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Abstract
Multiple string (sequence) alignment is a difficult and important problem in computa-

tional biology, where it is central in two related tasks: finding highly conserved subregions
or embedded patterns of a set of biological sequences (strings of DNA, RNA or amino
acids), and inferring the evolutionary history of a set of taxa from their associated biolog-
ical sequences. Several precise measures have been proposed for evaluating the goodness
of a multiple alignment, but no efficient methods are known which compute the optimal
alignment for any of these measures in any but small cases. In this paper, we consider two
previously proposed measures, and give two computationaly efficient multiple alignment
methods (one for each measure) whose deviation from the optimal value is guaranteed to
be less than a factor of two. This is the novel feature of these methods, but the methods
have additional virtues as well. For both methods, the guaranteed bounds are much smaller
than two when the number of strings is small (1.33 for three strings of any length); for one
of the methods we give a related randomized method which is much faster and which gives,
with high probability, multiple alignments with fairly small error bounds; and for the other
measure, the method given yields a non-obvious lower bound on the value of the optimal
alignment.

2 Introduction

Multiple string (sequence) alignment is a difficult problem of great value in computational
biology, where it is central in two related tasks: finding highly conserved subregions or em-
bedded patterns of a set of biological sequences (strings of DNA, RNA or amino acids); and
inferring the evolutionary history of a set of taxa from their associated biological sequences.
In the first case, a conserved pattern may be so dissimilar or dispersed in the strings that
it cannot be detected by statistical tests when just two strings of the set are aligned, but
the pattern becomes clear and compelling when many strings are simultaneously aligned.
Scores of papers have been written on methods for multiple string alignment, and hundreds
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of papers have used various multiple alignment methods to find patterns or build evolu-
tionary trees from biological sequence data. The following few papers illustrate this broad
literature: [6, ?, 2, 4, ?, 11, 15, ?, 1, 10, 3].

Many of the suggested methods build a multiple alignment by attempting to optimize
some explicitly or implicitly stated measure of goodness of the alignment. However, no
single measure or objective function has yet been proposed that is widely agreed upon
(unlike the case of aligning just two strings), and some proposed methods build alignments
without relying (even implicitly) on any measure of goodness.

In this paper we consider two previously proposed ways to measure the goodness of
a multiple alignment, which correspond to the two general uses of multiple alignments
introduced above. For both measures, no efficient methods are known to find the optimal
alignment, and so the known methods are either heuristic (not guaranteed to find an optimal
alignment) or are usable only for a small number of short strings. For one measure, the best
method known to compute the optimal alignment has a worst case (and typical) running
time on the order of the product of the lengths of the strings to be aligned, although some
ideas have been developed which reduce the typical running times by a constant factor
[4]. For the the second measure, a method which solves a special case of the problem runs
in exponential time [11], although a more efficient algorithm has been developed for an
extremely restricted version of the problem [1].

A common approach in the computer science literature to computationaly hard opti-
mization problems is to develop fast heuristic algorithms whose maximum possible deviation
from the optimal solution can be proven to be bounded by a small multiplicative factor.
Generally, any factor of two or less has been of interest. For the multiple string alignment
problem, no bounded deviation heuristics have been reported. In this paper we adapt known
heuristics and bounds from related graph theoretic problems [?, 9, 7] to provide the first
such methods and bounds for the multiple string alignment problem.

2.1 Main results

We discuss two computationaly efficient multiple alignment heuristics (one for each objective
function) whose deviation from the optimal value is guaranteed to be less than a factor of
two. That is, the heuristics give alignments whose value is guaranteed never to be more
than twice the value of the optimal multiple alignment. For both objective functions the
guaranteed bounds are even smaller when the number of strings is small (1.33 for three
strings of any length), and for one of the objective functions the method yields a non-
obvious lower bound on the value of the optimal solution. For one of the methods we give
a much faster randomized method whose likely deviation from the optimal is surprisingly
small.

