Generalizing the Four Gamete Condition and Splits Equivalence Theorem: Perfect Phylogeny on Three State Characters

Fumei Lam, Dan Gusfield, Srinath Sridhar

12 September 2009

A $\begin{array}{lllll}1 & 1 & 0 & 0 & 0\end{array}$
B $\quad 0 \quad 0 \quad 1 \quad 0 \quad 0$
C $\begin{array}{lllll}1 & 1 & 0 & 0 & 1\end{array}$
D $\quad 0 \quad 0 \quad 1 \quad 1 \quad 0$
E $0 \begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}$

Row = Species / Taxa
Each character takes r states (in this example, $r=2$)

Perfect Phylogeny

Perfect phylogeny:

Perfect Phylogeny

Perfect phylogeny:

- displays each species on a leaf vertex

Perfect Phylogeny

Perfect phylogeny:

- displays each species on a leaf vertex
- edges labeled by mutation events

Perfect Phylogeny

Perfect phylogeny:

- displays each species on a leaf vertex
- edges labeled by mutation events
- states in each character appear in a connected subtree

Perfect Phylogeny

Perfect Phylogeny Problem

Input: Set S of n species with m characters over r states Problem: Is there a perfect phylogeny displaying S ?

Perfect Phylogeny Problem

Two problems:
(1) If there is a perfect phylogeny, construct it

- Phylogeny is witness for YES answer

Perfect Phylogeny Problem

Two problems:
(1) If there is a perfect phylogeny, construct it

- Phylogeny is witness for YES answer
(2) If there is no perfect phylogeny, give a certificate of nonexistence
- What is the witness for NO answer?

Perfect Phylogeny Problem

If perfect phylogeny exists on the entire set of characters, then it exists for any subset of characters

A	1	1	1	0	0	0
B	0	0	1	0	0	
C	1	1	0	0	1	
D	0	0	1	1	0	
E	0	1	0	0	0	

Perfect Phylogeny Problem

If perfect phylogeny exists on the entire set of characters, then it exists for any subset of characters

Binary Input: Four Gamete Test

Binary Input: Four Gamete Test

Binary Input: Four Gamete Test

Two problems:
(1) If there is a perfect phylogeny, construct it

- Phylogeny is witness for YES answer
(2) If there is no perfect phylogeny, give a certificate of nonexistence
- What is the witness for NO answer?

Necessary condition for perfect phylogeny on binary input: Each pair of columns must contain at most three out of the four gametes

Binary Input: Four Gamete Test

This condition is both necessary and sufficient.

Binary Input: Four Gamete Test

This condition is both necessary and sufficient.
Four Gamete Test, Splits-Equivalence Theorem (Buneman 1971)
A set of binary sequences allows a perfect phylogeny if and only if no two columns contain all four pairs

00
01
10
11

Binary Input: Four Gamete Test

- Fitch (1975), Estabrook and Landrum (1975)
- McMorris (1977)

Binary Input: Four Gamete Test

- Fitch (1975), Estabrook and Landrum (1975)
- McMorris (1977)

Input: Set S of n species and m binary characters
Question: Is there a perfect phylogeny displaying S ?

- YES: If there is a perfect phylogeny, construct it
- NO: If there is no perfect phylogeny, output a pair of columns containing all four gametes

Applications

Theoretical results and practical algorithms:

- block partitioning algorithm of HaploBlockFinder
- faster near-perfect phylogeny reconstruction algorithm (Sridhar et. al.)
- phase inference (Gusfield)
- obtaining phylogenies from genotypes (Sridhar et. al.)

Extension to multi-state characters: Fitch Examples

Fitch $(1975,1977)$ showed an example S on characters over three states such that

- every pair of characters in S is compatible
- S does not allow a perfect phylogeny

Extension to multi-state characters: Fitch Examples

Fitch $(1975,1977)$ showed an example S on characters over three states such that

- every pair of characters in S is compatible
- S does not allow a perfect phylogeny

Meacham (1983):
"The Fitch example shows that any algorithm to determine whether a set of characters is compatible must consider the set as a whole and cannot take the shortcut of only checking pairs of characters."
(Theoretical and Computational Considerations of the Compatibility of Taxonomic Characters)

Multi-State Perfect Phylogeny

Bounded r (number of states):

- $r=3: O\left(n m^{2}\right)$ algorithm for testing the compatibility of ternary characters (Dress and Steel 1992)

Multi-State Perfect Phylogeny

Bounded r (number of states):

