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Abstract. The next high-priority phase of human genomics will involve
the development of a full Haplotype Map of the human genome [15].
It will be used in large-scale screens of populations to associate spe-
cific haplotypes with specific complex genetic-influenced diseases. A key,
perhaps bottleneck, problem is to computationally determine haplotype
pairs from genotype data. An approach to this problem based on viewing
it in the context of perfect phylogeny was introduced in [14] along with
an efficient solution. A slower (in worst case) variation of that method
was implemented [3]. Two simpler methods for the perfect phylogeny
approach that are also slower (in worst case) than the first algorithm
were later developed [1,7]. We have implemented and tested all three of
these approachs in order to compare and explain the practical efficien-
cies of the three methods. We discuss two other empirical observations:
a strong phase-transition in the frequency of obtaining a unique solution
as a function of the number of individuals in the input; and results of
using the method to find non-overlapping intervals where the haplotyp-
ing solution is highly reliable, as a function of the level of recombination
in the data. Finally, we discuss the biological basis for the size of these
tests.

1 Introduction to SNP’s, Genotypes and Haplotypes

In diploid organisms (such as humans) there are two (not completely identical)
“copies” of each chromosome, and hence of each region of interest. A description
of the data from a single copy is called a haplotype, while a description of the
conflated (mixed) data on the two copies is called a genotype. In complex diseases
(those affected by more than a single gene) it is often much more informative to
have haplotype data (identifying a set of gene alleles inherited together) than to
have only genotype data.

The underlying data that forms a haplotype is either the full DNA sequence
in the region, or more commonly the values of single nucleotide polymorphisms
(SNP’s} in that region. A SNP is a single nucleotide site where exactly two (of
four) different nucleotides occur in a large percentage of the population. The
SNP-based approach is the dominant one, and high density SNP maps have
been constructed across the human genome with a density of about one SNP
per thousand nucleotides.
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1.1 The biological problem

In general, it is not feasible to examine the two copies of a chromosome sep-
arately, and genotype data rather than haplotype data will be obtained, even
though it is the haplotype data that will be of greatest use.

Data from m sites (SNP’s) in n individuals is collected, where each site can
have one of two states (alleles), which we denote by 0 and 1. For each individ-
ual, we would ideally like to describe the states of the m sites on each of the
two chromosome copies separately, i.e., the haplotype. However, experimentally
determining the haplotype pair is technically difficult or expensive. Instead, the
screen will learn the 2m states (the genotype) possessed by the individual, with-
out learning the two desired haplotypes for that individual. One then uses com-
putation to extract haplotype information from the given genotype information.
Several methods have been explored and some are intensively used for this task
[4,5,8,23,13,22,20,21]. None of these methods are presently fully satisfactory,
although many give impressively accurate results.

1.2 The computational problem

Abstractly, input to the haplotyping problem consists of n genotype vectors, each
of length m, where each value in the vector is either 0,1, or 2. Each position in
a vector is associated with a site of interest on the chromosome. The position in
the genotype vector has a value of 0 or 1 if the associated chromosome site has
that state on both copies (it is a homozygous site), and has a value of 2 otherwise
(the chromosome site is heterozygous).

Given an input set of n genotype vectors, a solution to the Haplotype In-
ference (HI) Problem is a set of n pairs of binary vectors, one pair for each
genotype vector. For any genotype vector g, the associated binary vectors vy, vy
must both have value 0 (or 1) at any position where g has value 0 (or 1); but
for any position where g has value 2, exactly one of v1,vs must have value 0,
while the other has value 1. That is, vy, vs must be a feasible “explanation” for
the true (but unknown) haplotype pair that gave rise to the observed genotype
g. Hence, for an individual with h heterozygous sites there are 2°~! haplotype
pairs that could appear in a solution to the HI problem.

For example, if the observed genotype g is 0212, then the pair of vectors 0110,
0011 is one feasible explanation, out of two feasible explanations. Of course, we
want to find the explanation that actually gave rise to g, and a solution for the
HI problem for the genotype data of all the n individuals. However, without
additional biological insight, one cannot know which of the exponential number
of solutions is the “correct one”.

