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Abstract

A phylogenetimetworkis a genearlization of a phyloge-
netictree,allowing structumal propertiesthat are not tree-
like. With the growth of genomicdata, mud of which does
not fit ideal tree models,there is greater needto under
standthe algorithmicsand combinatoricsof phylogenetic
networks[10, 11]. However, to date,very little has been
publishedon this, with the notableexceptionof the paper
byWangetal.[12]. Otherrelatedpapersinclude[4, 5, 7]

We considerthe problemintroducedin [12], of deter
mining whetherthe sequencesan be derivedon a phylo-
geneticnetworkwhete the recombinationcyclesare node
disjoint. In this paper we call sud a phylogenetimetwork
a “galled-tree”. By more deeplyanalysingthe combinato-
rial constaintson cycle-disjointphylogenetimetworkswe
obtain an efficient algorithm that is guaranteedto be both
a necessaryand suficienttestfor the existenceof a galled-
tree for the data. If there is a galled-tree, the algorithm
constructoneand obtainsan implicit representatiorof all
the galledtreesfor the data, and can createthesein linear
time for ead one We also notetwo additional resultsre-
latedto galledtrees:first, any setof sequencethat canbe
derivedon a galledtreecanbederivedon a true tree (with-
outrecombinatiorcycles) whele at mostonebadk mutation
is allowed per site; secondthe site compatibility problem
(which is NP-had in genenl) canbe solvedin linear time
for anysetof sequencethatcanbederivedona galledtree

Thecombinatorialconstaintswe developapply (for the
mostpart) to node-disjointcyclesin any phylogenetimet-
work (not just galled-trees),and can be usedfor example
to provethat a givensite cannotbe on a node-disjointcy-
cle in any phylogenetimetwork. Perhapsmore important
thanthespecificresultsaboutgalled-treesweintroducean
appmad that canbeusedto studyrecombinatiorin phylo-
geneticnetworksthat go beyondgalled-trees.
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1 Intr oduction to phylogeneticnetworks and
galled-trees

With the growth of genomicdata,much of which does
notfit idealtreemodels,andtheincreasingappreciatiorof
the genomicrole of suchphenomenasrecombinationre-
currentand back mutation, horizontalgenetransfer gene
conversion, and mobile geneticelementsthereis greater
needto understandhe algorithmicsand combinatoricsof
phylogeneticnetworks[10, 11]. Recombinatioris partic-
ularly important,becauset is the key elementneededor
techniqueghat arewidely hopedto locategenesinfluenc-
ing geneticdiseasesThe key to locatingthesegeness to
understanéndusethe patternsof recombinatiorin thege-
netic “experiments”’doneby natureandhistory. However,
to date,very little hasbeenpublishedon phylogenetimet-
works, with the notableexceptionof the paperby Wanget
al.[12]. Otherrelatedpapersnclude[4, 5, 7].

1.1 Formal definition of a phylogeneticnetwork

Therearefour componentsieededo specifya phyloge-
netic network: a directedagyclic graph(no directedcycles,
but the underlyingundirectedgraph can have cycles); an
assignmenbf mutationsor sites(integers)to edges;anas-
signmenbf asequencéo eachnon-recombinatiomode;an
assignmenof arecombinatiorpointandasequenceéo each
recombinatiomode. We will defineeachof thesecompo-
nentsin turn. SeeFigurel for anexampleof aphylogenetic
network.

An (n, m)-phylogenetimetwork N is built onadirected
ag/clic graphcontainingexactly one node (the root) with
no incomingedges.a setof internalnodesthat have both
incomingandandoutgoingedgesandexactly n nodeg(the
leares)with no outgoingedges.Eachnodeotherthanthe
root haseitheroneor two incomingedges.A nodez with
two incomingedgesds calleda “recombination’node.



Eachinteger (site) from 1 to m is assighedo exactly
one edgein N, but for simplicity of exposition, noneare
assignedo ary edgeenteringarecombinatiomode.

Eachnodein N is labeledby an m-length binary se-
guence startingwith the root nodewhich is labeledwith
theall-0 sequenceSinceN is agyclic, thenodesin N can
betopologicallysortedinto a list, whereevery nodeoccurs
in the list only afterits parent(s). Using that list, we can
constructiely definethe sequencethat label the non-root
nodesjn orderof theirappearancen thelist, asfollows:

a) For a non-recombinatiomodew, let e be the
singleedgecominginto v. Thesequencéabeling
v is obtainedfrom the sequencéabelingv’s par

entby changingfrom 0 to 1 the valueat position
i, for everyintegeri assignedo edgee. Thiscor

responddo a mutationat sitei occurringon edge
€.

b) Eachrecombinatiomode is associatedvith

anintegerr, (denotedr, whenz is clearby con-

text) between2 andm inclusive, called the “re-

combinationpoint” for z. For therecombination
atnodez, oneof thetwo sequencetabelingthe

parentsof  mustbe designated” andthe other
designateds. Thenthe sequencéabelingz con-
sistsof thefirst r, — 1 charactersf P, followed
by thelastm — r; + 1 character®f S. HenceP

contributesa Prefix and S contributesa Sufix to

z’'s sequenceTheresultingsequencehat labels
z is calleda“recombinantsequence”.

The sequence$abelingthe leaves of N are the extant
sequences.e.,thesequencethatcanbeobsenred.

Definition 1.1 An (n, m)-phylogenetimetwork N derives
(or explains) a setof n sequenced/ if and only eac se-
guencein M labelsexactly oneof the leavesof N. We use
theterms*site” and“column” interchangeably

The biologicaliinterpretationof a phylogeneticnetwork
N thatderives M isthat V is a possiblehistory of the evo-
lution of the sequence# M, underthe assumptionghat
thereis a single,known ancestrakequencéassumedo be
all-0 for convenience);that for ary site in the sequences
thereis exactly onepoint in the history wherethat stateof
thatsite mutategdueto a point-mutation)rom O to 1; and
thattwo sequencearepermittedto recombindn anequal-
crossw@erevent. Eachsitein thesequenceepresenta SNP
(singlenucleotidepolymorphism),.e., a site wheretwo of
thefour possiblenucleotidesappeaiin the populationwith
a frequeng abore somesetthreshold. With thesedefini-
tions,a classicperfectphylogety is a phylogenetimetwork
which is topologically a directed,rootedtree, i.e., lacking
ary cyclesin theunderlying(undirected)graph.
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Figure 1. A phylogenetic network N with
two recombination nodes. The matrix of se-
guences M that are derived by N is shown at
the right. Note that the node with sequence
label 01100 is sequence S for the left recom-
bination node, and is sequence P for the
right recombination node. The recombina-
tion points are 3 and 4 for the left and right re-
combination nodes respectivel y, and are writ-
ten just above the recombination nodes . In
this example, every label of an interior node
also labels a leaf, but that is not a general
property of phylogenetic networks.

