
UC Davis Computer Science Technical Report CSE-2005

On the Full-Decomposition Optimality Conjecture for Phylogenetic Networks

Dan Gusfield

January 25, 2005

1

On the Full-Decomposition Optimality Conjecture for Phylogenetic
Networks

Dan Gusfield∗

Keywords: Molecular Evolution, Phylogenetic Networks, Perfect Phylogeny, Ancestral Recombina-
tion Graph, Recombination, Gene-Conversion, SNP

Abstract

Phylogenetic networks are models of evolution that go beyond trees, allowing biological operations
that are not consistent with tree-like evolution. One of the most important of these biological opera-
tions is (meiotic) recombination between two sequences (homologous chromosomes). The algorithmic
problem of reconstructing a history of recombinations, or determining the minimum number of recom-
binations needed, has been studied in a number of papers [10, 11, 12, 24, 23, 25, 16, 13, 7, 14, 6, 9, 8,
18, 19, 15].

In an earlier paper [?], we established that for any set of sequences M , there is a phylogenetic
network deriving M , that has a natural “fully decomposed” structure. That paper also conjectured that
there is always a fully decomposed network for M which minimizes the number of recombination used,
over all possible phylogenetic networks for M . That conjecture is still open. In this paper, we prove a
mathematically weaker, but biologically motivated, version of that conjecture.

1 Introduction to Phylogenetic Networks and Problems

With the growth of genomic data, much of which does not fit ideal evolutionary-tree models, and the
increasing appreciation of the genomic role of such phenomena as recombination, recurrent and back
mutation, horizontal gene transfer, cross-species hybridization, gene conversion, and mobile genetic ele-
ments, there is greater need to understand the algorithmics and combinatorics of phylogenetic networks
on which extant sequences were derived [21, 22]. Recombination is particularly important in deriving
chimeric sequences in a population of individuals of the same species. Recombination in populations is
the key element underlying techniques that are widely hoped to locate genes influencing genetic diseases.

Formal definition of a phylogenetic network
There are four components needed to specify a phylogenetic network that allows multiple-crossover

recombination (see Figure 1).

∗Dept. of Computer Science, 3051 Engineering II, University of California, One Shields Avenue, Davis, CA 95616.
Email: gusfield@cs.ucdavis.edu Research Supported by NSF grant EIA-0220154

2

A phylogenetic network N is built on a directed acyclic graph containing exactly one node (the root)
with no incoming edges, a set of internal nodes that have both incoming and and outgoing edges, and
exactly n nodes (the leaves) with no outgoing edges. Each node other than the root has either one or two
incoming edges. A node x with two incoming edges is called a recombination node.

Each integer (site) from 1 to m is assigned to exactly one edge in N , but for simplicity of exposition,
none are assigned to any edge entering a recombination node. There may be additional edges that are
assigned no integers. We use the terms “column” and “site” interchangeably.

Each node in N is labeled by an m-length binary sequence, starting with the root node which is labeled
with some sequence R, called the “root” or the “ancestral” sequence. For a node v in N , we define Sv

as the sequence that labels node v. Since N is acyclic, the nodes in N can be topologically sorted into
a list, where every node occurs in the list only after its parent(s). Using that list, we can constructively
define the sequences that label the non-root nodes, in order of their appearance in the list, as follows:

a) For a non-recombination node v, let e be the single edge coming into v. The sequence labeling v is
obtained from the sequence labeling v’s parent by changing the state (from 0 to 1, or from 1 to 0) of the
value at site i, for every integer i on edge e. This corresponds to a mutation at site i occurring on edge e.

b) For the recombination at node x, let Z and Z ′ denote the two m-length sequences labeling the
parents of x. Then the “recombinant sequence” X labeling x can be any m-length sequence provided
that at every site i, the character in X is equal to the character at site i in (at least) one of Z or Z ′.

The “event” that creates X from Z and Z ′ is called a “multiple-crossover recombination”. To fully
specify the event, we must specify for every position i whether the character in X “comes from” Z or
Z ′. This specification is forced when the characters in Z and Z ′ at position i are different. When they
are the same, a choice must be specified. For a given event, we say that a crossover occurs at position i if
the characters at positions i − 1 and i come from different parents. It is easy to determine the minimum
number of crossovers needed to create X by a recombination of Z and Z ′.

The sequences labeling the leaves of N are the extant sequences, i.e., the sequences that can be
observed. We say that an (n, m)-phylogenetic network N derives (or explains) a set of n sequences M
if and only if each sequence in M labels one of the leaves of N .

With these definitions, the classic “perfect phylogeny” [4] is a phylogenetic network without any
recombinations. That is, each site mutates exactly once in the evolutionary history, and these is no
recombination between sequences.

There are two restricted forms of recombination that are of particular biological interest. One is
where X is formed from a prefix of one of its parent sequences (Z or Z ′) followed by a suffix of the other
parent sequence. This is called “single-crossover recombination” since it uses exactly one crossover,
and it is the definition of recombination used in [7, 9, 8]. The other case is when X is formed from a
prefix of one parent sequence, followed by an internal segment of the other parent sequence, followed
by a suffix of the first parent sequence. This is a two-crossover recombination and is usually called
“gene-conversion”. It is believed [1] that during meiosis, single-crossover recombination is the dominant
form of recombination occurring in intervals of DNA contained between neighboring genes, while gene-
conversion is the dominant form of recombination in intervals of DNA contained inside a single gene. At
a different biological scale, what we have defined as two-crossover recombination models “lateral gene-
transfer” or “hybrid speciation”, and the main result in this paper applies to those, and other biological
models of “reticulate evolution”.

