnessed by a1 and let j be the largest
index such that ej is witnessed by a1. If j is equal to k − 1, then this creates a
four cycle (v1, a0), (a0, vk), (vk, a1), (a1, v1) on E-edges (see Figure 24(b)). Since
v1 and vk are nonadjacent (by the chordlessness of C in G′(S)), this creates an
E-cycle on at most three colors that is chordless in G′(S), which cannot occur.

Therefore, j must be strictly less than k − 1 and all of the remaining edges
ej+1, . . . ek−1 are witnessed by state a2. Define the a-complete cycle induced by
cycle C and state a0 as follows (see Figure 25):

I(C, a0) =


(a0, v1), (v1, v2), (v2, a2), (a2, vk), (vk, a0) if j = 1
(a0, v1), (v1, a1), (a1, vj+1), (vj+1, a2), (a2, vk), (vk, a0) if 1 < j < k − 2
(a0, v1), (v1, a1), (a1, vk−1), (vk−1, vk), (vk, a0) if j = k − 2
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Observation 4 For an E-cycle C such that

(i) C is chordless in G′(S)
(ii) C has length five or greater

(iii) C contains a character a appearing exactly once in state a0,

the a-complete cycle I(C, a0) exists. Note that I(C, a0) contains at least two
vertices of color a and has length five or greater.

We use this construction to prove the following lemma.

Lemma 8. Suppose C is an E-cycle of length five or greater that is chordless
in G′(S) and suppose there is a character a appearing uniquely in C in state a0.
Then the two vertices adjacent to a0 in C have different colors and I(C, a0) is
an E-cycle that is chordless in G′(S).

Proof. Note that I(C, a0) exists by Observation 4 and all edges in I(C, a0)
are E-edges. We show I(C, a0) is chordless in G′(S). The vertex pairs (a1, vk)
and (a2, v1) are not adjacent in G′(S); otherwise we would obtain a four cycle
on at most three colors with at most one F -edge that is chordless in G′(S) (see
Figure 26). This is a contradiction, since Lemma 5 implies G′(S) cannot contain
a chordless cycle with at most one F -edge. The remaining vertex pairs in I(C, a0)
are in C and are nonadjacent in G′(S) since C is chordless in G′(S). It follows
that I(C, a0) is chordless in G′(S).

Now suppose for a contradiction that the vertices adjacent to a0 (vertices v1
and vk in Figure 25) have the same color. Then I(C, a0) is a cycle on at most
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Fig. 26. If either (a1, vk) or (a2, v1) are adjacent, there is a cycle on at most
three colors with at most one F -edge.

three colors (color a, the color of vj+1, and the shared color of vertices v1 and
vk). This is an E-cycle that has length five or greater and is chordless in the
partition intersection graph on these three colors. This is forbidden by Lemma
3. Therefore, the two vertices adjacent to a0 are states in two different colors.

This proves the lemma. ut
We now use this construction to prove properties of chordless E-cycles in

G′(S).

Lemma 9. If C is an E-cycle that is chordless in G′(S), then C has length
exactly four with four distinct colors.

Proof. Suppose C is a chordless E-cycle in G′(S). Note that C must contain four
or more colors since any chordless E-cycle on at most three colors is triangulated
in G′(S). We first show every color in C appears uniquely. Suppose otherwise
and let a be the color that appears the most often in C with fa the number of
times a appears. We consider the following cases.
Case I. fa = 3, i.e., all three states a0, a1, and a2 appear in C.

If there is an edge e = (u, v) in C that does not have any of a0, a1, or a2 as
endpoints, then consider the row r that witnesses edge e; row r must contain
some state of a, say ai. This implies edges (u, ai) and (v, ai) are present in G′(S)
and C is not chordless, a contradiction. Therefore, in this case, every edge e in
C must have exactly one endpoint of color a.

Since C contains four or more colors and every edge is adjacent to a state
of a, by possibly renaming the character states, the color pattern must be as
shown in Figure 27 (with distinct colors b, c, and d). Now, since C has length at
least five and color b appears uniquely in cycle C, the b-complete graph I(C, b0)
induced by C and b0 exists. However, the vertices adjacent to b0 in C are the
same color (both having color a), which is forbidden by Lemma 8. It follows that
fa < 3.
Case II. fa = 2: let a0 and a1 be the two states of a appearing in C. Since C
contains four or more colors, it must be the case that one of the paths from a0

to a1 has three or more edges. We have the following cases.
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Fig. 27. Color pattern in Case I.