2 Perfect Phylogeny

Algorithm-based haplotype inference would be impossible without the implicit
or explicit use of some genetic model, either to asses the biological fidelity of any



proposed solution, or to guide the algorithm in constructing a solution. Most of
the models use statistical or probabilistic aspects of population genetics. We will
take a more deterministic or combinatorial approach.

The most powerful such genetic model 1s the population-genetic concept of
a coalescent, 1.e., a rooted tree that describes the evolutionary history of a set of
sequences (or haplotypes) in sampled individuals [24, 16]. The key observation
is that “In the absence of recombination, each sequence has a single ancestor in
the previous generation.” [16].

There 1s one additional element of the basic coalescent model: the infinite-
sites assumption. That is, the m sites in the sequence (SNP sites in our case) are
so sparse relative to the mutation rate, that in the time frame of interest at most
one mutation (change of state) will have occurred at any site. This assumption
is usually made without contention in SNP data.

Hence the coalescent model of haplotype evolution says that without recom-
bination, the true evolutionary history of 2n haplotypes, one from each of 2n
individuals, can be displayed as a tree with 2n leaves, and where each of the
m sites labels exactly one edge of the tree, i.e., at a point in history where a
mutation occurred at that site. This is the underlying genetic model that we as-
sume from here on. See [24] for another explanation of the relationship between
sequence evolution and coalescents.

In more computer science terminology, the no-recombination and infinite-
sites model says that the 2n haplotype (binary) sequences can be explained by
an (unrooted) perfect phylogeny [11,12]:

Definition Let B be an 2n by m 0-1 (binary) matrix, and V be an m-length
binary string. A rooted perfect phylogeny for B is a rooted tree T with exactly
2n leaves that obeys the following properties:

1) Each of the 2n rows labels exactly one leaf of T'.

2) Each of the m columns labels ezactly one edge of T.

3) Every interior edge (one not touching a leaf) of T is labeled by at least
one column.

4) For any row 7, the columns that label the edges along the unique path
from the root to leaf ¢ specify the columns of B where row 7 has a value that is
different from the value of V in that column. In other words, knowing V', that
path is a compact representation of row i.

If we don’t know V' at input, the unrooted perfect phylogeny problem is to
determine a V' so that B has perfect phylogeny rooted at V.

The classic Theorem of Perfect Phylogeny is that a binary matrix B has a
perfect phylogeny if and only if for each pair of columns, there are no four rows in
those columns with values (0,0), (0,1), (1,0) and (1,1). Moreover, if the columns
of B are distinct, then there is only one perfect phylogeny for B. Note that an
edge to a leaf need not have a column label.

The above condition is known as the “Four-Gametes Test” in the population
genetics literature, and is known as the “Compatibility Test” in the phylogenetic
literature.



2.1 The Perfect Phylogeny Haplotype (PPH) Problem

Under the coalescent model of haplotype evolution, the HI problem now has
precisely the following combinatorial interpretation:

Given a set of n genotypes G, find an HI solution consisting of at most 2n
distinct haplotype vectors B, such that the vectors in B fit a perfect phylogeny.
This is the unrooted version of the PPH problem. See Figure 1 for a trivial
example.

If a root sequence V is specified, then the perfect phylogeny is required
to have the root sequence of V. The two versions of the problem are actually
equivalent in the sense that an instance of one variation can be reduced to the
other variation, so that an algorithm for one variation can be used for both
variations.
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Fig. 1. A simple example where there are two solutions to the HI problem, but only
the one shown solves the PPH problem. Matrix @ is created from matrix M, doubling
the rows to prepare for the PPH solution B.

3 Three Algorithms and programs for the PPH Problem

In this section we briefly describe three algorithms and three programs (GPPH,
HPPH and DPPH) for the PPH problem. The first algorithm for the PPH prob-
lem was developed in [14]. After that publication, two additional methods were
developed and presented [1] and [7]. Program GPPH follows the basic approach
presented in [14], with some modifications as detailed below. Programs DPPH
and HPPH follow the algorithms developed in [1] and [7], respectively.