What we have defined here as a phylogenetic network with single-crossover recombination is the
digraph part of the stochastic process called an “ancestral recombination graph (ARG)” in the population

3

genetics literature. (see [20] for example).
In the context of meiotic recombination, the assumption that the sequences are binary is motivated

today by the importance of SNP data, where each site can take on at most two states (alleles) [2]. In the
context of macroevolution, complex evolutionary characters are usually considered to be binary (either
present or absent)[3].

a: 00010
b: 10010
c: 00100
d: 10100
e: 01100
f: 01101

M

g: 00101

Conflict Graph for M

1 2 3 4 5

4

3

1

00100

a: 00010

10100

S
P

52

P

00100

01101

S

c: 00100

d: 10100

f: 01101

g:00101

00101
01100

e: 01100

4

10010

b:10010 3

00000

00010

Figure 1. A phylogenetic network that derives the set of sequences M . The two recombinations
shown are single-crossover recombinations, and the forced crossover point is written above the
recombination node. In general the recombinant sequence exiting a recombination node may be on
a path that reaches another recombination node, rather than going directly to a leaf. Also, in general,
not every sequence labeling a node also labels a leaf.

1.1 Rooted and Root-Unknown problems

Problems of reconstructing phylogenetic networks, given an input set of binary sequences M , can
be addressed either in the rooted case, or the root-unknown case. In the rooted phylogenetic network
problem, a required root or ancestral sequence R for the network is specified in advance. In the root-
unknown phylogenetic network problem, no ancestral sequence is specified in advance, and the algorithm
must select an ancestral sequence.

2 A Fundamental Decomposition Theory for Phylogenetic Networks and Incom-
patible Characters

In this section we review the main result of an earlier paper [?], that for any input M , there always is
a phylogenetic network of a particular, natural structure.

In a phylogenetic network N , let w be a node that has two paths out of it that meet at a recombination
node x. Those two paths together define a “recombination cycle” Q. Node w is called the “coalescent
node” of Q, and x is the recombination node of Q. In Figure 1, the nodes labeled 00000 and 00100 are
coalescent nodes of two different recombination cycles.

4

If a recombination cycle in a phylogenetic network N is not isolated (a “gall” in the termonology of
[7, 9] and other papers), it shares at least one edge with some other recombination cycle. We can add
another cycle to that blob if the new cycle shares an edge with at least one cycle already on the blob.
Continuing in this way, we ultimately get a maximal set of recombination cycles in N that form a single
connected subgraph of N , and each cycle shares at least one edge with some other cycle in the set. We
call such a maximal set of cycles a “blob”.

Clearly, because of maximality, the blobs in a phylogenetic network N are well-defined. Moreover, if
we contract each blob in N to a single point, the resulting network is a directed tree T ′. This follows be-
cause if the resulting graph had a cycle (in the underlying undirected graph) that cycle would correspond
to a recombination cycle which should have been contracted. We call T ′ a “tree of blobs” or a “blobbed
tree”. So every phylogenetic network N can be viewed as a blobbed tree. The edges in T ′ are called
“tree edges” of N . Note that in each blob B, either there is exactly one node v with no edges directed
into it, or there is exactly one node v with an edge directed into it from a node not in B. In the first case,
v is the root of N and the “root” of B. In the second case, v is the root of B.

Given a set of binary sequences M , two columns i and j in M are said to be incompatible if and only
if there are four rows in M where columns i and j contain all four of the ordered pairs 0,1; 1,0; 1,1; and
0,0. For example, in Figure 1 columns 1 and 3 of M are incompatible because of rows a, b, c, d. The test
for the existence of all four pairs is called the “four-gamete test” in the population genetics literature. A
site that is not involved in any incompatibility is called a “compatible site”.

Given a sequence S, two columns i and j in M are said to conflict (relative to S) if and only if columns
i and j contain all three of the above four pairs that differ from the i, j pair in S.

The classic Perfect Phylogeny theorem (in the terminology of this paper) is that there is a root-
unknown phylogenetic network without any recombination cycles, that derives a set of binary sequences
M , if and only if there is no incompatible pair of columns. Similarly, there is a phylogenetic network
with ancestral sequence S, without any recombination cycles, that derives M , if and only if there is no
pair of columns that conflict relative to S. For one exposition of this classic result, see [5].

Incompatibility and Conflict Graphs
We define the “incompatibility graph” G(M) for M as a graph containing one node for each column

(site) in M , and an edge connecting two nodes i and j if and only if columns i and j are incompatible.
Similarly, given a sequence S, we define the “conflict graph” GS(M) for M (relative to S) as a graph
containing one node for each column in M , and an edge connecting two nodes i and j if and only if
columns i and j conflict relative to S. Figure 1 shows the conflict graph relative to the all-zero sequence
S. This conflict graph is also the incompatibility graph for M .

Given a sequence S, we define the “conflict graph” GS(M) for M (relative to S) as a graph containing
one node for each column in M , and an edge connecting two nodes i and j if and only if columns i and j
conflict relative to S. Figure 1 shows the conflict graph relative to the all-zero sequence S. This conflict
graph is also the incompatibility graph for M . When S is the all-zero sequence, the conflict graph is
denoted G0(M).

A “connected component” (or “component” for short), C, of a graph is a maximal subgraph such that
for any pair of nodes in C there is at least one path between those nodes in the subgraph. A “trivial”
component has only one node, and no edges. The conflict graph in Figure 1 has two components. In [?],
we proved the following fundamental result:

5

Theorem 2.1 Let G(M) be the incompatibility graph for M . Then, there is a phylogenetic network
N that derives M where every blob contains all and only the sites of a single non-trivial connected
component of G(M), and every compatible site is on a tree edge of N .