Case (IIa) both paths from a0 to a1 have at least three edges

Case (IIb) one path from a0 to a1 has two edges and the other path has
three or more edges

Any edge that does not have color a as one of its endpoints must be witnessed
by a row that contains the third state a2, as illustrated in Figure 28.
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Fig. 28. Cases (IIa) and (IIb) in the proof of Lemma 9. The rows witnessing the
edges shown in bold must contain state a2 in character a.

In case (IIa), the second edge in both paths from a0 to a1 are witnessed by
state a2 and we obtain an E-cycle that is chordless in G′(S) on at most three
colors (shown in bold in Figure 29(a)). This is a contradiction since all E-cycles
on at most three colors must be triangulated in G′(S). In case (IIb), the second
and second to last edge on the a0 to a1 path with three or more edges are
witnessed by color a2. Let D denote the E-cycle of edges (b0, a0), (a0, u), (u, a2),
(a2, v), (v, a1), (a1, b0) (shown in Figure 29(b)). Then a2 and b0 are not adjacent
in G′(S) (otherwise, we would obtain a cycle of length four on at most three
colors with at most one F -edge). This implies D is an E-cycle that is chordless
in G(S); in this cycle, b0 has two adjacent vertices of color a and therefore cannot
be the only state of b appearing in D, by Lemma 8. This implies one of u or
v must also have color b and therefore D is a chordless cycle on at most three
colors containing all three states of character a, contradicting Lemma 1.
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Case III. fa = 1, i.e., every color in C appears uniquely. Suppose for a contra-
diction that C has length five or greater and let a0 be a state appearing in C.
Then I(C, a0) exists in G′(S) by Observation 4. However, this gives a chordless
cycle in G′(S) with color a appearing two or more times, which cannot happen
by Cases I and II.

It follows that C is a cycle of length four with all colors appearing uniquely
in C, proving the lemma. ut

Lemma 9 implies all chordless E-cycles in G′(S) have length four containing
four distinct colors. We have triangulated all such cycles by F ′-edges in G′′(S),
implying the following corollary.

Corollary 1. G′′(S) cannot contain a chordless E-cycle.

Lemmas 5, 6, 7, and Corollary 1 together imply that G′′(S) is properly tri-
angulated, proving the main theorem.

Theorem 3 Given an input set S on m characters with at most three states per
character (r = 3), S admits a perfect phylogeny if and only if every subset of
three characters of S admits a perfect phylogeny.

5 Enumerating Obstruction Sets for Three State
Characters

We now turn to the problem of enumerating all minimal obstruction sets to
perfect phylogenies on three-state character input. By Theorem 3, it follows that
the minimal obstruction sets are input sequences on at most three characters; we
enumerate all instances S on three characters a, b, and c satisfying the following
conditions:

(i) each character a, b and c has at most three states
(ii) every pair of characters allows a perfect phylogeny

(iii) the three characters a, b, and c together do not allow a perfect phy-
logeny.



Note that Condition (ii) implies the partition intersection graph G(S) does
not contain a cycle on exactly two colors and Condition (iii) implies G(S) con-
tains at least one chordless cycle. Let C be the largest chordless cycle in G(S),
i.e.,

C = arg maxchordless cycles D in G(S)|D|

Condition (ii) and Lemma 1 together imply C cannot contain all three states
of any character. Therefore, C has length at most six. IfG(S) contains a chordless
six-cycle C, then each color appears exactly twice in C and C must have one of
the color patterns shown in Figure 30.
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Fig. 30. Color patterns for chordless cycle of length six.

In Figures 30(a) and 30(b), there is one state in each character that does not
appear in C (states a2, b2, and c2). Since C is chordless, the witness for each
edge is forced to contain the missing state in the third character. This implies
Figure 30(a) must be completed by the edges in Figure 31(a) and Figure 30(b)
must be completed by the edges in Figure 32(a). In both cases, there is a cycle
on two characters a and b (see Figures 31(b) and 32(b)). This implies the pair
of characters a and b is not properly triangulatable, a contradiction to condition
(ii). Therefore, G(S) cannot contain chordless cycles of length six.
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If C is a chordless cycle in G(S) of length five, then G(S) is not properly
triangulatable by Lemma 3, implying Condition (iii) is satisfied. In this case,
there must be two characters (say b and c) appearing in two different states and
one character appearing once in C, as shown in Figure 33 (up to relabeling of
the states). Cycle C contains three edges that are not adjacent to character a
(edges (b0, c0), (c0, b1), (b1, c1) in Figure 33). The row witnesses for these edges
must contain either state a1 or a2 in character a.
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Fig. 33. Color pattern for cycle C of length five.