The three programs are available at: cs.ucdavis.edu/~gusfield

3.1 Solution by Graph Realization: Program GPPH

The first algorithm for the PPH problem, given in [14], is based on reducing the
problem to a well-studied problem in graph theory.

Let E, a set of r distinct integers. A “path set” is an unordered subset P of
E. A path set is “realized” in a undirected, edge-labeled tree T consisting of r
edges, if each edge of T is labeled by a distinct integer from E,, and there is a
contiguous path in 7" whose labels consist of the integers in P. For simplicity,
we refer to each integer in E, as an “edge”, since in the tree T' that we seek,
each edge will be uniquely labeled with an integer in E,.. Note that since P is
unordered, its presentation does not specify or constrain the order that those
edges appear in 7. In quite different terms, from the 1930’s to the 1960’s Whitney
and Tutte and others studied and solved the following problems:

The Graph Realization Problem Given E, and a family I = Py, P, ..., Py
of path sets, find an undirected tree T' in which each path set is realized, or de-
termine that no such tree exists. Further, determine if there is only one such T,
and if there 1s more than one, characterize the relationship between the realizing
trees.

In [14] we reduce the PPH problem to the graph realization problem, and
have implemented this approach in a program called here GPPH'. Program
GPPH implements a slightly different reduction than is described in [14]. The
actual reduction is detailed at:

wwwesif.cs.ucdavis.edu/ ~gusfield /recomberrata.pdf.

After reducing a problem instance, program GPPH solves the graph real-
ization instance, using a variation [10] of Tutte’s classic algorithm for graph
realization [25]. In GPPH, we implement the reduction and the graph realiza-
tion solution separately. The reduction takes O(nm) time to create an instance of
the graph realization problem, and the graph realization module runs in O(nm?)
time, and is completely general, not incorporating any particular features of the
PPH problem. Having a general solution to the graph realization problem gives
us a program that can be used for other applications of graph realization besides
the PPH problem. It is of interest to see how this general approach performs
relative to methods that incorporate particular insights about the PPH problem.

Tutte’s graph realization algorithm is a method that recursively solves graph
realization problems for a subset F of F,, and a family of path sets IT(F), formed
from the family IT by restricting each path set in IT to E. Given E and IT(F),
and knowledge of what decisions have already been made, the algorithm chooses
an edge e (called here the “pivot” edge) from E and determines, by examining
the path sets in IT(F) and using general insights about paths in trees, whether
there are edges in £ that must be on one particular side of e or the other side of
e. It also determines whether there are pairs of edges in £ that must be separated

! This program was previously called PPH, but now that multiple programs exist for
the PPH problem, each is given a distinct name.



by e, and if so, whether these pairs form a bipartition. To do that, it constructs
a graph G(F) containing one node for each edge in F, and one undirected arc
between every pair of edges (e’, e”) in E that must be separated by e. If G(F) is
bipartite, Tutte’s algorithm arbitrarily puts the edges from one side of G(E) on
one side of e, and the edges from the other side of G(E) on the other side of e.
It then recursively solves the graph realization problem for the two sets of edges
on either side of e, and when those two subproblems have been solved (returning
two subtress), the algorithm determines how to attach those two subtrees to e.
Hence, the recursion is central to the method. If G(E) were determined not to be
bipartite, then the algorithm correctly determines that there is no tree realizing
all the path sets in F,..

There are other solutions to the graph realization problem not based on
Tutte’s algorithm. The method in [2] is based on a general algorithm due to Lof-
gren, and runs in O(nma(nm)) time, where a is the inverse-Ackerman function.
That algorithm is the basis for the worst-case time bound established in [14],
but we found it to be too complex to implement. In [14] it was explained that
after one PPH solution is obtained, by whatever method, one can get an implicit
representation of the set of all PPH solutions in O(m) time.