Interestin phylogeneticnetworkscomespartly from a
desireto reconstructthe evolutionary history of a set of
molecularsequencesindera modelthatis morecomplete
than the perfectphylogery (tree) model. But therealso
moreappliedusesof phylogenetimetworks.For example,
in apopulationof “unrelated”individuals,wewantto deter
mine which partsof the individualsgenomesamefrom a
commonancestar This determinatiorhelpslocateregions
in the genomeassociatedvith genescontributing to an ob-
senabletrait (for example,a disease).Recombinatiorin
the populationis key to this determinationandunderstand-
ing thehistoryof therecombinationss thekey to doingthis
kind of mapping.



00000

M
a: 00010
3 b: 10010
¢: 00100
d: 10100
e: 01100
00100 f: 01101

g: 00101 @4/ 5

a: 00010
Conflict Graph for M

10010

b:10010 c¢: 00100

00101
01100

g:00101

e: 01100 01101

d: 10100

f: 01101

Figure 2. A galled-tree deriving the same se-
guences as the phylogenetic network in Fig-
ure 1. Unlike the example shown here, in gen-
eral the recombinant sequence exiting a gall
may be on a path that reaches another gall.

1.2 Which Phylogenetic Networks are Biologi-
cally Informative?

It is easyto show thatfor every binary matrix M, there
is a phylogeneticnetwork N that derives M using©(nm)
recombinationnodes,but that is not of greatinterestbe-
causein mostevolutionary historiesthe numberof recom-
binationsis thoughtto be relatively small (on the order
of the numberof mutations). Hencea more biologically
informative problemis to find, for input M, a phyloge-
netic network that generates\/, andthat eitherhassome
biologically-motivatedstructure or usegheminimumnum-
ber of recombinations.We call that numberm;,,;. Wang
et al. [12] shoved thatthe generalproblemof computing
myy IS NP-hard,and Hudsonand Kaplan [6] and Myers
andGriffiths[9] give combinatoriaimethodgor computing
lowerboundsonm .

1.2.1 Galled-trees: A biological and algorithmically
motivated structural restriction

Giventhe NP-hardnessf the problemof computingm,,
Wangetal. suggested structuralrestrictionon the permit-
ted phylogeneticnetworkswhich has both biological and
algorithmicappeal.

Definition 1.2 In a phylogeneticnetwork N, let w be a

nodethat has two pathsout of it that meetat a recombi-
nationnodez. Thosetwo pathstogetherdefinea “r ecom-
binationcycle” ). Nodew is calledthe“coalescentnode”
of (), andz is therecombinatiomodeof (.

Definition 1.3 A recombinationcycle in a phylogenetic
networkthat shaesno nodeswith anyotherrecombination
cycleis calleda “gall” (imaginea wasps gall in a tree).

We say a site i “appears” on a gall @ if i labelsone of

theedgesf ). We usetheterm*“r ecombinatiorcycle” for

geneanl phylogenetimetworks.

Definition 1.4 A phylogenetimetworkis calleda “galled-
tree” if everyrecombinatiorcycleis a gall. SeeFigure 2.

A galled-treedefinesa phylogenetichistory wherethe
recombinatiorcyclesare node-disjointusingat mostm/2
recombinations. A phylogeneticnetwork is likely to be
a galled-treeif the level of recombinatioris moderate or
if most of the obsenable recombinationsare recent. In
Human populations,both conditionsare believed to hold.
Otherexamplesof galled-treesarisein the datareportedin
[8]. Thesimplestcaseis whenwe studyaninterval in the
genomewhereonly a single recombinationhasoccurred;
the true history of the sequence# that interval takesthe
form of a galled-tree. More generally it is important(in
diseasessociatiorstudies for example)to find regions of
thegenomenherethesubsequences a populationexhibit
moderataecombinationandthe galled-treealgorithmcan
be usedto find suchregions. We will shov thatwhen se-
guenceganbe derived on a galled-tree the galled-treeis
“essentially-unique”Thus,if the sequencedid derive his-
torically on a galled-treethe algorithmwill correctlycap-
turetheessentiahistory of the sequences.

Furthermotivationfor galled-treesomesfrom the fact
thatif A canbe derived by a galled-treethenit canbe
derivedby atruetree(nounderlyingundirectecycles)with
atmostonebackmutationpersite. A treewith limited back
mutationss anothemodelof interestthatdeviatesfrom the
perfectphylogery model.

Galled-Tree Problem: Givena set M of n binary se-
guences,each of length m, determineif there exists a
galled-tre€el” thatderives M, andif thereis one,construct
one.

Wangetal. [12] giveanO (nm+n*)-time algorithmthat
wasintendedto solve the Galled-Tree Problem. This work
is seminalasit is thefirst paperto introducea biologically
motivatedstructuralrestrictionfor a phylogeneticnetwork
thatallows a polynomialtime algorithm.Unfortunately the
algorithmin [12] is incorrect,andonly providesa sufficient
conditionfor the existenceof a galled-treefor A1.

Main Result Here we develop a faster algorithm
(O(nm + n3)-time) thatcompletelysolvesthe Galled-Tree



Problem. We also shawv that if thereis a galled-treefor
M, thenall galled-treedor M usethe samenumberof re-
combinationswhich we conjecture,but have not proved,
is mys. Our “canonical” solutionin “essentially-unique”,
minimizesthenumberof sitesontherecombinatiorcycles,
andcanbeusedto countandproduceall thegalled-treegor
M.

In obtainingtheseresults we developcombinatoriaton-
straintsthat apply to galls in ary phylogeneticnetwork
(whethera galled-treeor not). This is usefulasa first step
in understandinghylogeneticmetworksin general andfor
specifictasks suchasproving thata givensitecannotbeon
ary gall in ary phylogeneticmetwork. We alsoshaw that if
M canbe derived by a galled-tree thenit canbe derived
by atruetree (without underlyingcycles)with at mostone
backmutationpersite,andthattheproblemof remaving the
minimum numberof sitesof M, sothattheremainingsites
have a perfectphylogery (an NP-hardproblemin general)
canbesolvedin lineartime.