Case I. The row witnesses for two adjacent edges share the same state of a and
the row witness for the third edge contains the final state in a. Without loss
of generality, assume (c0, b1) and (b1, c1) are the two adjacent edges sharing the
same state of a. In this case, G(S) and the corresponding input sequences S are
shown in Figure 34 (up to relabeling of the states).
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Fig. 34. Case I. Row witnesses for two adjacent edges share the same state of a.

Case II. The row witnesses for the two nonadjacent edges share the same state
of a and the row witness for the third edge contains the final state in a. In this
case, G(S) and the corresponding input sequences S are shown in Figure 35 (up
to relabeling of the states).
Case III. The row witnesses for all three edges share the same state of a. In
this case, G(S) and the corresponding input sequences S are shown in Figure 36
(up to relabeling of the states).
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If C is a chordless cycle of length four, then without loss of generality it must
have the color pattern shown in Figure 37.
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Fig. 37. Color Pattern for chordless cycle of length four.

Consider the row witnesses for edges (a0, c0) and (a0, c1). These row witnesses
cannot share the same state of b (otherwise, there would be a cycle on two colors
b and c, a contradiction). Similarly, row witnesses for edges (b0, c0) and (b0, c1)
cannot share the same state of a. Therefore, up to relabeling of the states, the
row witnesses are forced to have the pattern shown in Figure 39.
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Fig. 38. Row witnesses for edges (a0, c0) and (a0, c1) cannot share the same
state of b.
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Fig. 39. Forced pattern of row witnesses.



Note that b2 and c0 cannot be adjacent in G(S); otherwise, there is a cycle on
two colors b and c (see Figure 40(a)). By symmetry, we can argue the following
pairs are also nonadjacent (see Figure 40(b)).

The pairs (b2, c0), (a2, c0), (b1, c1), and (a1, c1) are nonadjacent in G(S).
(*)
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Fig. 40. Cycle on two colors b and c.

Now, suppose b2 and a1 are adjacent in G(S). Then the row witness for
(b2, a1) cannot be c0 and cannot be c1 by (*). Therefore, the row witness for
this edge must be the third state c2 of character c (see Figure 41). The parti-
tion intersection graph G(S) and corresponding input sequences S are shown in
Figure 41. Note that G(S) is not properly triangulatable and condition (iii) is
satisfied, since the edge (a0, b0) is a forced edge to triangulate cycle C, creating
a cycle on two colors (a0, b0), (b0, a1), (a1, b2), (b2, a0) which cannot be properly
triangulated.
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Fig. 41. Input sequences S and partition intersection graph G(S) with a chord-
less cycle of length four.

If b2 and a2 are adjacent in G(S), then this induces a chordless cycle D of
length five (b2, a0), (a0, c0), (c0, b0), (b0, a2), (a2, b2) (the pairs (b2, c0) and (a2, c0)



are nonadjacent by (*) and (a0, b0) are nonadjacent since they are nonadjacent
vertices in chordless cycle C). This is a contradiction since C is chosen to be the
largest chordless cycle in G(S).
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Fig. 42. If b2 and a2 are adjacent in G(S), this creates a chordless cycle of length
five.

Suppose there are no further adjacencies between vertices in Figure 39; then
there must be additional edges formed by the final state c2 of character c in
order for G[a, b, c] to be nontriangulatable (in order to satisfy condition (iii)).
Now, state c2 is adjacent to one or more of the edges with color pattern (a, b). If
c2 is adjacent to exactly one such edge, then the resulting graph G[a, b, c] can be
properly triangulated by adding the edge (a0, b0). Otherwise, state c2 is adjacent
to two or more edges. If the two edges share a vertex (i.e., the two edges are
either (a1, b0) and (a2, b0) or (b1, a0) and (b2, a0)), then there is a cycle on two
colors (as shown in Figure 43(a) and 43(b)), contradicting condition (ii).
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Fig. 43. If c2 witnesses two adjacent edges in G(S), this creates a chordless cycle
on two colors.

Else if state c2 is adjacent to two nonadjacent edges in G(S) (Figure 44(a)
and 44(b)), then this again creates a chordless cycle on two colors as shown in
Figure 44(c), contradicting condition (ii).
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Fig. 44. If c2 witnesses two nonadjacent edges in G(S), this creates a chordless
cycle on two colors.