In program GPPH, about 1000 lines of C code were written to implement
the reduction part of the method and about 4000 lines of C code were written
to implement the graph realization part of the method.

3.2 Algorithm and program HPPH

Although obtained independently of Tutte’s method, the method of Eskin, Halperin
and Karp [7] can be viewed as a specialization, to the PPH problem, of Tutte’s
general graph realization method. The method is developed under the assump-
tion that the root V is known, and it exploits the rooted nature of the PPH
problem (even when V' is not given, a solution to the PHH problem is a rooted
tree) to find simpler, specific rules to use when picking a pivot edge e, and to
determine the placement of the other edges to e. In particular, it builds a tree
top-down from the root, by choosing for a pivot edge e, a “maximal” edge, i.e.,
one that is guaranteed not to be below any of the edges that are not yet in
the tree. Finding such a maximal pivot edge is a simple matter in the context
of the PPH problem using the “leaf-count” idea in [14]. Because of the maxi-
mality, the general operation in Tutte’s algorithm of determining which edges
are on which side of e becomes simpler. One determines for each other edge ¢,
whether ¢’ must be placed below e (on the same path from the root as €), or
must not be placed below e, or whether both placements are permitted. As in
Tutte’s method, edges in the last category are considered pairwise to find pairs
of edges where exactly one of the pair must be placed below e, but either one of
the pair can be the edge chosen to be below e. These pairs are represented by
a graph, and the algorithm checks that the graph is bipartite. If so, one set of
the bipartition is arbitrarily chosen to be placed below e and the other chosen
to not be placed below e. After the algorithm makes that decision, it recurses
until a tree is built or no further progress can be made. The algorithm can also



implicitly represent the set of all PPH solutions by noting where it could have
made alternative choices.

We call the program implementing this method the HPPH program. Because
the HPPH program is a specialization of Tutte’s general method using simpler
rules to determine and implement the pivot, it is expected to run faster in prac-
tice than the GPPH program. Moreover, the top-down structure of the method
has the consequence that the recursion used to describe the algorithm in [7]
is actually tail-recursion, so that the method can be implemented iteratively
without any explicit recursion. This can speed up the program, particularly for
large data sets, and we have implemented HPPH without recursion. Viewed as
a specialization of Tutte’s general method, it is of interest to see how much of
a speed-up the simpler pivot rules provide. About 1500 lines of C code were
written to implement HPPH.

Segue to DPPH One of the central details in HPPH (and also in the DPPH
method to be discussed) is that for certain pairs of columns (¢, ¢’) in M, we can
determine from looking at those columns alone (without any other information
from M) whether the edge labeled with ¢ must be placed below the edge labeled
with ¢/, or the ¢’ edge must be placed below the ¢ edge, or neither edge can
be placed below the other. This is called a “forced relationship”. The HPPH
program spends O(nm?) time at the start to examine the columns in pairs to
find any forced relationships (actually it determines another weaker relationship
as well). After this first stage, the algorithm does operations whose best time-

bound is O(nm?).

3.3 Algorithm and Program DPPH

The method in DPPH [1] is not based (explicitly or implicitly) on a graph
realization algorithm, but is based on deeper insights into the combinatorial
structure of the PPH problem and its solution. These insights are exploited to
avoid any recursion or iteration, in contrast to the GPPH and HPPH programs.
Rather, after the initial O(nm?)-time stage, where all the forced relationships
are found, the algorithm finds a PPH solution in O(g?) time, where ¢ is the
minimum of n and m, by a simple depth-first search in a graph that encodes
the forced relationships and the additional decisions that remain to be made.
Moreover, the graph represents the set of all solutions in a simple way. We will
not fully detail that here, but we can explain how the graph determines the
number of solutions, assuming there is a solution.

We use the column indices in M for vertex labels, and let GF be a graph
with a node ¢ for each column ¢ in M, and an edge between two nodes ¢ and ¢’
if there is a row in M with a 2 in both columns ¢ and ¢’. Let k& be the number of
connected components of GF. Now mark any edge (¢, ¢') where ¢ and ¢ are in
a forced-relationship, and let z be the number of connected components of the
subgraph of GF induced by the marked edges. Then the number of solutions to
the PPH problem, assuming there is one, is exactly 2(=%). Hence it is actually
easier to count the number of solutions than to find one.