2 Combinatorial definitions and observa-

tions

We organizeM into a matrix,whereeachrow containsa
sequencén M, andassumeéhereareno duplicatecolumns.
We alsoassumdor simplicity of expositionthatthereare
no duplicatecolumns andthateachcolumnhasatleastone
entrythatis 1.

2.1 Combinatorial Background and Major Com-
binatorial Tool

Definition 2.1 Two columns(or sites)in M are said to

“conflict” if andonlyif thetwo columnscontainthreerows
withthepairs1,1;0,1; and1,0. Asiteis called“conflicted”

if it is involvedin at leastone conflict, and is otherwise
called“unconflicted”.

Recallthat a perfectphylogery is a phylogeneticnet-
work without recombinations.Hence,asa graph, it is a
directedrootedtree. Thefollowing is the classicnecessary
andsufiicient conditionfor the existenceof a perfectphy-
logery deriving a setof sequenced/. See[2, 3] for one
exposition.

Theorem 2.1 Thee is a perfectphylogenyderiving M if

andonlyif matrix M containsno conflictingsites.Further,

if thereis a perfectphylogenyfor M andall columnsof M

are distinct,thenthere is a uniqueperfectphylogenyfor A7,

and ead edgeis labeledby at mostonesite If there are

identical columns thenthe perfectphylogenyis uniqueup

to any ordering givento multiple sitesthat label the same
edge

Henceit is the existenceof conflictsin M that require
a deviation from the perfectphylogery model,andin this
paper requirerecombinationén orderto derive a history of
M.

Major Tool: The Conflict Graph andits Connected
Components

The centralcontribution of this paperis to obsere that
thereis combinatorialstructurein the patternof conflicts
betweercolumns,andthatthis structurecanberepresented
andexploitedto obtaininsightsaboutrecombinatiorn phy-
logeneticnetworks. We now introducethe conflict graph,
which representsand exposessome of the combinatorial
structure.

Definition 2.2 Theconflictgraph G containsonenodefor
ead sitein M. We label eadh nodeof G by the siteit rep-
resents.Two nodesi andj are connectedy an undirected
edgeif andonlyif sitesi andj conflict. SeeFigure 2.

Overview: The connectedcomponentof G are par
ticularly important. We will show that thereis a one-one
correspondencbetweerthe non-trivial connecteccompo-
nentsof G andthe gallsin a galled-tree:more generally
every gallin ary phylogenetimetworkcontainsall thesites
of one(non-trivial) connectedcomponentand containsno
sitesfrom another(non-trivial) connectedcomponent Fur-
ther, no gall needcontainary unconflictedsites. It follows
thatevery galled-trefor M usesthe samenumberof galls,
andthe samenumberof recombinations.

2.2 Combinatorial Constraints on Galls

In orderto prove the claims madein the overview, we
next begin an examinationof the combinatorialconstraints
on gallsandgalled-trees We statethe neededemmasand
theoremsut omit thelongerproofsfor lack of space.

Lemma2.1l Let@ bea gall in a phylogenetimetwork N
and v be a nodeon ). Define N’ as the subnetworkof
N consistingof all nodesand edgeseadable by directed
pathsfrom v, not usingany edgesin @, i.e., the maximal
subnetworlbranding off of @ at ». If sitei appearson @,
thenthe stateof site: at everynodein N’ is thesameasat
nodev.

Proof Supposedhatat somenodein N’, the stateof i
is differentthanit is atv. Let 2’ be sucha nodewith the
propertythatat every ancestoof z’ in N/, the stateof 7 is
the sameasat nodewv. Sincei only mutatesonce(on @),
the stateof 7 cannotchangen N’ dueto mutation,andcan
thereforeonly changedueto recombinationHence z’ must
bearecombinatiomode.Now if bothparentsof 2’ werein



N’, thenby the choiceof z’, the stateof : at both parents
would be the sameas the stateat v, andthat statewould

be unchangedat =’ regardlessof wherethe recombination
point r,, is. Sooneof the parentsof z’, call it p, mustbe

outsideof N’. Now considera pathfrom p backtowards
theroot, andlet w bethefirst ancestoof v reachedn this

path.Notethatw couldbe v, andin thatcasethe pathalso
intersectsa descendendf v on ). But the pathfrom w to

x’ throughp, togethemwith the pathfrom w to =’ through
v, formsarecombinatiorcycle thatsharesatleastoneedge
with @, contradictingthe assumptiorthat @) is agall. So

thestateof site: atevery nodein N’ mustbethesameasat

nodev. O

Definition 2.3 Let C' be a setof siteson a gall @), andlet
the matrix M (C') bematrix M restrictedto the sitesin C.
Givena phylogenetimetworkfor M, let S, (C') denotethe
sequencéabelingnodew, restrictedto thesitesin C'.

Lemma2.limpliesthefollowing

Corollary 2.1 Asequencésin M (C) if andonlyif it isthe
sequencss, (C') for somenodev on (). Stateddifferently,
the nodelabelsat nodeson @, restrictedto sitesin C, are
exactlythesequencem M (C).

Proof Thesequencem M (C') arethe sequencekbel-
ing theleavesof N, restrictedto C. If aleafz is reachable
fromanodev in @, notusinganedgein @, thenby Lemma
2.1,5,(C) andS, (C) arethesame.lf leaf z is not reach-
ablefrom ary nodewv in @, thenit musthave stateO for
every site i thatmutateson (). In thatcasesS, (C) is all ze-
ros,whichis S, (C'), wherew is the coalescenhodeof Q.
g

Corollary 2.1 is importantbecauseét saysthatinforma-
tion aboutthe (interior) nodelabelson ary gall is reflected
in somesequenceattheleases,andhencethatis contained
in extantsequencesThisis apropertyof gallsthatdoesnot
generalizeo every non-gallrecombinatiorcycle, andis in-
tuitively oneof the reasonsvhy problemsconcerninggalls
andgalled-treedave efficient solutions.

Definition 2.4 A node v on a recombinationcycle @) is
calleda“br anching node” if thereis a directededge(v, v')
whee v’ isnotonq@.

Thefollowing theoremis thetechnicakey to mostof the
analysisof the combinatorialstructureof galled-treeslt is
provenby caseanalysiswhich we omit.