- $r=3: O\left(n m^{2}\right)$ algorithm for testing the compatibility of ternary characters (Dress and Steel 1992)
- $r=$ 4: $O\left(n^{2} m\right)$ algorithm for quaternary characters (Kannan and Warnow 1990)

Multi-State Perfect Phylogeny

Bounded r (number of states):

- $r=3: O\left(n m^{2}\right)$ algorithm for testing the compatibility of ternary characters (Dress and Steel 1992)
- $r=$ 4: $O\left(n^{2} m\right)$ algorithm for quaternary characters (Kannan and Warnow 1990)
- Polynomially solvable for all fixed r :
- $O\left(2^{3 r}\left(n m^{3}+m^{4}\right)\right)$ algorithm (Agarwala and Fernandez-Baca 1994)
- $O\left(2^{2 r} n m^{2}\right)$ algorithm (Kannan and Warnow 1997)

Generalizing the four gamete test

- If no perfect phylogeny exists for a set of sequences on $r \geq 3$ states, what is the size of the smallest witnessing obstruction set?
- Is it possible to find small obstruction sets (analogous to four gamete test)?

Generalizing the four gamete test

- If no perfect phylogeny exists for a set of sequences on $r \geq 3$ states, what is the size of the smallest witnessing obstruction set?
- Is it possible to find small obstruction sets (analogous to four gamete test)?

We answer these question for $r=3$.

Generalizing the four gamete test

Main Theorem (L., Gusfield, Sridhar, 2008)

Given an input set S with at most three states per character, S admits a perfect phylogeny if and only if every subset of three characters of S admits a perfect phylogeny.

Partition Intersection Graph

a	b	c	a_{0}	b_{0}	$\circ c_{0}$
0	1	1		${ }^{0}$	\circ
0	0	0	$a_{1} \circ$	\circ	$\circ c_{1}$
1	0	1		b_{2}	
1	2	2	$a_{2} \circ$	\circ	$\circ c_{2}$
2	2	0			

Partition Intersection Graph

a	b	c
a_{0}	b_{1}	c_{1}
a_{0}	b_{0}	c_{0}
a_{1}	b_{0}	c_{1}
a_{1}	b_{2}	c_{2}
a_{2}	b_{2}	c_{0}

$$
\begin{array}{lll}
a_{0} \circ & b_{0} & \circ c_{0} \\
& \begin{array}{l}
b_{1} \\
a_{1} \circ
\end{array} & \circ c_{1} \\
& b_{2} & \\
a_{2} \circ & \circ & \circ c_{2}
\end{array}
$$

Partition Intersection Graph

a	b	c
a_{0}	b_{1}	c_{1}
a_{0}	b_{0}	c_{0}
a_{1}	b_{0}	c_{1}
a_{1}	b_{2}	c_{2}
a_{2}	b_{2}	c_{0}

Partition Intersection Graph

a	b	c
a_{0}	b_{1}	c_{1}
a_{0}	b_{0}	c_{0}
a_{1}	b_{0}	c_{1}
a_{1}	b_{2}	c_{2}
a_{2}	b_{2}	c_{0}

Partition Intersection Graph

a	b	c
a_{0}	b_{1}	c_{1}
a_{0}	b_{0}	c_{0}
a_{1}	b_{0}	c_{1}
a_{1}	b_{2}	c_{2}
a_{2}	b_{2}	c_{0}

Partition Intersection Graph

a	b	c
a_{0}	b_{1}	c_{1}
a_{0}	b_{0}	c_{0}
a_{1}	b_{0}	c_{1}
a_{1}	b_{2}	c_{2}
a_{2}	b_{2}	c_{0}

Partition Intersection Graph

a	b	c
a_{0}	b_{1}	c_{1}
a_{0}	b_{0}	c_{0}
a_{1}	b_{0}	c_{1}
a_{1}	b_{2}	c_{2}
a_{2}	b_{2}	c_{0}

Partition Intersection Graph

Partition intersection graph $G(S)$:

- vertices correspond to character/state pairs in S
- two character states are adjacent if there exists a row in S containing both

No edge in $G(S)$ between states of the same character.

Chromatic chordal completion problem

A graph H is chordal, or triangulated, if there are no induced chordless cycles of length four or greater in H.

Chromatic chordal completion problem

A graph H is chordal, or triangulated, if there are no induced chordless cycles of length four or greater in H.

Chromatic chordal completion problem

A graph H is chordal, or triangulated, if there are no induced chordless cycles of length four or greater in H.