In summary, the following are the minimal obstruction sets to the existence
of perfect phylogenies for three-state characters up to relabeling of the character
states.

Fig. 45. Minimal obstruction sets for three-state characters up to relabeling.

6 Construction of Fitch-Meacham Examples

In this section, we examine in detail the class of Fitch-Meacham examples, which
were first introduced by Fitch [13,14] and later generalized by Meacham [27]. The



goal of these examples is to demonstrate a lower bound on the number of char-
acters that must be simultaneously examined in any test for perfect phylogeny.
The natural conjecture generalizing our main result is that for any r, there is a
perfect phylogeny on r-state characters if and only if there is one for every sub-
set of r characters. We show here that such a result would be the best possible,
for any r. While the general construction of these examples and the resulting
lower bounds were stated by Meacham [27], to the best of our knowledge, the
proof of correctness for these lower bounds has not been established. We fill
this gap by explicitly describing the complete construction for the entire class of
Fitch-Meacham examples and providing a proof for the lower bound claimed in
[27].

For each integer r (r ≥ 2), the Fitch-Meacham construction Fr is a set of r+2
sequences over r characters, where each character takes r states. We describe
the construction of the partition intersection graph G(Fr); the set of sequences
Fr can be obtained from G(Fr) in a straightforward manner, with each taxon
corresponding to an r-clique in G(Fr).

Label the r characters in Fr by 0, 1, . . . r − 1; each vertex labeled by i will
correspond to a state in character i. The construction starts with two cliques EC1

and EC2 of size r, called end-cliques, with the vertices of each clique labeled by
0, 1, . . . r−1. The vertex labeled i in EC1 is adjacent to the vertex labeled (i+1)
mod r in EC2. For each such edge (i, (i+1) mod r) between the two end-cliques,
we create a clique of size r− 2 with vertices labeled by {0, 1, . . . r− 1}\{i, (i+ 1)
mod r}. Every vertex in this (r − 2)-clique is then attached to both i (in end-
clique 1) and (i+1) mod r (in end-clique 2), creating an r-clique whose vertices
are labeled with integers 0, 1, . . . r− 1. There are a total of r such cliques, called
tower-cliques, and denoted by TC1, TC2, . . . TCr. Note that for each i (0 ≤
i ≤ r − 1), there are exactly r vertices labeled by i; we give each such vertex a
distinct state, resulting in r states for each character.

Note that the graph corresponding to the four gamete obstruction set is
an instance of the Fitch-Meacham construction with r = 2. In this case, the
four binary sequences 00, 01, 10, 11 have two states, two colors and four taxa
and the partition intersection graph for these sequences is precisely the graph
G(F2). Note that in this case, every subset of r− 1 = 1 characters has a perfect
phylogeny, while the entire set of characters does not. Similarly, the fourth graph
shown in Figure 45 illustrating the obstruction set for 3-state input is the graph
G(F3) corresponding to the Fitch-Meacham construction for r = 3 (in the figure,
EC1= {a0, b2, c1} and EC2 = {a1, b0, c0}). As shown in Section 5, every r−1 = 2
set of characters in the corresponding input set allows a perfect phylogeny while
the entire set of characters does not. The following theorem generalizes this
property to the entire class of Fitch-Meacham examples. Because the theorem
was stated without proof in [27], we provide a proof of the result here.

Theorem 5. [27] For every r ≥ 2, Fr is a set of input sequences over r state
characters such that every r − 1 subset of characters allows a perfect phylogeny
while the entire set Fr does not allow a perfect phylogeny.



Proof. We first show that G(Fr) does not allow a proper triangulation for any r.
As observed above, G(F2) is a four cycle on two characters and therefore, does
not allow a proper triangulation (since any proper triangulation for a graph
containing cycles must have at least three colors). Suppose G(Fr) is properly
triangulatable for some r ≥ 3, let s be the smallest integer such that G(Fs)
has a proper triangulation, and let G′(Fs) be a minimal proper triangulation of
G(Fs).

For each tower-clique TCi in G(Fs), consider the set of vertices in TCi that
are not contained in either end-clique; call these vertices internal tower-clique
vertices and the remaining two tower vertices end tower-clique vertices. Note that
the removal of the two end tower-clique vertices disconnects the internal tower-
clique vertices from the rest of the graph. This implies that the internal tower-
clique vertices cannot be part of any chordless cycle: otherwise, such a chordless
cycle C must contain both end tower-clique vertices i and (i+1) mod s. However,
the two end tower-clique vertices are connected by an edge and therefore induce
a chord in C, a contradiction since C is a chordless cycle.