Stated another way, for any input M , there is a blobbed-tree that derives M , where the blobs are
in one-one correspondence with the non-trivial connected components of G(M), and if B is the blob
corresponding to component C, then B contains all and only the sites in C. We say that a network is
“fully-decomposed” (relative to G(M)) if it has the above structure. Theorem 2.1 says that for every
M , there is always a fully-decomposed network for M . However, it is not true that every phylogenetic
network for every input M is fully decomposed.

There is an analogous theorem to Theorem 2.1 in the case that the ancestral sequence S is known
in advance. In that case, there is a phylogenetic network N that derives M , with ancestral sequence
S, where the blobs in N are in one-one correspondence with the non-trivial connected components of
GS(M), and any non-conflicting site is on a tree edge of N .

In [?] we stated the following conjecture, which still remains open.

Conjecture: For any M , there is always a fully-decomposed phylogenetic network for M
which has the minimum number of recombinations, over all possible phylogenetic networks
for M .

We call this the “Full-Decomposition Optimality Conjecture”.

3 Main Result: Progress on the Full-Decomposition Optimality Conjecture

In this paper, we state and prove a weaker, but biologically motivated, version of the full-decomposition
optimality conjecture.

For any node u in a network N , let Su denote the sequence labeling u in N . A node is considered an
ancestor of itself, and a blob is considered ancestral to every node in the blob, and to every node that can
be reached by a directed path from some node on the blob.

Let N be an optimal phylogenetic network for M , i.e., one that minimizes the number of recombina-
tions over all phylogenetic networks for M . For ease of exposition, we assume that every node in N is
labeled with a distinct sequence, every edge in N contains one or more sites, except for edges directed
into a recombination node (these contain no sites). It is always possible to create these conditions by
merging nodes with the same label, and contracting any edge that contains no site.

We consider the case when the ancestral sequence is known, and in M . For simplicity, let the ancestral
sequence be the all-zero sequence. A simple lower bound on the number of needed recombinations in
any network that derives M is the number of distinct rows of M , minus the number of distinct columns
of M , minus one. This is called the “haplotype” bound [16].

An equivalent way to say that the haplotype bound is tight is that in a network N for M , a) no edge
contains more than one site, and b) each node v in N is “visible”, meaning that every sequence generated
in N is in M . In that case, N is optimal, i.e., it uses the minimum possible number of recombinations
over all phylogenetic networks for M . Note however, that visibility by itself does not imply that the
haplotype bound is tight, and there are optimal networks where each node is visible, but the haplotype
bound is not tight.

6

So a sufficient (but not necessary) condition for the visibility of all nodes is that the “haplotype lower
bound” [16] on the minimum number of recombinations equals the true minimum. Simon Myers has
shown [17] that under the neutral coalescent model with recombination, the expected difference between
the haplotype bound and the true minimum is bounded by a constant as the number of sequences goes
to infinity. Thus, there may be optimal phylogenetic networks where all nodes are visible, more often
than might at first be assumed.

In this paper we establish the following

Theorem 3.1 If there is a network N for M where conditions a) and b) are satisfied, then there is a
fully-decomposed phylogenetic network DN for M that minimizes the number of recombinations used
over all phylogenetic networks for M .

We will demonstrate a one-one correspondence between the nodes of N and the nodes of DN , where
each pair of corresponding nodes has the same sequence label, and where a node in N is a recombination
node if and only if its corresponding node in DN is a recombination node.

The proof can be modified to show that weaker conditions suffice for the existence of DN . For
example, it is sufficient that there is an optimal network N for M in which every node is visible. That
is, we can allow edges that contain more than one site. The weakest sufficient condition is that for every
pair of sites i, j, if an i, j state-pair occurs at some node in N , then it occurs in some sequence in M . The
proof can be further extended to show that for any N that satisfies this condition (whether N is optimal
or not) there is a fully-decomposed network which uses the same number or fewer recombinations as
does N . We will sketch some of these extensions later. But for now we assume that network N is
optimal, and that it contains exactly one site per edge except for edges that enter recombination nodes,
and that each node in N is visible.

The proof strategy
First, since N is a DAG we can examine the nodes of N in some topological order, i.e., where a node

is examined only after all of its ancestors have been examined. At every step in this examination, let N ′

be the subnetwork of N that has been examined, and let M ′ denote the subset of sequences of M that
are generated in N ′ (i.e., the set of sequences that label the nodes in N that have been examined). Let
G0(M

′) denote the conflict graph for M ′.
We will prove inductively that there is a fully-decomposed phylogenetic network DN ′, relative to

G0(M
′), for M ′ that uses the same number of recombinations as does N ′. More precisely, we prove

inductively that there is a one-one correspondence between nodes in N ′ and in DN ′ such that for any
pair of corresponding nodes, both nodes in the pair have the same label, and one node in the pair is a
recombination node if and only if both nodes are. We also maintain the inductive claim that every edge
in DN ′ contains one site, except for edges directed into a recombination node. We call this the “edge
claim”.

The basis Initially, N ′ consists of the root node of N , which is a “tree”, and clearly during some
additional portion of the examination, N ′ remains a tree. During that time, we make DN ′ identical to
N ′. Since N ′ is a tree, there are no conflicts in M ′, and since DN ′ is a tree, there are no cycles or
recombinations, so DN ′ is fully-decomposed and has the same number (zero) of recombinations as does
N ′. Since DN ′ is identical to N ′, it generates M ′ and the edge claim holds.