The error bound of two may at first seem too large to be of use, but the reader should
remember that the bound is a worst case guarantee and the actual deviation from optimal
for any particular set of strings can be expected to be much less. This is illustrated by initial
tests run on the method. In fact, the analysis used to obtain the bounds makes several worst
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case assumptions that are unlikely to occur naturally. Further, the bounded error methods
have several indirect uses other than the direct use of producing “good” alignments, and
can often form the basis of more ad hoc methods to improve the solution.

Although we can expect the method to obtain solutions that are better than twice the
optimal on typical data, the main thrust of the present paper is theoretical – to estab-
lish provable bounds and to introduce the bounded error line of reasoning into this area.
No comprehensive tests of the methods given here have been made against other existing
methods.

2.2 Basic Definitions

An alignment of two strings X and Y is obtained by first inserting chosen spaces into, or
at either end of, X and Y and then placing the two resulting strings one above the other
so that every character or space in either string is opposite a unique character or a unique
space in the other string. Two opposing identical characters form a match, and two opposing
nonidentical characters from a mismatch. A space in one string opposite a character x in
the second string can also be thought of as a deletion of x from the second string, or an
insertion of x into the first string.

For example, in the alignment

c a c d b d
c a w x b

of strings cacdbd and cawxb, character c is mismatched with w, both d’s and the x are
opposite spaces, and all other characters are in matches.

For a given alignment A, let l denote the (equal) length of the two strings in A, i.e.,
after spaces have been inserted. The value of alignment A, denoted V (A), is defined as∑l
i=1 s(X(i), Y (i)), where s(X(i), Y (i)) is the value contributed by the two opposing charac-

ters (either of which could be a space) in position i of A. This definition allows s(X(i), Y (i))
to depend on exactly what the two characters are, and there are several such character-pair
weighting schemes for amino acids and for DNA [14, 8]. A simple, but common, scheme
is to score a zero for a match or for two opposing spaces2, and score a one for either a
mismatch or for a character opposite a space. With this scheme, the above alignment has
value four.

In this paper we don’t assume any particular scoring scheme, but assume only that two
opposing spaces have a zero value, and that the other values satisfy triangle inequality.
That is, for any three characters x, y, z s(x, z) ≤ s(x, y) + s(y, z). This is the standard
assumption, and reasonable because we interpret s(x, z) as the “cost” to transform character
x to character z.

Given a scoring scheme, the optimal alignment of two strings is an alignment A which
minimizes V (A) over all alignments of the two strings. The optimal V (A) is also referred

2It is more common in defining pairwise alignment to simply forbid opposing spaces, but they occur in
multiple alignments, so we allow them here for consistency.
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to as the (weighted) edit distance between the two strings. We define D(X,Y ) to be the
value of the optimal alignment between strings X and Y . For strings of length n and m,
D(X,Y ) can be computed in O(nm) worst case time by dynamic programming [12], a fact
discovered independently many times.

2.3 Definition of multiple alignment

A multiple alignment of k > 2 strings X = {X1, X2, . . . , Xk} is a natural generalization of
the pairwise alignment defined above. Chosen spaces are inserted into (or at either end of)
each string so that the resulting strings have the same length, defined to be l, and then the
strings are arrayed in k rows of l columns each so that each character and space of each
string is in a unique column.

The value of a multiple alignment is not so easily generalized. Corresponding to the
two general uses for multiple alignment mentioned above, we consider two rather different
objective functions, called SP and TA respectively, that have been proposed to evaluate the
value of a multiple alignment. The rational for these two approaches has been discussed
in some depth in [1], [?], and [4]. We will define the two objective functions in separate
sections below.

3 Multiple alignment with objective function SP

For the purpose of finding highly conserved subpatterns and for the purpose of clustering
strings by similarity as a first step in constructing an evolutionary tree, the value of a
multiple alignment A has been taken, for example in [4], to be the sum of the values of
pairwise alignments induced by A. This is called the SP value. The induced pairwise
alignment of two strings is exactly their alignment given in A (although any two opposing
spaces can be removed if desired). The SP measure is used in the multiple alignment
package MACAW [13] developed at the National Institutes of Health, National Center for
Biotechnology Information. It was also used in [10] and [3] and a similar measure was used
in [6].