Theorem 2.2 Let T' be a galled-tree for matrix M. Two
sitesi andj > i in M conflictif andonly if the following
conditionshold:

a) i andj aretogetheron the samegall (call it @) in T,
with recombinatiomodez, and: < r, < j.

b) Sitesi andj arearrayedon () in oneof thefollowing
threeways(seeFigure3):

W1: Site: is on the P-sideand j is on the S-side of @,
andthereis a branchingnodebetweeni andz, anda
branchingnodebetween; andz. Note: In this case,
thei, j state-paiin therecombinansequencés 1,1.

W?2: Sitesi andj arebothonthe P-sidewith j abovei (i.e.,
j mutateseforei does) andthereis abranchingnode
between; andi, anda branchingnodebetweeni and
z. In this casethe i, j state-pairin the recombinant
sequenceés 1,0.

Wa3: Sites: andj are both on the S-side with i above j,
andthereis a branchingnodebetween: andj, anda
branchingnodebetweenj andz. The state-paiiin this
cases0,1.

00 00

11

W1 W2 W3

Figure 3. The three cases for Theorem 2.2.
In each case, the recombination point z, is
between i and j.

Thealgorithmin [12] is only a sufficient testfor the ex-
istenceof a galled-treehatexplains M, becausét (implic-
itly) assumeshat a pair of sitescan conflict only dueto
arrangemenW1. Equivalently, the algorithmin [12] cor
rectly determinesvhetheror nottheinput sequencesanbe
generatedn a galled-treel” having the addedconstraint:
for eachsite i, if site: mutateson anedgee, thenthe state
of ¢ remainssetat 1 at all nodeswhich arereachabldrom



the endof e. Henceoncethe stateof : mutatesfrom O to
1, it never returnsto 0, even throughthe actionof recom-
bination. Thatis a severerestrictioncomparedo whatis
allowed by the generaldefinition of a galled-tree. In the
galled-tredn Figure2, the stateof site4 mutatesrom 0 to
1, butthenis returnedo 0 throughrecombinationin thegall
shavn ontheleft.

We now statethe theoremdeadingto the one-onecor
respondencbetweerconnectedomponentsn the conflict
graphfor M andthegallsin agalled-tredfor M.

Theorem 2.3 For any non-trivial connecteccomponent”
of the conflictgraph, and any galledtreeT" for M, all the
sitesin C' mustoccurtogetherona singlegall in 7.

Proof This follows by transitity from the necessary
directionof parta) of Theoren?2.2,andthefactthatfor ary
pair of sites: andj in C, theremustbe a pathconnecting
tojinC.O

The following theoremis the complemento Theorem
2.3. It greatlyconstrainghe structureof ary galledtreefor
M andsimplifiesthe developmeniof an efficient algorithm
to find agalledtreefor M.

Theorem 2.4 Let T' be a galled-treefor M. If sitesi and
' are on differentnon-trivial connectedcomponentsf the
conflictgraph, thenthey mustappearon different galls of
T.

We prove Theorem2.4 by using the following lemma,
whichis of interestin its own right.

Lemma2.2 Let@ beagall in T with recombinatiomode
z, andrecombinatiorpoint r, andlet s, ¢, j, ;' be siteson
@, whee conflictswith j > 7 and’ conflictswith j/ > .
Theneither: conflictswith 5/, or ' conflictswith .

Proof of Theorem2.4: Leti andj > i be conflicting
siteson one non-trivial connecteccomponentand: and
J' > ' beconflicting siteson anothemon-trivial connected
component.If thesefour sitesare all togetheron a single
gall @, thenwith respectto the recombinationpoint r of
thatgall, i andi’ arebelow r, andj and;’ areeachequalto
or above r. Soby Lemma2.2, either: conflictswith j or#’
conflictswith j. But that contradictghe assumptiorthat i
andj areonadifferentconnectedomponenbf theconflict
graphthanare:’ andj’. Hence: andj areononegall and:’
andj’ areon another But by Theorem2.3, all siteson the
sameconnectedcomponenaretogethemn asinglegall, so
ary two siteson two differentconnectedomponentsireon
differentgalls. O

Theorems2.3 and 2.4 togetherimply a one-onecorre-
spondencédetweenthe non-trivial connectedccomponents
of the conflict graphand the galls in a galled-tree: more

generally every gall in ary phylogeneticmetworkcontains
all the sitesof one (non-trivial) connecteccomponentand
containsno sitesfrom anothernon-trivial) connectedom-
ponent.

Sofar, we have only addressedonflictedsiteson agall.
Thenext theoremaddresseanconflictedsites.

Theorem 2.5 Let N bea phylogenetimetworkwith a gall
() that containsunconflictedsites,We cantransform to
another phylogeneticnetwork N’ with the samenumber
of recombinationswhele the unconflictedsitesof ) are
movedto edgesincidentwith @ (after which @ contains
only conflictedsitesor no sites),the internal arrangement
of any conflictedsiteson @ is thesamein N and N’, and
all otherdetailsof N remainthe same If theremaininggall
containsno sites,it canbe contractedto a singlenode

Corollary 2.2 If thereis a galled-treefor M, thenthere is
a galled-treewhele the numberof recombinationss exactly
the numberof connectedcomponentsf the conflictgraph,
which is the minimumnumberof recombinationghat any
galled-treecanhave

In theremainderof the paper wheneer we assumehe
existenceof agalled-treel” for M, we assumewithout stat-
ing it, thatthe gallsof 7" only containconflictedsites. Fur-
ther, until Section5, unlessstatedotherwisewe assumehat
all sitesareinvolvedin someconflict, i.e., we completely
ignoreunconflictedsites.

3 Arranging the gall Q¢

The one-onecorrespondencéetweennon-trivial con-
nectedcomponentandgallsin a galled-treegreatlysimpli-
fiesthetaskof creatinga galled-treefor M. We canfocus
independentlyon eachnon-trivial connecteccomponent”
of theconflictgraph,to determinenow thesitesonthatcom-
ponentare arrayedon the gall @<, andhow to selectthe
recombinatiormpoint for Q¢. In this sectionwe shov how
to efficiently accomplishthesetasks.