The inductive step Assume that the claims hold inductively to some point in the examination, and
suppose v is the next node examined in N . In order to talk about how the sequences, networks and

7

graphs are modified in an inductive step, we use M ′, N ′, DN ′, G0(M
′) to denote those objects at the

start of the inductive step, and use M ′′, N ′′, DN ′′, G0(M
′′) for those objects at the end of the inductive

step. M ′′ is always M ′ after the addition of sequence Sv. There are three cases to consider.
Case 1: Node v has one parent u in N (labeled with sequence Su) and the edge into v contains site

i. By construction, DN ′ has a node Du labeled Su, and we extend DN ′ by adding an edge out of Du to
a new node Dv and put site i on edge (Du, Dv). The resulting DN ′′ generates all the sequences in M ′′,
and the edge claim is clearly satisfied. Since the node Dv in DN ′′ is a leaf, the blob structure of DN ′ is
identical to that in DN ′′. Since there is only one sequence in M ′′ with a 1 at site i, site i is not involved
in any conflicts in M ′′, so the set of conflicts in M ′ and M ′′ is the same, and so the set of non-trivial
connected components is the same in G0(M

′) and G0(M
′′). This proves the inductive step when Case 1

occurs.
Case 2: Node v is a recombination node in N with parent nodes a and b. By induction, there are

two nodes Da and Db labeled Sa and Sb in DN ′. Suppose that Da and Db nodes are in the same blob
in DN ′. We add a new recombination node Dv to DN ′ and direct two edges into Dv from Da and Db.
The resulting DN ′′ generates M ′′, the edge claim holds, and the blob structure for DN ′ and DN ′′ is
identical. We must show now that the partition of nodes into connected components in G0(M

′) is the
same in G0(M

′′), although G0(M
′′) may have some edges that G0(M

′) does not.
For contradiction, suppose that the non-trivial connected components of the two conflict graphs are

different. Since all conflicts in M ′ are also in M ′′, the edges of G0(M
′) are a subset of the edges in

G0(M
′′). So if the connected components of the two graphs are different, there must be an edge (i, j)

in G0(M
′′) that is not in G0(M

′), and i and j must be in two different connected components (possibly
trivial components) of G0(M

′). So the addition of (i, j) to G0(M
′) causes the merge of two connected

components of G0(M
′). Now by the inductive claim, since i and j are in different connected components

of G0(M
′), they are not in the same blob of DN ′, and since the blob structure of DN ′ is identical to that

of DN ′′, they are not in the the same blob in DN ′′. Hence in DN ′′, i and j are not contained together
in any recombination cycle of DN ′′. But DN ′′ generates M ′′, and the most basic fact about conflicting
sites is that for any set of sequences M , two sites can be in conflict only if they are contained in some
common cycle in every phylogenetic network for M (see [9] for a complete proof). So i and j cannot be
in conflict in M ′′ and hence the component structure of G0(M) is identical to the component structure
of G0(M

′′).
Case 3: Node v is a recombination node in N with parent nodes a and b in N ′. Assume that Sa is the

prefix sequence and Sb is the suffix sequence at the recombination at v. Let r be the crossover point of
the recombination at v. By induction, there are two nodes Da and Db labeled Sa and Sb in the current
DN ′. Suppose the corresponding nodes are not in the same blob in DN ′ (either node may be in no
blob).

If we were to add a new recombination node Dv to DN ′ and direct two edges into Dv from Da and
Db, with a recombination crossover at r, the resulting network would generate M ′′, but it may not be
the network we seek. We define a “hyper-cycle” as a cycle containing tree edges and blobs (see Figure
2). The addition of Dv and edges (Da, Dv) and (Db, Dv) to DN ′ creates a unique hyper-cycle that also
defines a blob in the resulting network. However, it is not true in general that the sites in this blob would
all be contained in one connected component of G0(M

′′). In order to achieve that property, we have to
be more careful in the selection of the parents for Dv.

8

Creating DN ′′ in Case 3

Note that node Da is either the root of DN ′, or the head (at the arrow end) of a directed tree edge in
DN ′, or is in a blob B but is not the root node of B. The same is true of Db. If a node z is the head of a
tree edge (q, z) in DN ′, then we define sup(z) to be q. If a node z is in a blob B and is not the root node
w of B, we define sup(z) to be w. See Figure 3. In Case 3, we first execute procedure UP.

Procedure UP
Set za to Da and set zb to Db.
While ((za is not an ancestor of zb in DN ′) and (Sv can be formed by a recombination between Ssup(za)

and Szb
)) {

set za = sup(za); }
/* Conceptually, each iteration moves the prefix parent of Dv up the original hyper-cycle, and (except

possibly for the last iteration) removes an edge or a blob from the hyper-cycle, while preserving all the
sequences generated./*

While ((zb is not an ancestor of za in DN ′) and (Sv can be formed by a recombination between Ssup(za)

and Szb
)) {

set zb = sup(zb) }
/* These moves change the suffix parent of Dv and (generally) remove edges or blobs from the original

hyper-cycle, while preserving all the sequences generated. /*
End of UP

After Procedure UP is finished, we have the following exclusive possibilities: either 3a) za and zb

are different nodes, but on the same blob in DN ′; or 3b) they are the same node; or 3c) one is a strict
ancestor of the other; or 3d) neither node is an ancestor of the other, but one node is on a blob that is
strictly ancestral to the other node; or 3e) none of the above. We will show how to create DN ′′ in each
of these subcases, and complete the proof of the inductive step in each subcase.