In this section we discuss an efficiently computed alignment that is guaranteed to have
no more than twice the optimal SP value.

The center star method

Given a set of k strings X , we define the center string Xc ∈ X as that string which minimizes∑
j 6=cD(Xc, Xj), and let M denote that minimum sum. We define the center star to be a

star tree of k nodes, with the center node labeled Xc and with each of the k − 1 remaining
nodes labeled by a distinct string in X −Xc.

It is folklore, and used for example in [6], that given any tree T where each node is
labeled with a distinct string, there is a multiple alignment A(T ) of these strings which is
“consistent” with the optimal pairwise string alignments corresponding to the edges of T .
That is, if Xi and Xj are strings that label any two adjacent nodes of T , then the pairwise
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alignment of Xi and Xj induced by A(T ) has value exactly D(Xi, Xj). This is clearly not
necessarily true for the induced alignment of two strings that are not adjacent in T .

We define the multiple alignment Ac of the set of strings X to be the alignment derived
from and consistent with the center star. For completeness of this report, details of how to
construct Ac are given in the appendix.

We define d(Xi, Xj) ≥ D(Xi, Xj) as the value of the pairwise alignment of strings Xi

and Xj induced by Ac, so that value of the alignment is V (Ac) =
∑
i<j d(Xi, Xj). We will

show that V (Ac) is at most twice the value of the optimal multiple alignment of X .

Lemma 3.1 For any strings Xi and Xj, d(Xi, Xj) ≤ d(Xi, Xc)+d(Xc, Xj) = D(Xi, Xc)+
D(Xc, Xj).

Proof Consider any single column in the multiple alignment and let x, y and z be the
three characters in this column from strings X,Y and Z. By triangle inequality, s(x, z) ≤
s(x, y) + s(y, z), and so the claimed inequality follows by the definition of d. The claimed
equality follows because the pairwise alignment of Xi and Xc induced by Ac is an optimal
alignment of Xi and Xc, and this is true also for the alignment of Xc and Xj . 2

Let A∗ be the optimal multiple alignment of the k strings X , and let V (A∗) denote its
value. Let d∗(Xi, Xj) be the value of the pairwise alignment of strings Xi and Xj induced
by A∗. Then V (A∗) =

∑
i<j d

∗(Xi, Xj).

Theorem 3.1 V (Ac)/V (A∗) ≤ 2(k − 1)/k < 2.

Proof First, define v(Ac) ≡
∑

(i,j) d(Xi, Xj) and v(A∗) ≡
∑

(i,j) d
∗(Xi, Xj), where the

pair (i, j) is an ordered pair in each case. Clearly, v(Ac) = 2V (Ac) and v(A∗) = 2V (A∗),
so V (Ac)/V (A∗) = v(Ac)/v(A∗). It is more convenient to work with the second ratio.
v(Ac) =

∑
(i,j) d(Xi, Xj) ≤

∑
(i,j)[D(Xi, Xc) +D(Xc, Xj)], by Lemma 3.1. For any fixed j,

D(Xc, Xj)(= D(Xj , Xc)) shows up in this expression exactly 2(k − 1) times. So v(Ac) ≤
2(k − 1)×

∑
j D(Xc, Xj) = 2(k − 1)M .

From the other side, v(A∗) =
∑

(i,j) d
∗(Xi, Xj) ≥

∑
(i,j)D(Xi, Xj) =

∑
i

∑
j D(Xi, Xj) ≥

k ×
∑
j D(c, j) = kM (by the choice of Xc). So V (Ac)/V (A∗) = v(Ac)/v(A∗) ≤ 2(k −

1)M/kM = 2(k − 1)/k < 2. 2

Note that for k = 3 the guaranteed upper bound is 1.33. Translated into lower bounds
this says that for k = 3, V (A∗) ≥ .76V (Ac). For k = 4 the upper bound is only 1.5, and
for k = 6 (a problem size considered to be too large for efficient exact solution with strings
of length 200) the bound is still only 1.66.

Corollary 3.1 kM ≤
∑
i<j D(Xi, Xj) ≤ V (A∗) ≤ V (Ac) ≤ [2(k − 1)/k]

∑
i<j D(Xi, Xj).