Because of the deeper insights encoded in DPPH, we expect it will be the
fastest method in practice. About 1500 lines of C code were written to implement
DPPH.

4 Generating the Test Data

We used the program created by Richard Hudson [17] to generate the haplotypes.
That program is the widely-used standard for generating sequences that reflect
the coalescent model of SNP sequence evolution. The program allows one to
control the level of recombination through a parameter r. When 7 is set to zero,
there is no recombination, and hence the haplotypes produced are guaranteed
to fit a perfect phylogeny.

After obtaining 2n haplotypes from Hudson’s program, the haplotypes are
randomly paired to create the n genotype vectors given to the three programs.
The three PPH programs were tested with thousands of datasets and all of the
outputs were verified to see that perfect phylogenetic trees were created and that
the output haplotypes explain the input genotypes. In the output file, the input
genotypes and their corresponding haplotypes are reported. The output file also
reports the perfect phylogenetic tree and whether the tree is unique or not. If it
is not, the number of different trees which fit the input data is reported. Program
DPPH also produces the implicit representation of the set of all solutions in a
simple format.

5 Performance comparison

For genotype data with 50 individuals and 50 sites, the three PPH programs typ-
ically solve the problem in less than one second on a computer equipped with
AMD K6 1.33GHz CPU and 256 MB RAM. However, GPPH spends notably
longer than the others when the data is large. The relative speed of program
DPPH compared to the other two methods, increases as the data size increases.
It typically spends under two minutes to handle genotype data with 500 individ-
uals and 1000 sites. This makes it possible to handle long sequences with large
samples.

Our basic expectation that DPPH would be the fastest, followed by HPPH
and GPPH in that order, was confirmed, as is shown in Figure 2. We should
note that our implementation of HPPH included a number of minor ideas not
made explicit in the original paper [7], that considerably sped up the execution.
Also, Shibu Yooseph [27] has implemented DPPH and reports running times
that are two to three times faster than our implementation. We implemented
the graph realization program used in GPPH literally as described in [10] and
did not attempt any optimizations, although many are clearly possible.



Average Running Times (seconds)
sites|individuals| GPPH| DPPH HPPH
30 50| 0.6574| 0.0206 0.0215
100 100 1.5697| 0.3216 0.37345
300 150| 9.31835| 3.041 4.497
500 250(36.12485|11.5275 21.5901
1000 500(256.1847|75.5935 189.4267
2000 1000|2331.167| 639.93 1866.569

Fig.2. The comparison of the running times of three methods. Each number is the
average of 20 datasets.

6 Related Topics

6.1 Uniqueness of the solution: a Strong phase transition

For any given input of genotypes, it is possible that there will be more than one
PPH solution. When designing a population screen and interpreting the results, a
unique PPH solution is very important. So the question arises: for a given number
of sites, how many individuals should be in the sample (screen) so that the
solution is very likely to be unique? The general issue of the number of individuals
needed in a study was raised in [14]. Theoretical and empirical results on this
question, addressing the number of individuals needed in a study as a function
of the number of distinct haplotypes in the population, appear in [9]. Here, we
report on several experiments which determine the frequency of a unique PPH
solution when the number of sites and genotypes changes. Intuitively, as the
ratio of genotypes to sites increases, the probability of uniqueness increases.

The input datasets are generated by Hudson’s program [17] discussed earlier.
While generating the data, we added an essential, biologically relevant restriction
that every mutation in the tree generating the haplotypes must be on an edge
that has at least 5 percent of total leaves beneath it. That is, at that site,
the least frequent allele must appear in at least 5 percent of individuals in the
sample. Without adding this restriction, the data are not biologically realistic,
and the frequency of a unique PPH solution remains low even when the ratio of
genotypes to sites is high. The table in Figure 3 shows the frequency, for datasets
with 50 and 100 sites respectively, that a unique PPH solution is observed in
5000 datasets, as the number of individuals in the sample varies. Note that
the number of individuals is the number of input genotype vectors, so that the
underlying tree generating the haplotypes has twice that many leaves.