Subcase 3a) When za and zb are on the same blob in DN ′, but are different nodes, create DN ′′ from
DN ′ by adding node Dv and adding directed edges (za, Dv) and (zb, Dv). Sza is the prefix sequence and
Szb

is the suffix sequence in this recombination, and r is the crossover point. The situation now is the
same as in Case 2, and so the inductive step for subcase 3a) is proved.

Subcase 3b) When za and zb are the same node Du, then both parent sequences are the same, so
Sv = Su, and since node Du is in DN ′, we can create a network D′′ that generates M ′′, by adding an
edge from Du to Dv in DN ′ with no mutation on it. Note that now Dv is not a recombination node,
but there is a one-one correspondence between nodes in N ′′ and in D′′, such that the corresponding
nodes have the same labels. Now consider replacing N ′′ with D′′ in N , meaning that the subgraph N ′′

is removed from N , the subgraph D′′ is added to N , and for any directed edge (p, q), where p is in N ′′

and q is not in N ′′, replace (p, q) with (Dp, q). This creates a network that generates M using one fewer
recombinations than does N , which is a contradiction. Hence, subcase 3b) cannot happen when N is
optimal.

Subcases 3c), 3d) and 3e)

In subcases 3c) and 3d) one of za or zb (WLOG za) is an ancestor of the other (zb) or is in a blob B
which is strictly ancestral to the other (zb). When this happens, we execute Procedure DOWN to see if
za should be moved closer to zb.

9

If za is the tail of a tree edge (za, q) in DN ′ and node q is an ancestor of zb, then define inf(za) to be
q. Else, if za is in a blob B that is ancestral to zb, then define inf(za) to be the last node in B on any path
from B to zb. Note that inf(za) is unique and well-defined. If both conditions hold, the first definition
applies, and even if there are many paths from B to zb, they all have the same last node on B or else B
would not be maximal. Hence, inf(za) is well-defined. See Figure 4.

Procedure DOWN
While ((za is not equal to zb) and (Sv can be formed by a recombination between Sinf(za) and Szb

)) {
set za = inf(za); }
/* Each change moves za closer to zb, and removes an edge or a blob from the hyper-cycle, while

preserving all of the sequences generated. /*
end of DOWN

In subcase 3e) za and zb are different nodes by definition. In subcases 3c) and 3d) Procedure DOWN
could end with za = zb. If that happens, then we have another instance of subcase 3b) where the
inductive step has been proven, so assume za and zb are different at the end of Procedure DOWN. Then,
in all three subcases 3c), 3d) and 3e), create DN ′′ from DN ′ by extending an edge from za to Dv and
an edge from zb to Dv, making node Dv a recombination node with the crossover point r. Clearly,
DN ′′ creates the sequences in M ′′, the edge claim holds, and the number of recombinations used in
DN ′′ is equal to the number of recombinations in N ′′. We now need to prove that the blob structure of
DN ′′ corresponds correctly to the connected component structure in G0(M

′′), which would complete
the proof of the inductive step.

Define the ordered set of nodes Lb = zb, sup(zb), sup(sup(zb))..., ztb, where ztb is the first node such
that sup(ztb) is an ancestor of both za and zb. (see Figure 5).

Similarly, define the ordered set of nodes La = za, sup(za), sup(sup(za))..., zta, where zta is the first
node such that sup(zta) is an ancestor of both za and zb.

Let H be the hyper-cycle in DN ′′ created by the addition of node Dv to DN ′ and the addition of
edges from za and zb to Dv. Note that node sup(ztb) = sup(zta), and it is the “lowest” node that is an
ancestor of every node on H That is, any other node that is there is an ancestor of every node on H , is
also an ancestor of sup(ztb). See Figure 5. Let Hb be the part of the hyper-cycle between sup(ztb) and zb

(see Figure 5). Note that Lb is in DN ′, and that the head (the arrow end) of every tree edge on Hb is in
Lb, and one node in every blob B in Hb, other than the root node of B, is in Lb. Recall, for the following
Lemmas, that we are examining subcases 3c), 3d) and 3e), and that za �= zb.

Lemma 3.1 For any node z on Lb, the set of sites with state 1 in Ssup(z) must be a strict subset of the set
of sites with state 1 in Sz.

Proof The claim is trivially true if z is not a recombination node, since then the unique edge into z
must contain a site. So, assume z is a recombination node in a blob B in DN ′. Now, every site with
state 1 at the root node w of B retains the state 1 at each node in B (because at any recombination in B,
both parents have state 1 at that site), so the set of sites with state 1 in Sw is a subset of the set of sites
with state 1 in Sz. If that subset is not strict, then Sz = Sw, and we can create a network D′ from DN ′,
where the recombination at node z in DN ′ is replaced by an edge from w to z. But if we then replace
N ′ in N with D′, we obtain a network that generates M and uses fewer recombinations than does N ,
contradicting the optimality of N . �

10

For any node z on Lb, let Wz be the set of sites with state 1 in Sz but state 0 in Ssup(z). Lemma 3.1
says that Wz is never empty.

Lemma 3.2 Let z be any node on Lb other than zb, and let q be any node in Lb below z. If j is any site
in Wz with state 0 in Sv, and if i is any site in Wq with state 1 in Sv, then sites i and j conflict in M ′′.