In practice one can better measure the goodness ofAc by the ratio V (Ac)/
∑
i<j D(Xi, Xj).

By Corollary 3.1 this ratio is always less than two, but the analysis is worst case so one can
expect it to be considerably less than two in many cases. Similarly, one should expect that
V (Ac)/V (A∗) will often be considerably less than two, since typically

∑
i,j D(Xi, Xj) will be
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considerably larger than kM , V (A∗) will not generally be close to
∑
i<j D(Xi, Xj) for any

but strings which are very similar, and D(Xi, Xj) will be less than D(Xi, Xc) +D(Xc, Xj)
for most typical strings.

Corollary 3.1 is also useful in the Carillo-Lipman algorithm [4], since that method uses∑
i<j D(Xi, Xj) as a lower bound on V (A∗), but it also requires knowing an efficiently

computed upper bound on V (A∗) and does not suggest how to obtain one. By Corollary
3.1, 2(k-1)/k times the lower bound is an efficiently computed upper bound.

3.1 Faster, randomized alignments

The center method requires the computation of all
(k

2

)
optimal pairwise alignments. For

large k and large strings, this may involve a great deal of computation, and so it may also be
valuable to more quickly compute a multiple alignment with a “reasonable” worst case or
expected error bound. Suppose one randomly selects a string Xi, then computes D(Xi, Xj)
for every j 6= i, and then builds the multiple alignment consistent with the star centered
at Xi. What can be expected if p such stars are built and the best multiple alignment
A is taken? With such a method, at most (k − 1)p optimal pairwise alignments need be
computed. Contrary to what might seem intuitive, even when p is fairly small this approach
will, with high probability, give alignments with reasonable worst case deviation from the
optimal alignment. The following theorems partially capture the situation.

Theorem 3.2 For any r > 1, define e(r) to be the expected number of stars needed to be
chosen at random before the value of best resulting alignment is within a factor of 2+1/(r−1)
of the optimal alignment. Then e(r) ≤ r.

For example, e(r) is at most two for an error bound of 3, and e(r) is at most ten for a
bound of 2.1112. Note that e(r) is independent of k and of the lengths of the strings.

Proof For ease of exposition, we first prove the case for r = 2. For each string Xi

define M(i) =
∑
j D(Xi, Xj). Then M(c) = M . Using this notation, recall from the proof

of Theorem 3.1 that
∑

(i,j)D(Xi, Xj) =
∑
iM(i) ≤ 2(k−1)M , so the average value of M(i)

is less than 2M . Then since the minimum value for M(i) is M , it follows that the median
of the M(i) values is less than 3M . The expected number of centers selected at random
before a selected M(i) is less than the median, is two.

Now suppose the median is actually εM , for 1 ≤ ε ≤ 3. Then
∑

(i,j)D(Xi, Xj) ≥
kM/2 + kεM/2, and the value of the alignment obtained from any below median star is
at most 2(k − 1)εM . Hence the error ratio for this star is at most 2ε

(1/2+ε/2) . This ratio
is maximized when ε is as large as allowable, i.e., when ε = 3, where the error ratio is 3.
Hence e(2) ≤ 2.

Generalizing the above proof, we note that at least k/r stars have M(i) less than or
equal to (2r − 1)M/(r − 1), which again follows from the fact that the minimum M(i) is
M and the mean is less than 2M . Suppose that the point below which k/r of the M(i) fall
is actually εM for 1 ≤ ε ≤ (2r − 1)/(r − 1). The expected number of stars to pick until
one is chosen with M(i) less than εM , is r. The error ratio of such a star is 2ε/[1

r + r−1
r ε],
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which again is maximized for the largest allowable ε, at which point the error ratio is
(2r − 1)/(r − 1) = 2 + 1/(r − 1). 2

It may be more useful to put the theorem in terms of probabilities rather than ex-
pectations, since generally one is interested in how well the method might do for any fixed
instance, rather than how it will do over a sequences of instances. The proof of the following
is easily modified from the proof of Theorem 3.2.