The table shown in Figure 3 shows a phase transition between 19 and 20
individuals. This is almost certainly related to the 5% rule. When the number
of individuals (genotypes) reaches 20, the number of leaves in the underlying
tree is 40, where the 5% rule requires that each mutation (site) be placed on an
edge with at least two leaves below it. Hence a mutation on an edge attached
to a leaf is prohibited. Before then, a mutation could be placed on such an
edge, and when that happens, the solution is very unlikely be unique. A more
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sites|individuals|frequency||sites|individuals|frequency
50 10 0.0000(| 100 10 0.0000
50 19 0.0002(| 100 19 0.0000
50 20 0.7030(| 100 20 0.7260
50 28 0.7050(| 100 28 0.7236
50 30 0.9520(| 100 30 0.9774
50 40 0.9926(| 100 40 0.9966
50 50 0.9974|| 100 50 0.9994
50 60 0.9990(| 100 60 0.9996
50 70 0.9994(| 100 70 0.9998
50 80 0.9998(| 100 80 1.0000
50 90 0.9998
50 100 1

Fig. 3. The frequency of a unique PPH solution increases when the number of individ-
uals increases. 5000 datasets were simulated for each entry.

interesting phase transition occurs between 20 and 30 individuals. Notice that
the frequency of uniqueness is close to one before the number of individuals
reaches the number of sites. This may seem unexpected, and is explained by the
fact that there are edges in the tree that receive more than one mutation (site) in
Hudson’s program. Hence the ratio of the number of individuals to the number
of edges in the tree that receive one or more mutations, is higher than suggested
by the results shown here. However, the biologically relevant comparison is of
the number of individuals to the number of sites of interest, and so the good
news 1s that the number of individuals needed in a sample, in order to have a
high probability of a unique PPH solution, is relatively low compared to the
number of sites.

6.2 Handling haplotypes generated with recombinations

The PPH problem is motivated by the coalescent model without recombina-
tion. However, the programs can be useful for solving the HI problem when the
underlying haplotypes were generated by a history involving some amount of
recombination. In that case, it is not expected that the entire data will have a
PPH solution, but some intervals in the data might have one. We can use one
of the PPH programs to find maximal intervals in the input genotype sequences
which have unique PPH solutions. We first find the longest interval in the geno-
type data, starting from position 1, which has a unique PPH solution. We do
this using binary search, running a PPH program on each interval specified by
the binary search. Let us say that the first maximal interval extends from po-
sition 1 to position 2. We output that interval, and then move to position 2 to
determine if there is an interval that extends past i containing a unique PPH
solution. If so, we find the maximal interval starting at position 2, and output
it. Otherwise, we move to position 3, etc. We continue in this way to output a
set of maximal intervals, each of which contains a unique PPH solution. This
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also implicitly finds, for each starting position, the longest interval starting at
that position that contains a unique PPH solution.

In principle, the intervals that are output could overlap in irregular, messy
ways. However, we have observed that this is rarely the case. Generally, the
output intervals do not overlap, or two intervals overlap at one site, i.e., the
right end of one interval may overlap in one position with the left end of the
next interval. This provides a clean decomposition of the data into a few intervals
where in each, the data has a unique PPH solution.

A program called PPHS, which is available at the website mentioned ear-
lier, was implemented to find the maximal intervals. We performed several ex-
periments for the genotype data with different recombination rates, using 100
genotypes and 100 sites. The input data for the experiments was again gener-
ated by Hudson’s program [17]. Therefore, we were able to check if the output
haplotypes differed from the original haplotypes, in any interval. The results are
shown in Figure 4. The most striking result is that when the recombination rate
is moderate, the accuracy of the PPH solutions inside each interval, compared to
the original haplotypes, is very high. In fact, when r = 4, in each of the fifteen
runs described in Figure 4, the unique PPH solution found by the algorithm
precisely recreated the input haplotypes in each interval. That 1s, the PPH pro-
gram found the correct haplotype pairs perfectly in each interval. One might
think that this must always be true, since the PPH solution is unique in each
interval, but genotypes that can be explained with haplotypes that fit a perfect
phylogeny need not have been generated that way.