3.1 Selectingthe recombinationpoint r on Q.

Lemma 3.1 If thereis a galled-treefor A7, theneverynon-
trivial connectedcomponentC' of the conflict graph must
be bipartite, and the bipartition is unique: the (indicesof
the) siteson onesideof the bipartite graph mustbe strictly
smallerthanthe siteson the otherside

Lemma3.1 givesanecessargonditionthat canbeused
to prove thatcertainsetsof sequencesannotbe derivedon
agalled-tree For example,seeFigures4 and5.

Proof All thesiteson C' mustmutateonasinglegall @,
and(@ hasonly asinglerecombinatiorpoint». By Theorem



2.2a),: < r < j for ary conflicting pair ¢, j in C' where
i < j. Thereforeeachedgein C' connectonesite whose
index is belov r andonesite whoseindex is at or above r.
O
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Figure 4. The phylogenetic network gener-
ates the sequences M shown to the right.
Although this network is similar to the one
shown in Figure 1, and only sequence g is dif-
ferent, M cannot be derived on a galled-tree .
See Figure 5.

Definition 3.1 Giventhebipartite graphfor C, wecall the
sidecontainingthe smallersitesthe L« (left) side,andthe
othersidethe R¢ (right) side

It is easyto find the bipartitionandselectr: let p bethe
largestnode(site) in C' which is connectednly to larger
nodes,andlet ¢ be the smallestnodein C' which is con-
nectedonly to smallernodes. Thenr canbe chosento be
ary integerstrictly largerthanp andlessor equalto ¢, and
thisdefinesL< andR¢.

By a muchmore detailedanalysisof the combinatorial
structureof gallswe canprove astrongerresultthanLemma
3.1:

Theorem 3.1 Let N be an arbitrary phylogenetimetwork
for M. Thesitesin a connecteccomponent” can appear
onagallin N onlyif C is a bipartite graphwith the bipar-

tition describedn LemmaB3.1,and ' is a bi-convexgraph.
A bipartite graphis bi-corvex if the nodesof the graphcan
berenumbeed sothat for any nodew, the setof nodesthat
v is adjacentto form a contiguousntervalin thenew node
numbers.

M

a: 00010
b: 10010
¢: 00100
d: 10100
01100 1 2°3 4 5
. 01101

g: 00001

Figure 5. The conflict graph of the sequences
M from Figure 4 is bipartite, and the bipar -
tition is unique, but it does not have the re-
quired properties stated in Lemma 3.1.

Conflict Graph for M

Thisis a very useful,generatheoremsinceit allows us
to identify moreconnectedccomponentsvhosesitescannot
appearwn agall in ary phylogenetimetwork. Onecande-
termineif a graphis bi-corvex in polynomialtime andalso
find a minimum nodecover of a bi-corvex graphin linear
time. It is easyto seethatthe minimumnumberof columns
to remove from M sothatno conflictsremain,is givenby
theminimumnodecover of theconflictgraph.Thisis called
the “site consisteng” problem,andit is NP-hardin gen-
eral[1]. However, the nodecover problemcanbesolvedin
polynomialtime (by networkflow) on ary bipartitegraph.
Sowhenthereis a galled-treefor M, the site-consistenc
problemcanbe solvedby networkflow in polynomialtime,
and even fasterby exploiting the fact that eachconnected
componenmustbe bi-convex.

3.2 Arranging the sitesof C' on Q¢

We now describenow to arrangehe sitesof C' onagall
Q¢ . Corollary2.1will bea centraltool.

To understandhe methodfor arrangingthe siteson a
gall, considera fixedgalled-treeT” for M, andfocuson the
arrangemenf sitesof C' ongall Q¢ in isolationof therest
of T'. Now remoretherecombinatiomodez from -, and
thetwo edgesenteringz Theresultinggraphconsistof one
or two directedpathsstartingat the coalescenhodeof )¢,
and containingall the sitesin C. If it only containsone
path,thendenotethe coalescenhodeasw, andthe single
endnodeasu; otherwiselet v andw bethetwo endnodes
of thetwo paths.For eachnodewv otherthanthecoalescent



node,addan edgefrom v branchingoff of Q¢, andlabel
its leaf endwith S, (C). Theresultis a perfectphylogery,
denotedl'(C), that of course derivesthe sequencetabel-
ing theleavesof T'(C'). Further S,(C) canbeformedby
arecombinatiorof thesequences, (C) andS,, (C) atthe
recombinatiorpoint r determinedrom C'.

By Corollary 2.1, the leaf labelsof T'(C') are exactly
the sequence#n M (C'), otherthanthe sequences, (C).
Thatis, T(C') is a perfectphylogery for all the sequences
in M (C), otherthanS, (C). Hence we have

Theorem 3.2 Thee is a sequenceX in M (C'), suc that
afterremovalbf all copiesof X, thereis a perfectphylogeny
for the resulting matrix; the labelededgesof that perfect
phylogenycontainall sitesin C' organizedinto oneor two
paths; and the recombinatiorof the two “end” sequences
(either the root sequencend the single leaf sequenceor
thetwoleaf sequencesittherecombinatiorpointr, creates
sequencex.

Now, by Theorem2.1, ary matrix which hasa perfect
phylogery hasauniqueperfectphylogery aslong asno or-
deringis givento multiple siteson edges.Hence given M
and C, if we could guessX, we could createthe correct,
unique perfectphylogery andexactly recreate¢hearrange-
mentof siteson Q¢ asgivenin 7.

However, sincewe do not know X, if we remove all
copiesof differentsequencé”, andyet thereis a (unique)
perfectphylogery for the resultingmatrix, where all the
sitesin C' are containedin one or two paths,and the re-
combinationof thetwo endsequenceat point r creates’,
thenthis new perfectphylogery canalsobeusedto arrange
thesiteon ). To seethis, notethatthenodelabelsonboth
arrangementareexactly the same:restrictedo C', bothar
rangementsdabel the nodeswith the sequencein M (C),
andonly sitesin C' appearon Q<. The stateof eachsite
notin C is identicalatevery nodeon (. Hence thetwo ar-
rangementsf siteson C' induceapermutatiorof thenodes
on@ ¢ andof theedgesutof Q) ¢, but areindistinguishable
outsideof (). Notethatin all arrangementsn @ ¢, these-
guenceabelingthe coalescenhodecontainsonly zerosat
the sitesin C'. Hence,all arrangementsf the siteson Q¢
canbefoundby thefollowing algorithm:

Site-Arrangement Algorithm

1) Let M (C') bematrix M restrictedto thesitesin C.