Assign a single color to all the vertices corresponding to the same character in S. A proper triangulation of $G(S)$ is a chordal supergraph such that every edge has endpoints with different colors.

Chromatic chordal completion problem

A graph H is chordal, or triangulated, if there are no induced chordless cycles of length four or greater in H.

Assign a single color to all the vertices corresponding to the same character in S. A proper triangulation of $G(S)$ is a chordal supergraph such that every edge has endpoints with different colors.

Theorem (Buneman, 1974)

An input set S admits a perfect phylogeny if and only if the partition intersection graph $G(S)$ has a proper triangulation.

Three-State Perfect Phylogeny: Outline of proof

Idea: Piece together the proper triangulations for each triple of characters to obtain a triangulation for the entire set of characters

Three-State Perfect Phylogeny: Outline of proof

Idea: Piece together the proper triangulations for each triple of characters to obtain a triangulation for the entire set of characters

Check every subset of three characters:

- If some subset of three characters does not allow a perfect phylogeny, output these three characters as the certificate for the nonexistence of a perfect phylogeny

Three-State Perfect Phylogeny: Outline of proof

If every subset of three characters admits a proper triangulation:

$$
G(S) \xrightarrow{F-\text { edges }} G^{\prime}(S) \xrightarrow{F^{\prime} \text {-edges }} G^{\prime \prime}(S)
$$

Three-State Perfect Phylogeny: Outline of proof

If every subset of three characters admits a proper triangulation:

$$
G(S) \xrightarrow{F-\text { edges }} G^{\prime}(S) \xrightarrow{F^{\prime} \text {-edges }} G^{\prime \prime}(S)
$$

- Lemma: for every triple of characters, the triangulation is unique

Three-State Perfect Phylogeny: Outline of proof

If every subset of three characters admits a proper triangulation:

$$
G(S) \xrightarrow{F-\text { edges }} G^{\prime}(S) \xrightarrow{F^{\prime} \text {-edges }} G^{\prime \prime}(S)
$$

- Lemma: for every triple of characters, the triangulation is unique
- properly triangulate every triple of characters (addition of F-edges)

Three-State Perfect Phylogeny: Outline of proof

If every subset of three characters admits a proper triangulation:

$$
G(S) \xrightarrow{F-\text { edges }} G^{\prime}(S) \xrightarrow{F^{\prime} \text {-edges }} G^{\prime \prime}(S)
$$

- Lemma: for every triple of characters, the triangulation is unique
- properly triangulate every triple of characters (addition of F-edges)
- for any chordless cycle in $G(S)$ that remains chordless in $G^{\prime}(S)$, add chords (F^{\prime}-edges) of the cycle to obtain $G^{\prime \prime}(S)$

Three-State Perfect Phylogeny: Outline of proof

If every subset of three characters admits a proper triangulation:

$$
G(S) \xrightarrow{F-\text { edges }} G^{\prime}(S) \xrightarrow{F^{\prime} \text {-edges }} G^{\prime \prime}(S)
$$

- Lemma: for every triple of characters, the triangulation is unique
- properly triangulate every triple of characters (addition of F-edges)
- for any chordless cycle in $G(S)$ that remains chordless in $G^{\prime}(S)$, add chords (F^{\prime}-edges) of the cycle to obtain $G^{\prime \prime}(S)$

Claim

$G^{\prime \prime}(S)$ is a properly triangulated graph

Structure of $G^{\prime}(S)$

a	b	c	d
0	0	0	0
1	0	1	2
2	1	1	1
0	2	2	1

Structure of $G^{\prime}(S)$

a	b	c	d
0	0	0	0
1	0	1	2
2	1	1	1
0	2	2	1

Structure of $G^{\prime}(S)$

a	b	c	d
0	0	0	0
1	0	1	2
2	1	1	1
0	2	2	1

Structure of $G^{\prime}(S)$

a	b	c	d
0	0	0	0
1	0	1	2
2	1	1	1
0	2	2	1

Structure of $G^{\prime}(S)$

a	b	c	d
0	0	0	0
1	0	1	2
2	1	1	1
0	2	2	1

Structure of $G^{\prime}(S)$

a	b	c	d
0	0	0	0
1	0	1	2
2	1	1	1
0	2	2	1

Each triple of characters induces a chordal graph while the entire partition intersection graph $G(S)$ contains a chordless cycle of length four

$$
G(S) \xrightarrow{F-\text { edges }} G^{\prime}(S) \xrightarrow{F^{\prime}-\text { edges }} G^{\prime \prime}(S)
$$