Theorem 3.3 Picking p stars (centers) at random, the best resulting alignment will have
value within a factor of 2 + 1/(r− 1) of the optimal with probability at least 1− [(r− 1)/r]p.

Theorems 3.2 and 3.3 say that one can expect to get a multiple alignment with a
reasonable worst case SP error ratio with significantly less computation than is needed to
compute Ac, and indeed less than is used for most other multiple alignment heuristics in
the literature. However, even these two theorems are too pessimistic – the analysis used
in their proofs is very loose. For example, in Theorem 3.2 the case of r = 2 was proven
by considering the median M(i) value, and then setting the median to 3M , since that is
where the analysis gives the largest (hence certain) error ratio. But, if the median were
actually 3M , then the distribution of the M(i) values would be known precisely: M(i) = M
for half the stars, and M(i) = 3M for the other half. Then

∑
(i,j)D(Xi, Xj) = 2kM , the

denominator in the error ratio is 2kM , and so an optimal SP alignment would be obtained
from any center string Xi with M(i) = M ; such a string is selected with probability one-
half. The same conclusion holds for each r. That is, were the extreme conditions used in the
proof of Theorem 3.2 to actually hold, then an optimal SP alignment would be constructed
from 1/r of the stars. So the analysis used in the proofs is quite pessimistic, and Theorems
3.2 and 3.3 should be taken as “back of the envelope” estimates which give sufficiently
positive results to encourage the experimentation of randomized methods on real data of
interest. This is consistent with the experimental results mentioned in the next section. If
one wants complete certainty, we have the following

Theorem 3.4 If p stars are chosen in any manner, and A is the best resulting multiple
alignment, then V (A)/V (A∗) is guaranteed to be less than (k − 1)/k + (k − 1)/p.

As an interesting aside, let T be any tree with k nodes labeled with the strings of X , and
let A be the multiple alignment of X consistent with T . Using Theorem 2 in the paper by
Wong [?], it can be shown that V (A)/V (A∗) ≤ 2k. This provides a very quick way (since
only k − 1 pairwise alignments need by computed) to obtain a bounded error multiple
alignment, but the error in this case may so large as to make the alignment uninteresting.

3.2 Comments and Empirical Results

We should point out that the above theorems, although correct, are not informative when the
strings are extremely different. Let W (Xi, Xj) be the value of the worst possible alignment
between strings Xi and Xj . If

∑
i<jW (Xi, Xj)/

∑
i<j D(Xi, Xj) ≤ 2(k−1)/k then Theorem
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3.1 holds vacuously. So the theorem is informative only when the strings are sufficiently
similar. This is the case for many applications involving biological sequences, but probably
the most interesting cases are when the strings are highly dissimilar. However, we should
not conclude that the center star method is not useful for highly dissimilar strings, as
illustrated in the sketch of the empirical results given below. Further, in cases when the
dissimilar strings can first be grouped into subsets of more mutually related strings, then
each subset can be aligned separately using the star method, and then the centers of each
star can be aligned, again by the star method.

One might also object that the SP measure is based on global alignment, applying to
the entire length of each string, while a measure based on local alignment would be of more
use. This is most likely true, but the SP measure may still be important in multiple local
alignment, as for example in the program MACAW [13]. In that program, regions of local
similarly that extend throughout the strings are first found and aligned. These regions are
called diagonals. Every consecutive pair of diagonals defines a set of substrings consisting
of the strings between the two diagonals. These substrings are then globally aligned by
MACAW, and the goodness of the entire alignment is evaluated with respect to the SP
measure. Hence the need for global alignment can arise even in the context of more locally
oriented objectives.

A final comment is that the center star method is similar in some ways to earlier pro-
gressive alignment methods, but quite different in one important way. Once the center star
is determined, the actual alignment obtained follows the ideas of progressive alignment in
that progressive alignment methods also first build, explicitly or implicitly, some tree to
guide the alignment. However, the key issue is how the initial tree is found. The progres-
sive alignment method in [6] essentially first finds a minimum spanning tree or, in other
words, first does a single-link clustering, based on the edit distances. Algorithms to build
minimum spanning trees are called “myopic algorithms” in the literature precisely because
each successive decision about which link to include in the tree is made without considering
the implication of that choice on possible future choices. This is consistent with the stated
philosophy in [6]: “once a gap always a gap”. In contrast, the center star is based on a
much more global consideration of all the data. No claim is being made here that a more
global approach is better than a myopic approach, just that it is certainly different.