There are many ways that such a decomposition can be used. The most obvi-
ous is to reduce the amount of laboratory work that is needed to fully determine
the correct haplotypes. For example, in a problem with 100 sites and 10 inter-
vals, we can form new shorter genotype vectors with one site per interval, hence
10 sites. If the correct haplotype pairs for these shorter genotype sequences are
determined, we can combine that information with the (assumed correct) hap-
lotype pairs determined in each interval by a PPH program. The laboratory
effort is reduced to one tenth of what it would be to determine the haplotypes
from 100 sites. Another approach is to input the shorter genotype sequences to
one of the statistical-based methods for haplotype inference. These methods can
handle a moderate level of recombination and are generally quite accurate, but
their running times increase greatly with an increasing number of sites.

7 How large should the test data be?

In this paper we tested programs and data with up to 2000 sites. This is a larger
number of SNPs than has so far been observed to fit the perfect phylogeny model.
Here we discuss the question of how many SNP sites should be included in tests
of PPH programs.

We define a set of binary sequences as “tree-compatible” if the sequences pass
the four-gametes test. That is, the data do not have two positions (sites) where
four sequences in the set contain all four combinations 0,0; 0,1; 1,0, and 1,1. We



12

r=4 r=16 r =40
Experiments|Errors|Intervals|Errors|Intervals|Errors|Intervals
No. 1 0 7 0 17 9 18
No. 2 0 7 1 17 26 17
No. 3 0 5 3 20 0 20
No. 4 0 5 1 16 0 22
No. 5 0 4 2 14 5 24
No. 6 0 3 1 12 1 22
No. 7 0 7 0 18 7 20
No. 8 0 4 0 14 0 25
No. 9 0 7 0 18 12 20
No. 10 0 10 0 15 1 24
No. 11 0 9 1 12 5 19
No. 12 0 5 0 18 1 18
No. 13 0 7 0 16 27 22
No. 14 0 8 0 14 1 25
No. 15 0 10 0 19 0 24
Average 0 6.5 0.6 16 6.3 21.3

Fig. 4. Fifteen experiments with 100 individuals and 100 sites, performed with three
different recombination rates. r is the recombination rate used in Hudson’s program
[17]. When r is high, the probability of recombination is high. The Interval count is the
number of intervals output by program PPHS. The error count is the total number of
intervals where the given unique PPH solution is not correct for that interval. Hence
the number of errors reported can be larger than the number of intervals.

define a “tree-compatible interval” as an interval where the subsequences are
tree-compatible. Sequences that are tree-compatible can be derived on a perfect
phylogeny. Therefore, in considering the size of relevant input to PPH programs,
the key question is: What is the longest tree-compatible interval that one could
reasonably expect to find in a set M of binary-encoded biological sequences
(SNPs, or other binary sequences) of current or future interest? We define that
length as m*.

The correct value of m* is certainly unknown at present, and the existing
literature related to this issue (mainly from studies of haplotype structure in
humans, and studies of linkage disequilibrium in a few other organisms) repre-
sents a minuscule fraction of the molecular diversity studies that are desired and
that are expected to be conducted in the future. However, there is already good
evidence establishing that m* is much larger than 30 (a number suggested by
some of the studies in humans, for example [6]).

Relevant data can come from two sources: actual sequence and SNP data that
can be directly examined for tree-compatible intervals, and less direct studies of
linkage disequilibrium (LD). LD causes (or is defined by) a high correlation
between the occurrences of alleles at two sites. If f4 1s the frequency of allele
A at one site, and fp is the frequency of allele B at a second site, and fap
is the joint frequency of those alleles at the two sites, LD at the two sites can
be measured by the deviation of fap from f4 x fp. Assuming infinite sites,



13

long intervals of high LD suggest long tree-compatible intervals, since high LD
is generally caused by little recombination between the two sites. LD can be
measured without directly determining whether the interval is tree-compatible,
and so LD is a more indirect, but much more available, indicator of m* than is
provided by the full SNP sequences in the sample. Presently, very few studies
have determined full SNP sequences in large populations, so data on LD is very
central in estimating m™.