2) For eachdistinctsequenceX in M (C') do: let M’ (C')
be M (C) afterthe removal of all rows with sequenceX.
Checkif thereis a (unique)perfectphylogery for M'(C'),
andif so,checkif all sitesonC' arecontainedn oneor two
pathswhoseendsequencesanberecombinedt pointr to
createX . If theanswels “yes”, thenoutputanarrangement
of thesiteson Q¢ consistentvith this perfectphylogery.

Specializingo galled-treeswe have established,

Theorem 3.3 Assuminghat there is a galled-treefor M,
every arrangementof siteson Q¢ that is usedin some
galled-tree,can be found as above The setof sequences
labeling nodesof Q¢, restrictedto C, is invariant overall
thearrangementsandall thegalled-treesfor M.

Time Analysis: Giventhe matrix M'(C') with n rows
andat most|C'| columns the perfectphylogery algorithms
in [2, 3] candetermineif thereis a perfectphylogery for
M'(C), andconstructit, in O(n|C|) time. So, all the ar
rangement®f @) thatare usedin ary galled-treefor M
canbe foundin O(n?|C1) time, andover all the galls, the
time to find all thearrangementthatappearon ary galled-
treeis O(n?m). It wasestablishedh [12] thatm canbeat
most2n if thereis a galled-treefor M, sothetotal time is
O(n?).

By a more detailedanalysisof how the siteson a gall
can be arranged,we have developedan alternatie algo-
rithm for arrangingthe siteson a gall, whoserunningtime
isonly O(n?). However, thedetailsrequiremorespaceand
areconceptuallymoreinvolvedthantheapproachliscussed
here.

We have claimed that the galled-tree for M is
“essentially-unigue”Theone-oneorrespondendeetween
connected-componentand galls is the first part of that
claim. We now show thatthe numberof arrangementsf
the siteson a gall is very limited, further establishingthe
“essential-uniqueness”.

Theorem 3.4 Let C' be a (non-trivial) connectedcompo-
nentof the conflictgraphwhosesitescanbearrangedon a
gall @ in a phylogenetimetworkfor theinput. Thesitesin
C canbearrangedon @ in at mostthreedistinctways.

Proof We have alreadyestablishedhateachdistinctar
rangemenbf siteson () is associatedvith onedistinct se-
quenceX in M (C), with the propertythatwhenall copies
of X areremoved from M (C), the remainingsequences
in M (C) canbe generatedn a uniqueperfectphylogery.
Hence ,whenall copiesof X areremored from M (C), all
conflictsbetweenpairsin C arebroken,andwe canbound
the numberof distinctarrangementsn ¢ by boundingthe
numberof sequence#n M (C) whoseremoral breaksall
conflictsamongpairsin C.

Let i, j bea conflicting pair of columnsin C. In order
for theremorval X to breakthes, j conflict,therow for X in
M (C') mustcontainoneof thethreestate-pair®,1or 1,00r
1,1in columnsi, j, andno otherrow in M (C') cancontain
that state-paifin columnsi, j. It follows thattherecanbe
at mostthreerows in M (C') whoseremoval canbreakthe
1, j conflict, and hencethere canbe at mostthreedistinct
arrangementsf thesitesin C on@. O

We canstrengtherthis resultto show thatthe sitesin C'
bearrangedn @ in threewaysonly whenC' hastwo sites,



asin Theorem2.2. Otherwise,Q canonly be arrangedn

two ways. Moreover, if C' hasat leasttwo sitesthat are
belon andtwo sitesthatareabove the recombinatiorpoint
(ary onefor C will do),thenthesitesin C' canbearranged
on @ in only oneway. We omit the proofs dueto space
limitations.

4 Connectingthe gallsin a galled-tree

Now we explain how to connecthe gallstogetherinto a
singlegalled-tree.Let T' be a particulargalled-treefor A/
andlet @ and@’ betwo gallsin 7. Gall () is an“ancestor”
of agall Q' in T if thereis a directedpathin 7" from some
nodeon () to thecoalescenhodeof )’. If neithergall is an
ancestoof theother thenwe saythatthey are“incompara-
ble”. Thealgorithmto connecthegallswill firstdeducehe
ancestryrelationsbetweenpairs of galls. We will seethat
the ancestryrelationsareinvariantover all the galled-trees
for M.

SinceT is a particulargalled-treefor M, the arrange-
mentof siteson ) and @’ is determined.In that arrange-
ment,let fp and fs bethefirst sitesonthe P andS sides
respectrely on Q. Define fr and f§ similarly for Q. As-
sume,without lossof generality that fs and f§ exist. The
analysigs symmetricfor the otherthreecombinationspne
of which mustexist. Also, let i, j be a pair of siteson @
thatconflictwith eachother Notethatattherecombination
nodefor (), thestateof atleastoneof i or j is setto 1, say
i. Notethat: mightbe fp or fs. Similarly, thereis asite s’
thathasstatel attherecombinatiomodefor @’.

Now let Z’ beary row of M with alin columnff (there
mustbe onesince f% is involvedin a conflict). If @ is an
ancestonof @)’ thenZ’ musthave a 1 in atleastone of the
columnsfor fg, fp ori. Similarly, let Z beary row of M
with a 1 in column fs. If @' is anancestorof ) thenZ
musthave a1 in at leastoneof the columnsfor f{, f5 or
V. So(@ and@’ areincomparablef andonly if neitherof
theseconditionshold for rows 7/ and 7.

With the properdatastructurefor M, rows 7’ and 7
canbefoundin constantime, andin constantime we can
checkthose(up to six) entriesin rows 7’ andZ. Soin con-
stanttime, we candeterminewvhether) and@’ areincom-
parableor not. If comparablethenwe have found a row
whichhasa 1 in acolumngq for asitethatappear®n @ and
alinacolumng’ for asitethatappear®n @’. Thatmeans
thatthereis a pathfrom theroot of T' that passeshrough
boththe edgeswheresitesq andq’ mutate. We claim that
@ is anancestoof @’ if andonly if siteq hasstrictly more
1'sin its columnthandoescolumng’. To seethis, notefirst
thatby Lemma2.1, site ¢ appearseforeq’ on the pathif
andonly if siteq hasal in every row wheresite ¢’ hasa 1.
Moreover, for ary conflictedsite on a gall, theremustbe at
leasttwo nodeson thatgall wherethatsite hasstatel, soa

tie for the largestnumberof 1'sin columnsg andq’ is not
possible Hence,

Theorem 4.1 In constanttime we can determinef @ and
Q' are companble,andif so,determinewhich is theances-
tor of theother Theke are at mostO(m) = O(n) galls, so
over all the pairs of galls, we can determinethe ancestry
relationsin O(n?) time

A gall @ is calledthe “immediateancestor’of a gall @’
in 7' if @) is anancestoof ()’ andnodescendentf () is an
ancestoof @’. Every gall in T thathasanancestoin 7T,
hasa unigueimmediateancestgrandthe ancestorelation
computedabore is the transitive closureof the immediate-
ancestorelation. Hence,given a fixed arrangementf the
siteson eachgall, to find the immediate-ancestd(if ary)
of eachgall, we find thetransitive-reductiorof theancestor
relation. This canbe donein O(n?) time becauseachgall
hasauniqueimmediateancestofwe leave the detailsto the
reader).