A sketch of empirical results

We ran the above methods on several sets of biological sequences. The objective function
used counted zero for a match, two for a mismatch and one for a space. Typical cases
had between seven and twenty strings of lengths between 40 and 200 characters. A more
complete write up of these and other experiments is forthcoming. However, in all cases, the
results were considerably better than the bounds given in the above theorems, and we will
give two illustrations, one where the strings were quite similar, and one with much greater
variability.

We aligned 19 amino acid sequences of homeoboxs from different species. This ex-
periment was a case where the strings were quite similar. The average string length was
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60 and the average optimal (pairwise) alignment value was 25.5 with an average num-
ber of equalities in an alignment of 46. For these strings, the bound from Corollary 3.1 of
2(k−1)M/

∑
i,j D(Xi, Xj) was 1.34, and the ratio of worst possible multiple alignment value

to the lower bound was greater than this, making the bound informative. As expected, the
actual deviation of V (Ac) from the lower bound was much less: V (Ac)/

∑
i<j D(Xi, Xj)

was 1.018, i.e. the multiple alignment obtained from the center star had a value whose
deviation from the lower bound was less than two percent. Further, in 11 out of the 19
multiple alignments (each obtained from a different choice of center), the deviation was less
than five percent. The average deviation from the lower bound for the alignments produced
using centers whose M(i) ranked below the median center was three percent. Generally
there was a rough, but not perfect, correlation between the rank of M(i) and the rank of
the value of the multiple alignment produced using string Xi as center. Further, the center
string, with the smallest M(i), did give the best of the 19 alignments, and the string with
worst M(i) gave the worst multiple alignment.

To test strings which were not so similar, and where Theorem 3.1 was not informative,
we took ten sequences near the homeoboxs. The average string length was 43, the average
optimal pairwise alignment value was 56.5 and the average number of equalities in an
optimal alignment was 13.7. The ratio 2(k − 1)M/

∑
i,j D(Xi, Xj) was 1.61, but again the

the actual deviation of Ac from the lower bound was much lower: using Ac, the ratio was
1.162 (a 16.2% deviation from the lower bound), while the string with next best M(i) gave
an alignment which deviated from the lower bound by only 16.0%. Despite this, there was
again a rough correlation between the rank of M(i) and the rank of the alignment obtained
from string Xi. Also, M was 466, while the median star had M(i) equal to 504, much less
than the 3M bound shown above. Note that the deviation of 16.0% is from the lower bound∑
i<j D(Xi, Xj) and we don’t know what the actual deviation from the optimal alignment

is. But since the average pairwise alignment value is large compared to the average string
length, it seems unlikely that the optimal is very close to the lower bound. Hence a 16%
deviation from the lower bound seems quite good.

Both of the above experiments support the belief that Theorems 3.1, 3.2, and 3.3 are
generally pessimistic compared to the typical situation arsing in practice.

4 Multiple Alignment and Evolutionary Trees

One of the main uses for aligning more than two strings simultaneously is in building
evolutionary trees for the taxa associated with set of biological sequences. The typical
approach has been to first find a multiple alignment of the strings, then obtain distances or
clusterings from that alignment to construct a tree “explaining” the evolutionary derivation
of the set of strings (see [6, ?, 5] for examples). Often, one can identify major clusters, and
the pattern of evolution, by the places that long contiguous sequences of spaces have been
inserted into the alignment. With this approach, the SP measure may be sufficient, and a
close to optimal alignment may identify the same clusters that an optimal alignment would.

However, another approach is to first choose the typology of the tree and then map
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the strings (with additional strings possibly added) to the nodes of the tree. The string
alignment is then the alignment which is consistent (discussed in the previous section) with
the pairwise alignments of the strings at the ends of the edges of the tree. The value of the
alignment is just the sum of those selected pairwise alignments. This second approach to
multiple alignment is called the tree alignment (TA) approach [1] [?].