In published data on humans, there is considerable variance in the level of LD
observed. For example, surveys of LD suggest that among Nigerians, high levels
of linkage disequilibrium extend to intervals of only 5 Kb, but in Northern Euro-
peans, high levels extend to intervals of 60 to 80 Kb. Depending on the number
of individuals in the survey, that could translate to tree-compatible intervals of
between 5 and 80 SNPs. In even more homogeneous populations, for example in
Finland or Iceland or Pennsylvania Dutch, even longer tree-compatible intervals
of SNPs are expected. Generally, structured subpopulations which are the result
of recent migration, historical bottlenecks (reduction of the population size), or
admixture (the recent mixing of two distinct populations) are expected to have
even longer tree-compatible intervals, and the exact lengths are not yet known.
Smaller, more local populations should have even longer tree-compatible inter-
vals. Moreover, structured, local, subpopulations, are very important in human
genetics research, so that even if 30 were the human-average number of tree-
compatible SNP sites in an interval, there are important studies where one ex-
pects, and will search for, longer tree-compatible intervals. Domesticated plants
and animals are expected to have longer tree-compatible intervals than humans,
and the few studies that have been done are consistent with this expectation
[19].

Tt is also important to understand how the data reported in [6] were obtained.
Those studies were looking for long intervals in humans of high LD containing
a small number of haplotypes in the given sample. SNP sites were sampled in
the genome at a density that was sufficient to identify these long intervals, but
once found, the researchers were not interested in determining the total number
of SNP sites in the intervals. Therefore, typically under 30 SNPs were found in
intervals up to 200,000 nucleotides long. But a human interval of that length is
expected to have between 200 and 400 SNPs, and so it is incorrect to interpret
the number of SNPs in an interval reported in [6] as an estimate of m*. Moreover,
the number of SNPs found will also be a function of the size of the sample. Fine
scale linkage and association mapping aimed at identification of specific genes
and variants will often lead to the determination of many more SNPs in candidate
regions. And large scale resequencing on a genomic scale will also produce high
densities of SNPs throughout the genome [18].

Moreover, there is variation in the density of SNPs, independent of the
amount of recombination in a region. For example, recent investigation of the
laboratory mouse genome [26] found long regions of the genome that contained
45 SNPs per 10Kb, and other long regions that contained only 1 SNP per
10Kb. Hence, it is expected that in the mouse genome we could encounter tree-
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compatible regions with the same number of nucleotides, where one region has
many more SNPs than the other.

In general, the value of m* depends both on the diversity of biological se-
quences (from different organisms, regions of the genome, populations and sub-
populations) that are of importance and that will be, or have been, studied, and
the number of sequences in those studies. More fundamentally, for any given sam-
ple, the length of the longest tree-compatible interval is a function of the ratio
of the (site) mutation rate, and the recombination rate in that sample. Among
all the organisms, genomic regions, populations and subpopulations that are of
interest, that ratio 1s expected, and has already been seen, to vary over a large
range [18]. Hence it is not correct to conclude that m* has been established from
the limited, specific studies recently conducted in humans.

In short, the correct value of m* is unknown, and there is very little that is
known, empirically or theoretically, that establishes good bounds for m*. There
is enormous diversity in biology, with a vast number of unexplored organisms,
populations, subpopulations and genomic regions of interest. Any suggestion
that m* is already known ignores this. More specifically, the suggestion that
m* is bounded by 30 does not reflect the little data that is already known, and
the understanding that compared to the human studies recently done, much
longer tree-compatible regions should exist in sequences from subpopulations
and organisms whose diversity has not yet been studied.
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