This identifiesfor eachgall @', its immediateancestor
@ in T', or determineghat )’ hasno ancestar Sincewe
areignoring unconflictedsites,every site appearon some
gall, soin 7" a gall is connectedo its immediateancestor
by a singleedge(ratherthana path). If @ is theimmediate
ancestoof @)’, we next wantto determinghespecificnode,
callit (@, Q'), on @ whichis connectedy a singleedge
to thecoalescenhodeof @' in 7.

Leti, j beaconflictingpairon @ andlet /' beasequence
in M with alfor f§ or fp. We claim thatthe 0/1 stateof
the i, j pair at recombinatiomnode z of @ is found at no
othernodeon @. Hencev(Q@, Q') is nodez if andonly if
F hasthe same0/1 statefor 7, j thatis foundat z. If that
determinatiorfindsthatv (@, Q') is notz, thenF musthave
a1 for exactly oneof fp or fg, whichidentifiesthe sideof
Q thatv(Q, Q') is on. We thenwalk from the coalescent
nodeof () alongthatsideuntil eitherencounteringheedge
e into therecombinatiomode ,or encounteringhefirst edge
e containinga site i suchthat F' hasstateO for ;. Node
v(@, Q") is the nodeat the headof edgee. Sinceeachof
the O(n) sitesis on atmostonegall, the total time to find
all thethesenodesis O(n).

We let T' denotethe digraphdeterminedto this point,
i.e., consistingof all the arrangedgalls connectedby the
immediateancestryedges.

Now theabove expositionanddeterminatiorof ancestry
relationswasbasednassuming particulararrangementf
siteson eachgall. But from Theorem3.3, differentarrange-
mentsof the siteson a gall merelypermutethe positionsof
the nodes,andthe branchingedgesattachedo them. This
clearly doesnot changethe ancestryandimmediateances-
try relations.Therefore we canuseary permittedarrange-
mentof the siteson the gallsto determinel’, and



Theorem 4.2 Thedigraph T is uniqueup to the different
permittedarrangementsf nodesnsidethegalls.

Theoremd.2is areflectionof the“essentiauniqueness”
of thegalled-treeshatderive M .

Corollary 4.1 Ignoring the issueof how to place the un-
conflictedsites,if there are k¥ connecteccomponentsf the
conflictgraph, and the siteson component’, can be ar-

rangedn A, differentways thenthenumberof galled-trees
for M is e(actIyngAq.

Algorithmically, Theorem4.2implies

Corollary 4.2 Giventhegalls, and an arrangemenbf the
siteson thegalls, 7' canbedeterminedn O(n) time. Fur-
ther, if there is a galled-treefor M, any 7' determinedat
this point can be extendedto a galled-treefor M, by plac-
ing the unconflictedsiteson edgesof T betweergalls, and
possiblyaddingnew edgescontainingunconflictedsites,or
new edgedeadingto leaves.

5 Adding the leaf sequencesand the uncon-
flicted sites

Tofinish constructinghe galled-tredor M, we mustex-
tend7" by addingin ary unconflictedsites andplacethese-
guence®f M atspecificleases,possiblyaddingadditional
treeedgesoutsideof ary galls.

First,let 7 bea sequenc¢hathasstatel for a conflicted
sitei. Thenin ary galled-treel” for M , theleaflabeledwith
7 mustbe below the gall containingi. Corversely ary se-
guencdabelingaleafin T belov a gall, musthave a 1 for
at leastonesite on thatgall. Therefore,we candivide the
sequencemto thosethathave atleastonel for aconflicted
site,andthosethatdon't. The sequence the secondset
(if ary) mustbe derivable on a unique perfectphylogery
that mustbe the upperpart of ary galled-treefor M. We
canefficiently constructthat perfectphylogetry, anddeter
mine whereeachgall in T residesrelative to that perfect
phylogery (we leave thedetailsto thereader).

Next, for eachsequencé’ in the first setof sequences,
we will find the nodewvz in T' suchthatin ary galled-tree
for M, vy is thelastnodein T on the pathfrom the root
to leaf Z. To do this, we do a bottom up traversalof T,
only traversinga gall aftertraversingall its descendentgt
the startof the bottomup traversal,all sequences M are
unmarked.Let i, 5 be a conflicting pair that appearson a
gall Q. Wetraversegall ) asfollows. Declaretherecombi-
nationnodez to be nodevy for every unmarkedsequence
which hasthe samei, j statesasin z; markall of thosese-
guences.Thentraverseone side of @, andfor eachsite p
encountered@just abose a nodev), declarenodev to bewy
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for eachunmarkedsequence’ which hasstatel for site p;
markall of thosesequencesThentraversethe othersideof
@ in asimilar manner ThetraversaltakesO(n?) time and
findsthe nodewv; for eachsequence”Z in M. For eachZ
in thefirst set,we extendanedgefrom vz to aleaflabeled
with Z. This placesall the leavesfor the sequencemn M
eitherin aperfectphylogery above T', or ataleafconnected
by anedgeto anodein 7.

Let 7" denotethe digraphconstructedo this point. For
expositionpurposesve furthermodify 7" asfollows. For a
nodev onagall @, let V bethe setof nodesnot on @) that
areimmediatedescendentsf v. If |V| > 1, createa new
edgefrom v to anew nodev’, andconnect’ to every node
in V. Theeffectis thateverynodev onagall will have only
oneedgebranchingoff thegall from .