The above specific approaches to building evolutionary trees connect the multiple align-
ment problem with the tree building problem, and the papers cited above treat the evo-
lutionary tree problem in the context of the multiple string alignment problem. However,
the main goal is the tree itself and the alignment is either part of a method to build the
tree, or is a reflection of the goodness of the tree. Hence the goodness of the alignment is
judged by the goodness of the tree associated with it. For this reason, we will focus on the
tree problem, but the bounds obtained there translate of course into the alignment problem
with the TA objective function.

4.1 Formal definitions

Let K be an input set of k strings, and let K ′ ⊇ K be a set of strings containing (possibly
equal to) K. An evolutionary tree TK′ for K is a tree with at least k nodes, where each
string in K ′ labels exactly one node, and each node gets exactly one label from K ′. The
value of TK′ is V (TK′) = [

∑
D(X,Y ) : (X,Y ) label the ends of an edge in TK′ ]. As before

D(X,Y ) is the value of the optimal pairwise alignment of strings X and Y . Given the set
K, the problem is to find a set of strings K ′ ⊇ K and an evolutionary tree TK′ for K which
minimizes V (TK′) over all evolutionary trees for K.

Although the correct root (most ancestral string in K) may not be known, if the root
were known and the edges of TK′ directed away from the root, then TK′ provides a model
of the evolutionary change involved in deriving the set of strings K from the root string.
The alignment value D(X,Y ) associated with each directed edge (X,Y ) is interpreted as
the minimum “cost” to transform string X to string Y , and the therefore the sum of the
alignment values of the edges gives the evolutionary cost implied by the tree.

The set of strings in K ′ −K model hypothesised ancestors of the taxa associated with
K; the nodes labeled with K ′ −K give the hypothesised historical positions of these taxa.
It is easy to construct examples where the optimal (minimum value) evolutionary tree must
contain such ancestors. Of course, one cannot know for sure that the “ancestors” are real,
but the optimal evolutionary tree none-the-less provides the best general lower bound on
the amount of evolutionary change involved in the “true” history3, and is of course a lower
bound on the best possible value obtainable by the two specific approaches to building
evolutionary trees mentioned above.

Finding the optimal evolutionary tree is a very difficult computational task, and only
special cases of it have been addressed in the literature [11, 1]. In this section we discuss
a method which gives an evolutionary tree whose value is never more than twice that of

3Provided that we measure evolutionary change in terms of weighted edit distance of the associated
strings.
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the optimal evolutionary tree, hence never has more than twice the minimum possible
evolutionary change.

4.2 Method

To describe the method, we first define the minimum spanning tree of a edge weighted graph.
Let G be a graph with k nodes where every node is labeled with a distinct string in K. The
weight given to any edge (X,Y ) is D(X,Y ), the value of the optimal alignment of strings
X and Y . The minimum spanning tree (denoted MST) of G is a subtree of G containing
all k nodes, such that the sum of the weights on its edges is the minimum possible over all
such subtrees of G. A minimum spanning tree of a graph can be computed very efficiently
by a variety of methods [?]. Clearly, given a set of strings K, the MST constructed as above
is an evolutionary tree for K.

For any set of strings K, let T ∗ denote the optimal evolutionary tree for K. We will
show that V (MST )/V (T ∗) < 2.

Let C be a traversal of the edges of tree T ∗ which traverses every edge exactly once in
each direction. Clearly its value, the sum values of the edges it traverses is exactly 2V (T ∗)
since it traverses every edge twice. Now consider a numbering of the strings in K in the
order that these strings are first encountered on traversal C. Let C1, C2, ..., Ck be this
numbering. Define V (C) to be D(Ck, C1) +

∑
i<kD(Ci, Ci+1).

Lemma 4.1 For any i < k, D(Ci, Ci+1) is at most the sum of the values of the edges on
the traversal C between string Ci and Ci+1. Similarly, D(Ck, C1) is at most the sum of the
values of the edges on C between Ck and C1.