Proof WLOG, assume i < j. Since q is below z and i is in Wq, application of Lemma 3.1 (repeated
if needed) implies that site i has state 0 in Sz. Then the pair i, j have states 0,0 at the root of DN ′′, state
0,1 in Sz, states 1, 1 in Sq, and state 1, 0 in Sv. By the full visibility assumption and the fact that DN ′′

generates M ′′, these four state pairs exist in M ′′, and hence i and j conflict in M ′′. �

Theorem 3.2 Let z′b �= zb be the last node on Lb with the property that some site in Wz′b has state 0
in Sv. Then all sites on all blobs and edges in the part of Hb between sup(z′b) and zb are together in a
single connected component of G0(M

′′).

Proof We assume that z′
b exists, since the theorem is vacuously true otherwise. Note that there must

be a site ib in Wzb
which has state 1 in Sv. If not, then Procedure UP would also have moved zb to

sup(zb). So, by Lemma 3.2, for every node z on Lb other than zb, where some site j has state 0 in Sv,
states ib and j conflict. It follows that sites ib and j ′ conflict for some site j ′ in Wz′b . Now if z is a node
below z′b and no sites in Wz have state 0 in Sv, then let i be any site in Wz. By Lemma 3.2, states i
and j ′ conflict in M ′′. So, some site j ′ in Wz′b conflicts with site ib in Wzb

, and for every other node z
between z′b and zb, some site in Wz either conflicts with site j ′ in Wz′b or conflicts with site ib in Wzb

.
See Figure 6. Further, if node z in Lb is a recombination node in a blob B in DN ′, then by the inductive
hypothesis, every site in Wz is in one connected component of G0(M

′) together with every site in B, and
they continue to be together in one connected component of G0(M

′′), since all conflicts in M ′ are also
in M ′′. Finally, when node z in Lb is the head of a tree edge in DN ′, so trivially, all sites on that edge
are in the same component of G0(M

′′), and all sites on that edge are in Wz. It follows that all sites on all
blobs and edges in the part of Hb between sup(z′b) and zb are together in a single connected component
of G0(M

′′). �
If z′b = ztb, then Theorem 3.2 proves that all sites on the path Hb are in a single connected component

of G0(M
′′). Otherwise, let L′

b be the subset of Lb from node Sup(z′b) to ztb. Clearly, if z′b is not ztb, then
ztb is in L′

b. To fully prove that all sites on H are in one connected component of G0(M
′′), we must

examine the subcases 3c), 3d) and 3e) separately.

Finishing the inductive step for Subcase 3c)
WLOG, assume that node za is a strict ancestor of zb. Note that ztb must be inf(za). See Figure 7. By

Lemma 3.1 the set of sites with state 1 in Sinf(za) is a strict superset of the set of sites with state 1 in Sza .
So if all the sites in Winf(za) have state 1 in Sv, a recombination between Sinf(za) and Szb

at crossover
point r results in the same sequence, namely Sv, that results from a recombination of Sza and Szb

at point
r. But in that case, Procedure DOWN would have moved za to inf(za). Hence, some site(s) in Winf(za)

have state 0 in Sv, and z′b must be ztb. Then, by Theorem 3.2, all the sites on Hb are in a single connected
component of G0(M

′′). But, there is a direct edge from za to Dv and it contains no sites, so all sites in
H are in Hb, and the inductive step has been proved in subcase 3c).

Finishing the inductive step for Subcase 3d)

11

WLOG, assume that node za is on a blob B that is strictly ancestral to zb, but Za is not an ancestor of
Zb. Note that ztb must be inf(za). See Figure 8. Since there is only a single edge from za to Dv with no
sites on it, if z ′

b = ztb, then by Theorem 3.2 all sites in H would be in a single connected component of
G0(M

′′) and the inductive step for subcase 3d) would be proven. So, assume that z ′
b �= ztb, and hence all

sites in Wztb
have state 1 in Sv.

Since all sites in Sztb
have state 1 in Sv, if there is no site j ∈ Wza − Wztb

which has state 1 in Sv,
a recombination between Sztb

and Szb
at crossover point r would result in the same sequence, namely

Sv, that results from a recombination of Sza and Szb
at point r. But, ztb is inf(za), so if those two

recombinations both yield Sv, Procedure DOWN should have moved za to inf(za), hence there must
be some site j ∈ Wza − Wztb

which has state 1 in Sv. But then sites j and ib (defined in Theorem 3.2)
conflict in M ′′: assuming ib < j, those state-pairs are 0,0 at the root of DN ′′, they are 0,1 in Sza , they
are 1,0 in Szb

, and 1,1 in Sv. By similar reasoning, site j conflicts with every site i in Wz for every node
z between ztb and sup(z′b) inclusive. Finally, since site j is on some edge in blob B, as are all sites in
Wztb

, and all sites in a blob are inductively together in a single connected component of G0(M
′) (and

hence of G0(M
′′)), all sites in H are in a single connected component of G0(M

′′), and the inductive step
for subcase 3d) is proven.

Finishing the inductive step for Subcase 3e)
We define La, zta, z′a, L′

a and Ha, in ways analogous to the definitions of Lb, ztb, z′b, L′
b and Hb.

In subcase 3e) neither za nor zb is an ancestor of the other, and neither is on a blob that is ancestral
to the other. By arguments that are symmetric to those given above for zb, Wza is not empty and must
contain a site ia which has state 1 in Sv.

Since neither za nor zb is an ancestor of the other, and neither is on a blob that is ancestral to the other,
site ia (respectively ib) must be on an edge e, or in a blob B in DN ′, with the property that there is no
directed path in DN ′ from e or B to zb (respectively za). Therefore, sites ib ∈ Wzb

and ia ∈ Wza conflict
in M ′′.