a	b	c	d
0	0	0	0
1	0	1	2
2	1	1	1
0	2	2	1

$$
G(S) \xrightarrow{F-\text { edges }} G^{\prime}(S) \xrightarrow{F^{\prime}-\text { edges }} G^{\prime \prime}(S)
$$

a	b	c	d
0	0	0	0
1	0	1	2
2	1	1	1
0	2	2	1

Enumerating three character obstruction sets

Minimal obstruction sets for trinary input contain three characters.
Enumerate all instances on three characters a, b, and c such that:
(i) a, b and c are characters on at most three states
(ii) every pair of characters allows a perfect phylogeny
(iii) the three characters a, b, and c together do not allow a perfect phylogeny.

Enumerating three character obstruction sets

Enumerating three character obstruction sets

a	b	c
0	0	2
0	2	1
1	0	0
2	1	0
1	1	1

a	b	c
0	0	2
0	2	1
1	0	0
1	1	0
1	1	1

a	b	c
0	1	0
1	0	0
2	0	1
0	2	1
1	2	2

Incompatibility/Conflict Graph for binary characters

- Conflict or incompatibility between pairs of sites: Meiotic recombination, reticulation and recurrent mutation
- Each site corresponds to a vertex
- (i, j) is an edge if i and j are in conflict.

\circ	\circ	\circ	\circ	0	\circ	0	0	\circ
0	1	0	0	0	0	0	0	1
0	0	1	0	1	1	0	0	1
1	0	0	0	0	1	1	1	0
1	1	1	1	1	0	1	1	0
0	1	0	1	0	1	1	0	0

Incompatibility/Conflict Graph for binary characters

- Conflict or incompatibility between pairs of sites: Meiotic recombination, reticulation and recurrent mutation
- Each site corresponds to a vertex
- (i, j) is an edge if i and j are in conflict.

| 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |

Incompatibility (Conflict) Graph

"The non-trivial connected components of the conflict graph are very informative, used both to derive efficient algorithms and to expose combinatorial structure in phylogenetic networks."

- Gusfield, Bansal, Bafna, Song (2006)

Incompatibility Hypergraph for 3-state characters

- Conflict or incompatibility for a set of sites: Meiotic recombination, reticulation and recurrent mutation

Incompatibility Hypergraph for 3-state characters

- Conflict or incompatibility for a set of sites: Meiotic recombination, reticulation and recurrent mutation
- Each site corresponds to a vertex

Incompatibility Hypergraph for 3-state characters

- Conflict or incompatibility for a set of sites: Meiotic recombination, reticulation and recurrent mutation
- Each site corresponds to a vertex
- v_{1}, v_{2}, v_{3} forms a hyperedge if the corresponding sites do not allow a perfect phylogeny

Incompatibility Hypergraph for 3-state characters

- Conflict or incompatibility for a set of sites: Meiotic recombination, reticulation and recurrent mutation
- Each site corresponds to a vertex
- v_{1}, v_{2}, v_{3} forms a hyperedge if the corresponding sites do not allow a perfect phylogeny

Character-Removal Problem:

- minimize the number of characters to remove from the data so that the resulting data has a multi-state perfect phylogeny

Incompatibility Hypergraph for 3-state characters

- Conflict or incompatibility for a set of sites: Meiotic recombination, reticulation and recurrent mutation
- Each site corresponds to a vertex
- v_{1}, v_{2}, v_{3} forms a hyperedge if the corresponding sites do not allow a perfect phylogeny

Character-Removal Problem:

- minimize the number of characters to remove from the data so that the resulting data has a multi-state perfect phylogeny
- hitting set problem

Conclusion

Conclusion

- Improved algorithm for constructing a perfect phylogeny on three states if it exists?

Conclusion

- Improved algorithm for constructing a perfect phylogeny on three states if it exists?
- $O\left(2^{3 r}\left(n m^{3}+m^{4}\right)\right)$ (Agarwala and Fernandez-Baca 1994)
- $O\left(2^{2 r} n m^{2}\right)$ (Kannan and Warnow 1997)

Conclusion

- Improved algorithm for constructing a perfect phylogeny on three states if it exists?
- $O\left(2^{3 r}\left(n m^{3}+m^{4}\right)\right)$ (Agarwala and Fernandez-Baca 1994)
- $O\left(2^{2 r} n m^{2}\right)$ (Kannan and Warnow 1997)
- Correlation between incompatible subsets of characters?

THANKS