Proof Follows immediately from triangle inequality on the distance function D. 2

Corollary 4.1 V (C) ≤ 2V (T ∗).

Now let D(Ci∗ , Ci∗+1) be the largest distance of any adjacent strings Ci, Ci+1 including
Ck, C1.

Lemma 4.2 V (MST ) ≤ V (C)−D(Ci∗ , Ci∗+1) ≤ V (C)− V (C)/k.

Proof Any k− 1 of the k pairs {(Ci, Ci+1) : 1 ≤ i < k}∪ (Ck, C1) specify a set of edges
which form a subtree of G containing all k nodes. In particular, the set of pairs consisting
of all pairs but (Ci∗ , Ci∗+1) form a spanning tree. The value of that spanning tree is exactly
V (C) − D(Ci∗ , Ci∗+1). But MST is the minimum spanning tree of G, implying the first
inequality. Clearly, D(Ci∗ , Ci∗+1) ≥ V (C)/k, implying the second inequality. 2

In summary we conclude,

Theorem 4.1 For any set K of k strings, V (MST )/V (T ∗K) ≤ 2(k − 1)/k < 2.

More exactly,
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Theorem 4.2 V (MST )/V (T ∗K) ≤ (k − 1)/kV (C)/V (T ∗K) ≤ 2(k − 1)/k.

Generally, we can expect that V (C) will be considerably less than 2V (T ∗), and further
since V (MST ) ≤ V (C) −D(Ci∗ , Ci∗+1), we can also expect that V (MST )/V (T ∗K) will be
considerably less than two. However, unlike the case of the SP bound, we do not know how
to compute (as opposed to prove beforehand) a better bound than that given in Theorem
4.2,

Corollary 4.2 V (T ∗K) > kV (MST )/2(k − 1)

Corollary 4.2 gives an efficient method to compute a non-obvious lower bound on V (T ∗K).

5 Extension to other distances

All the results established in this paper hold for more complex weight functions than dis-
cussed above. For example, an important extension is the introduction of the concept of
a gap, a contiguous sequence of spaces in an alignment. A single evolutionary event might
insert or delete a contiguous sequence of characters of quite variable length, causing a gap
in an alignment of the unmodified and the derived strings. Hence it is not always correct
to weigh the spaces in a gap by simply summing up the weights given by each individual
space. Instead more complex gap weight functions have been suggested and studied. We
will not discuss these here, but simply point out that under any gap weight function if the
definition of the optimal alignment value (edit distance) satisfies the triangle inequality,
then all results still apply.

6 Appendix

For completeness of this report we show how to construct the multiple alignment Ac, which
is consistent with the center tree. Without loss of generality, assume Xc = X1. We will
follow a method that is simple to describe, but not the most efficient method.

After computing all the optimal pairwise alignments, let s0 be the maximum number
of spaces placed before the first character of X1 in any of the alignments, let sf be the
maximum number of spaces placed after the last character of X1 in any of the alignments,
and for each i let si be the maximum number of spaces placed between characters X1(i)
and X1(i+ 1) of X1 in any of the alignments. To create the multiple alignment Ac we first
insert spaces into X1. Insert s0 spaces before X1, sf spaces after X1, and si spaces between
character X1(i) and X1(i + 1) for each i. Let X̄1 denote the string X1 with these spaces
inserted. Then for each string Xj , find the optimal pairwise alignment of Xj with X̄1 with
the constraint that no additional spaces are put into X̄1. The result is also an alignment
of X1 and Xj , so D(Xj , X̄1) ≥ D(Xj , X1). Conversely, s0 (sf ) is greater or equal to the
number of spaces placed before (after) X1 in the optimal alignment of X1 and Xj , and each
si is greater or equal to the number of spaces between X1(i) and X1(i+ 1) in the optimal
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X1, Xj alignment. Hence D(Xj , X̄1) ≤ D(Xj , X1), so D(Xj , X̄1) = D(Xj , X1) for each Xj .
Then since no additional spaces were inserted into X̄1, these pairwise alignments form a
multiple alignment Ac which is consistent with the center tree.
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