If z is any site on Lb, then by Lemma 3.2, every site in Wz that has state 0 in Sv conflicts with ib.
Similarly, if z is any site on La, then every site in Wz that has state 0 in Sv conflicts with ia. Further,
if z is any site on Lb other than ztb (the reason for its exclusion will be explained below), then by the
same reasoning used to conclude that ia and ib conflict in M ′′, every site Wz which has state 1 in Sv is
in conflict with site ia in M ′′. Similarly, if z is any site on La other than zta, then, every site Wz which
has state 1 in Sv conflicts with site ib in M ′′. It follows that all sites on all blobs and edges in the part
of Hb between ztb and zb are in a single connected component of G0(M

′′) together with all sites on all
blobs and edges in the part of Ha between zta and za.

Note that in subcase 3e) either zta and ztb have the same single parent node, or they are both in the
same blob B, and neither is the root node of B (if both are in B and one was the coalescent node of B
then it would be an ancestor of both za and zb violating the definition of zta or ztb). See Figure X.

Let j be any site in Wzta and assume it has state 1 in Sv. The reason that we could not include zta

with the other nodes in the above argument, and conclude that j is in conflict with site ib, is that the
edge containing site j may be on a directed path to zb, and hence we could not conclude that the (ib, j)
state-pair of (1, 0) exists in M ′′. But, that situation is only possible when zta and ztb are together on
some blob B in DN ′, and neither is the root node of B, as shown in Figure Xb. So when the situation
is as shown in Figure Xa, we can conclude that all sites on H are in a single connected component of
G0(M

′′) and the induction step is proved for subcase 3e).
So assume that zta and ztb are together on B as shown in Figure Xa. If some site j in Wzta (or Wztb

)

12

has state 0 in Sv, then site j conflicts with ia (or ib) as established earlier. Now j is contained on some site
in B, and since zta and ztb are together on B, and all sites on B are together in a connected component
of G0(M

′′), it follows that all sites in H are together in a single connected component of G0(M
′′).

So, the remaining situation is that zta and ztb are together on B, and every site in Wzta and Wztb
has

state 1 in Sv. If there is some site j in Wzta that is not in Wztb
, then there is no directed path to ztb from

the edge in B that contains site j, and so j conflicts with ib, and again we can conclude that all sites on
H are in one connected component of G0(M

′′). The same conclusion holds if there is a site j in Wzta

that is not in Wztb
. So, assume that that Wztb

= Wzta . In that situation, Szta = Sztb
, and both zta and ztb

are recombination nodes in B in DN ′. But we could then remove the edges into one of those nodes, say
zta, and add an edge from ztb to it, and still generate all the sequences in M ′ while reducing the number
of recombinations by one. If we replace N ′ in N with this modified DN ′, the result would be a network
that produces M with fewer recombinations than does N , a contradiction.

So in all occurrences of subcase 3e), all the sites in H are in a single connected component of G0(M
′′),

and the inductive step is proved for subcase 3e).

This completes the proof of the inductive step for Case 3), and so Theorem 3.1 is proved.

4 Extending the proof

It is immediate that we can remove the assumption that the ancestral sequence is known in advance -
the given proof applies to whatever sequence is the ancestral sequence in the optimal network N .

We assumed in the statement of Theorem 3.1 that every edge in the optimal N contains at most one
site. The proof, as given, may break down if that were not the case. For example, consider the situation
in case 3e) if zb is the head of a tree edge containing more than one site. It remains true that some site
in Wzb

must have state 1 in Sv, but some sites in Wzb
may have state 0 in Sv. In M ′′, those sites will not

be in conflict with any sites in H , and the inductive step will fail. A similar problem can arise in case
3c) if edge (za, zb) exists and has sites with state 1 in Sv and sites with state 0 in Sv. The solution is the
following: in the inductive step when node v in N is examined, if e is an edge in DN ′ which has a site
with state 1 in Sv and also a site with state 0 in Sv, then we divide e into two edges e1 followed by e2.
We place on e1 all sites on e that have state 1 in Sv, and place on e2 all sites on e that have state 0 in Sv.
Note that there are no other edges created, so this network does not have the node visibility property, but
this will not matter.

Then we allow Procedures UP and DOWN to operate on the modified network, exactly as before. For
example, consider the situation mentioned above that in case 3e) some sites on the edge e into zb have
state 0 in Sv. After dividing e into e1 and e2, with the sites of state 0 in Sv on e2, Procedure UP will
move zb to the head of e1 and all the sites in e with state 0 in Sv will be off the hyper-cycle. Note that the
node at the head of e1 has a sequence label that is not in M ′′, so not all nodes in DN ′′ are visible. That
is ok, since in the proof we only require that all nodes in N are visible. A full proof of the correctness
of this approach requires a close examination of the existing proof and is left for later.

In order to avoid the assumption that N is optimal, we must execute another procedure to assure that
Sz �= Ssupz and Sz �= Sinfz for every node z on Hb or Ha.

Finally, it is clear from the proof, that the assumption that all nodes in N are visible is stronger than is
needed. It is sufficient that for every pair of sites i, j, any i, j state pair that exists at a node in N appears
in some sequence in M .

13

References

[1] A. Berry and A. Barbadilla. Gene conversion is a major determinant of genetic diversity at the
DNA level. In R.S. Singh and C.B. Krimbas, editors, Evolutionary Genetics: From Molecules to
Morphology, pages 102–123. Cambridge University Press, 1999.

[2] A. Chakravarti. It’s raining SNP’s, hallelujah? Nature Genetics, 19:216–217, 1998.