Next, with anothebottom-uptraversal labeleachedges
with (theindex of) onesequence’ (e) suchthatnodevy )
is below e. In casethereis morethanoneto choosefrom,
choosearbitrarily.

Now we turn to the issueof addingin the unconflicted
sites. Sitesthat are part of the upper perfect phylogery
aboe T needno further attention. For ary other uncon-
flicted site 4, do the following: Find a sequenceZ in M
which hasa 1 for site i, and starta walk from the leaf la-
beledwith Z towardstherootof 7". Let v beanodeentered
alonganedgee’ duringthistraversal,andlet p beits parent
node.If v isonagall @, thenjump to the coalescenhode
of @ andcontinuethewalk from there. If » is not on ary
gall, thenexaminethesequence’ (e) for eachedgee outof
v otherthane’. If noneof thesesequencéave al for site
i, thenplacesite: onedgee’. If every oneof thesequences
have a 1 for site i, thencontinuethe upwardwalk from w.
If someof the sequencebave a 1 for site 7, andsomedo
not, thensubdvide the edge(p, v) by creatinga new node
p’ betweerp andv. Disconnecfrom » every edgee whose
sequence’ (e) doesnot have a 1 for site, andreconnect
to nodep’. Thenplacethesite: onthe(p’, v) edge.

The time for placingthe unconflictedsitesis O(n) per
site,s0O(n?) overall. We leave the proof of correctnesso
thereader

6 Time bound and Correctness

All of the resultsgiven abore assumehe existenceof a
galled-treefor the input M. Theseresultsimply the cor
rectnes®f the algorithmderivedfrom them,whenthereis
agalled-tredor M. Whenthereisn't one,thealgorithmei-
therwill notbeableto executearequiredstep,or it will run
to completionproducingsomegalled-tree.At termination,
we checkwhetheror not the galled-treederives M, andif
not, correctlyreportthatthereis no galled-trefor A1 .

Theoveralltime boundfor thealgorithmis theminimum
of O(nm+n?) andO(nm?+n?) time. If m > 2n, thenwe



first find andremove all duplicatecolumnsin O(nm) time.
If the numberof remainingcolumnsis morethan2n then
M hasnogalledtree[12]. Thenwe build theconflict graph
in O(n?) time. Alternatively, if m < 2n we directly build
the conflictgraphfrom M in O(nm?) time. Thereafterall
stepsof thealgorithmtakeO(n?) time.

7 Relationto the back-mutation model

Anotherdeviationfrom theperfectphylogery modelthat
is of interestis to allow alimited numberof back-mutations,
but norecombinationsA back-mutatioris amutationfrom
statel backto stateO thatoccursonanedge,i.e., it is nota
changedueto recombination.

Theorem 7.1 Anysetof sequenced/ that canbe derived
by a galled-tree,canbe derivedby a true tree (no recombi-
nationsand henceno underlyingundirectedcycles)with at
mostonemutationand onebad-mutationper site

Proof Wetakeagalled-treel" for M andtransformeach
gall @ separatelysothatno cyclesremain,but all thenode
labelsare presered. The simplestcaseis that@ hasone
side, say S, which hasno mutations(sites). Remae the
S-side (which consistsof just a single edgeinto z) from
Q. Let p denotethe P-sideparentof . Thenfor ary site
1 which hasstatel at p, but hasstateO at z, write a back-
mutationfor ¢ on the (p, ) edge. Hence@ no longeris a
cycle, but all the nodelabelson ¢ remainunchangedThe
more complex caseis thatboththe S and P sideshave at
leastone mutation. In this case,remaove the first edgeon
@ out of the coalescenhode,on eitherthe P or the S-side,
saythe S-side,andreversethedirectionof all theremaining
edgeonthe S-side.Next, for every site: thathasstatel at
p but state0 at z, write a back-mutatiorfor i onthe (p, z)
edge. For every site i thathasstateO at p but statel at z,
write themutation: onedge(p, z). Let s denotethe parent
of z onthe S-sideof ). For every site: thathasstatel at
s, but stateO at z, write the mutation: on the (z, s) edge
(which now runsfrom z to s). For every site i thathasa
statel at z, but stateO at s, write the back-mutatiorfor ¢
onthe(z, s) edge. Finally, convert eachoriginal mutation
onaremainingedgesof the S-sideto abackmutation.The
resultis that @ is no longera cycle, but all the nodelabels
arepresered. Processingeachgall in this way createsa
true true that derives M using at mostone back-mutation
persite. SeeFigure6 for anexample.O

8 OneProvableLower Bound on mas

HudsonandKaplan[6] andMyersandGriffiths [9] give
methoddor computingowerboundonmy,. Themethods
in [9] seemvery promisingandmaydowell in practice but
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Figure 6. Gall @) is shown on the left and the
result of the transf ormation is shown on the
right. The recombination point for @ is 3, writ-
ten above the recombination node. A num-
ber written on an edge is a mutation; a num-
ber followed by the letter b denotes a back-
mutation.

what hasbeenproven aboutlower boundmethodsis very

limited. In particular no existing (efficient) lowerbound
methodhas even beenproven to have the propertythat it

can alwayscorrectly determineif mjy; > 1, i.e., if more
thanonerecombinationis needed.While this is a modest
result,the algorithmin this paperdoesprovably have that
property A phylogeneticnetworkusingjust onerecombi-
nationis agalled-treeandsotheconflictgraphmustconsist
of asinglecomponentln thatcasethealgorithmin this pa-

perwill constructa galled-treawith a singlerecombination.
Corversely if the algorithm cannotbuild a galled-treefor

M, or cannotbuild one with just a single recombination,
thenmjs mustbeatleasttwo.

9 FutureWork and Open Questions

FutureWork: Thekey ideasintroducedn thispaperare
the one-onecorrespondencef connectedcomponentsof
theconflictgraphandgallsin agalled-treeandthefactthat
the siteson a connecteccomponent”’ canappearon agall
in ary phylogenetimetworkonly if C' is abi-corvex graph
(with additionalstructureasdetailedearlier). More gener
ally, propertiesof constraineghylogenetimetworksmore
compl than galled-treescan also be elucidatedthrough



structuralpropertiesof the conflict graph.We arepresently
developingthatviewpoint,andthoseresultswill bereported
in asubsequerpaper

Open questionsThereare mary openquestions. The
mostimmediateis: When M can be derived on a galled-
tree,is the numberof recombinationsisedm s ?
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