In the graph G(Fs), onsider the following cycle of length four: s− 2 (in EC1)
→ s − 1 (in EC1) → 0 (in EC2) → s − 1 (in EC2) → s − 2 (in EC1). This
four-cycle has a unique proper triangulation, which forces the edge e between
vertex s − 2 in EC1 and vertex 0 in EC2 to be included in G′(Fs). Consider
removing all vertices labeled s− 1 from G′(Fs), and for the two vertices labeled
s− 1 in end-cliques EC1 and EC2, remove all interior tower-clique vertices (but
not end tower-clique vertices) adjacent to s − 1. Then edge e between vertices
s− 2 and 0 is still present and we can expand e into a tower-clique of size s− 1
(by forming a clique with new vertices 1, 2, . . . s− 3 adjacent to both s− 2 and
0 of the two end-cliques).

In the resulting graph, the vertices are exactly those of G(Fs−1) and all edges
in G(Fs−1) are present. Furthermore, if there is a chordless cycle in this graph,
then it would create a chordless cycle in G′(Fs) since no internal tower-clique
vertex can be part of any chordless cycle (and in particular, the new vertices
1, 2, . . . s − 3 cannot be part of any chordless cycle). Therefore, the resulting
graph is a proper triangulation for G(Fs−1), a contradiction since s was chosen
to be the smallest integer such that G(Fs) allows a proper triangulation.

To prove the second part of the theorem, we show that in Fr, any subset of
r − 1 characters does allow a perfect phylogeny by proving that the partition
intersection graph on any subset of r − 1 characters has a proper triangulation.
By the symmetry of the construction of Fr, we can assume without loss of
generality that the r − 1 characters under consideration are {0, 1, . . . r − 2}.
Consider the graph obtained by connecting every vertex i (0 ≤ i ≤ r−3) in EC1

to every vertex j satisfying j > i in EC2. Note the asymmetry between the first
and second end-cliques in this construction and observe that none of the added
edges are between characters with the same label.

Suppose the resulting graph contains a chordless cycle C. Then C cannot
contain three or more vertices in either end-clique and cannot contain any in-
ternal tower-clique vertices (as noted earlier), so must have length exactly four



with two vertices in each end-clique. It cannot be the case that two nonadjacent
vertices of C are in the same end-clique, since these vertices would be adjacent
and C would not be chordless. Therefore, cycle C must be formed as follows: i
(in EC1) → j (in EC2) → j′ (in EC2) → i′ (in EC1). Since i and j are adjacent,
we have i < j and since i′ and j′ are adjacent, we have i′ < j′. If i < j′, then i
and j′ are adjacent and the cycle C is not chordless, a contradiction. Therefore,
i′ < j′ ≤ i < j, which implies i′ and j are adjacent and the cycle C is not
chordless, again a contradiction. It follows that there are no chordless cycles and
the added edges form a proper triangulation for the partition intersection graph
on the subset of r − 1 characters {0, 1, . . . r − 2}. ut

7 Conclusion

We have studied the structure of the three state perfect phylogeny problem
and shown that there is a necessary and sufficient condition for the existence of
a perfect phylogeny for three state characters using triples of characters. This
extends the extremely useful Splits Equivalence Theorem and four-gamete con-
dition. The obvious extension of our work would be to discover similar results
for r-state characters for r ≥ 4.

Until this work, the notion of a conflict, or incompatibility, graph has been
defined for two state characters only (using the four gamete condition). Our
generalization of the four gamete condition therefore allows us to generalize this
notion to incompatibility on three state characters. The resulting incompatibility
structure will be a hypergraph with edges corresponding to pairs and triples of
characters that do not allow a perfect phylogeny. These hypergraphs can be
used to solve algorithmic and theoretical problems for three state characters
analogous to those for binary characters. Examples of such problems include the
minimum character removal problem and the problem of finding lower bounds
on the minimum number of recombinations for three state characters.

In addition, there are several theoretical and practical results known for two
state characters that are still open for characters on three or more states. For
instance, it is known that the problem of constructing near-perfect phylogenies
for two state characters is fixed parameter tractable; the analogous problem is
open for characters on three or more states. Similarly, the question of finding de-
composition theorems for recurrent mutations and recombinations remains open
for three or more states. With the recent increase in collection of polymorphism
data such as micro/mini-satellites, there is a need for the analysis of perfect
phylogenies to be extended to multiple state characters. Our work lays a solid
theoretical foundation we hope will help with this effort.
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