[3] J. Felsenstein. Inferring Phylogenies. Sinauer, Sunderland, MA., 2004.

[4] D. Gusfield. Efficient algorithms for inferring evolutionary history. Networks, 21:19–28, 1991.

[5] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Computational
Biology. Cambridge University Press, Cambridge, UK, 1997.

[6] D. Gusfield. Optimal, efficient reconstruction of Root-Unknown phylogenetic networks with con-
strained recombination. Technical report, Department of Computer Science, University of Califor-
nia, Davis, CA, 2004.

[7] D. Gusfield, S. Eddhu, and C. Langley. Efficient reconstruction of phylogenetic networks (of
SNPs) with constrained recombination. In Proceedings of 2’nd CSB Bioinformatics Conference,
Los Alamitos, CA, 2003. IEEE Press.

[8] D. Gusfield, S. Eddhu, and C. Langley. The fine structure of galls in phylogenetic networks.
INFORMS J. on Computing, special issue on Computational Biology, 16:459–469, 2004.

[9] D. Gusfield, S. Eddhu, and C. Langley. Optimal, efficient reconstruction of phylogenetic networks
with constrained recombination. J. Bioinformatics and Computational Biology, 2(1):173–213,
2004.

[10] D. Gusfield and D. Hickerson. A new lower bound on the number of needed recombination nodes
in both unrooted and rooted phylogenetic networks. Report UCD-ECS-2004-06. Technical report,
University of California, Davis, 2004.

[11] J. Hein. Reconstructing evolution of sequences subject to recombination using parsimony. Math.
Biosci, 98:185–200, 1990.

[12] J. Hein. A heuristic method to reconstruct the history of sequences subject to recombination. J.
Mol. Evol., 36:396–405, 1993.

[13] R. Hudson and N. Kaplan. Statistical properties of the number of recombination events in the
history of a sample of DNA sequences. Genetics, 111:147–164, 1985.

[14] J. D. Kececioglu and D. Gusfield. Reconstructing a history of recombinations from a set of se-
quences. Discrete Applied Math., 88:239–260, 1998.

[15] B. Moret, L. Nakhleh, T. Warnow, C.R. Linder, A. Tholse, A. Padolina, J. Sun, and R. Timme.
Phylogenetic networks: Modeling, reconstructibility, and accuracy. IEEE/ACM Transactions on
Computatational Biology and Bioinformatics, pages 13–23, 2004.

14

[16] S. R. Myers and R. C. Griffiths. Bounds on the minimum number of recombination events in a
sample history. Genetics, 163:375–394, 2003.

[17] Simon Myers. The detection of recombination events using DNA sequence data. PhD thesis,
University of Oxford, Oxford England, Department of Statistics, 2003.

[18] L. Nakhleh, J. Sun, T. Warnow, C.R. Linder, B.M.E. Moret, and A. Tholse. Towards the develop-
ment of computational tools for evaluating phylogenetic network reconstruction methods. In Proc.
of 8’th Pacific Symposium on Biocomputing (PSB 03), pages 315-326, 2003.

[19] L. Nakhleh, T. Warnow, and C.R. Linder. Reconstructing reticulate evolution in species - theory and
practice. In Proc. of 8’th Annual International Conference on Computational Molecular Biology,
pages 337–346, 2004.

[20] M. Norborg and S. Tavare. Linkage disequilibrium: what history has to tell us. Trends in Genetics,
18:83–90, 2002.

[21] D. Posada and K. Crandall. Intraspecific gene genealogies: trees grafting into networks. Trends in
Ecology and Evolution, 16:37–45, 2001.

[22] M. H. Schierup and J. Hein. Consequences of recombination on traditional phylogenetic analysis.
Genetics, 156:879–891, 2000.

[23] Y. Song and J. Hein. On the minimum number of recombination events in the evolutionary history
of DNA sequences. Journal of Mathematical Biology, 48:160–186, 2003.

[24] Y. Song and J. Hein. Parsimonious reconstruction of sequence evolution and haplotype blocks:
Finding the minmimum number of recombination events. In Proc. of 2003 Workshop on Algorithms
in Bioinformatics, Berlin, Germany, 2003. Springer-Verlag LNCS.

[25] L. Wang, K. Zhang, and L. Zhang. Perfect phylogenetic networks with recombination. Journal of
Computational Biology, 8:69–78, 2001.

15

Dv

B3

e5

B1

e1e6

B2

e7 e2

e3
e4

B4

e8
Db

Da

Figure 2. Figure for the proof

16

a)

w

z

z

q

B

b)

Figure 3. Figure for the proof

c)

B

Za

inf(Za)

Zb

Dv

Za inf(Za)

Zb

Dv

a)

B

Za

inf(Za)

Zb

Dv

b)

Figure 4. Figure for the proof

17

Lb

tb)

Sup(Ztb)

Z

Dv

tb

Zb

Za

Dv

Za

Zb

Z tb

a)
b)

Z ta

taZ

Hb
Lb

Hb

Sup(Z

Figure 5. Figure for the proof

b

b i j j’

ib i j j’

ib i j j’

ib i j j’

ib i j j’

ib i j j’

Z tb

Sup(Z’b)

Z’b

z

z

Zb

Dv

1 1 1 1

0 0 1 1

0 01 1

1

2

1 1 0 0

0 1 1 1

0 0 0 0

L’

i

Figure 6. Figure for the proof

18

v

Zb

inf(Za) =Z tb

Za

D

Figure 7. Figure for the proof

B

Dv

Z tb

Z’b

Zb

Za

Figure 8. Figure for the proof

19

