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Abstract

In this paper we examine two related problems of inferring the evolution-
ary history of n objects, either from present characters of the objects, or from
several partial estimates of their evolutionary history. The first problem is
called the Phylogeny problem, and second is the Tree Compatibility problem.
Both of these problems are central in algorithmic approaches to the study of
evolution [F], [WI], and in other problems of historical reconstruction [HKT],
[NA], [NI]. In this paper we show that both of these problems can be solved
by graph theoretic methods in linear time, which is time optimal, and which
is a significant improvement over existing methods.

1 Perfect Phylogeny

Let M be an n by m 0-1 matrix representing n objects in terms of m char-
acters that describe the objects; cell (7,7) of M has a value of one if and
only if object ¢ has character j. A phylogenetic tree for M is a rooted tree T
where each object is attached to exactly one leaf of T', where each of the m
characters is associated with exactly one edge of the tree and where, for any
leaf w of T', the characters associated with the edges along the unique path
from the root to w exactly specify the character vector of the objects at leaf
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w. In the example in Figure 1, the first matrix M has a phylogenetic tree T,
but the second matrix M’ does not.
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Figure 1: Matrix M has a phylogenetic tree T. Matrix M’ has none.

The interpretation of a phylogenetic tree is that it gives an estimate of
the evolutionary history (in terms of branching pattern, but not time) of the
objects, based on the following biological assumptions:

1. The root of the tree represents an ancestral object which has none of
the present m characters. That is, in the ancestral object, the state of
each character is zero.

2. Each of the characters changes from the zero state to the one state
exactly once, and never from the one state to the zero state.



The key feature of a phylogenetic tree (without which there would be
no interesting problem) is that each character is associated with exactly
one edge of the tree. This corresponds to the second assumption above,
and represents the point in the evolutionary history of the objects when the
character changes from its zero state to its one state. Hence any objects
below that edge definitely have that character. We assume that characters
satisfying these biological assumptions are known, but point out that finding
such characters is a difficult biological task in building a phylogenetic tree.

Phylogeny Problem: Given the n by m 0-1 matrix M, determine
whether there is a phylogenetic tree for M, and if so, build one.

We solve this problem with a very simple O(nm) time algorithm, where
each comparison operation and each reference to M is counted as one time
unit. Existing methods, based on a straightforward implementation of Lemma
1 below, take time ©(m?n) [W], [CS]. Even when M is known to have a phy-
logeny, existing methods to construct it (based on clustering [H]) take time
O(n*m). Typically, n << m, and the phylogeny problem is often at the
inner loop of more complex problems, so the improvement in running time
in this paper is significant. An easy adversary argument shows that in order
to build a phylogenetic tree every element in M must be examined. We will
extend this to show that just to decide whether M has a phylogenetic tree,
every element must be examined, hence our algorithm is time optimal. We
first need the following definition and lemma.

Definition: For any column k of M, let Oy be the set of objects with a
one in column k, i.e. the objects which have character k.

Lemma 1: M has a phylogenetic tree if and only if for every pair of
columns 1, 7, either O; and O; are disjoint or one contains the other.

The proof of the Lemma is straightforward and appears in a number of
places [EJM75] [M]. It is the basis for existing algorithms for the phylogeny
problem. These algorithms build 7' top down, inserting the characters in
sorted order (largest to smallest) according to the number of objects that have
that character, checking along the way that the conditions of the lemma are
satisfied. Note that an algorithm based on a straightforward implementation
of Lemma 1, would take Q(nm?) time just to determine if M has a phylogeny.



1.1 An O(nm) Algorithm to Test for a Phylogenetic
Tree

1. Considering each column of M as a binary number (with the most sig-
nificant bit in row 1), sort these numbers into decreasing order, placing the
largest number in column 1. As a result, all duplicate copies of a column
become placed together in a consecutive block of columns.

2. Delete any column that is identical to the column on its right. Call
the transformed matrix at this point M’.

3. Let O be the set of all cells in M’ with value one. For each cell
(1,7) € O, set L(1,7) equal to the largest index k < j such that M'(:, k) € O;
set L(1, ) to 0 if there is no such index k. For each column j, set L(j) equal
to the largest L(i,7) such that (7, 7) € O.

4. Check whether L(i,j) = L(j) for every cell (¢,7) € O. If so then M
has a phylogenetic tree, otherwise M does not have one.

Theorem 1: Matrix M has a phylogenetic tree if and only if L(7,7) =
L(j) for every cell (z,7) € O.

Proof: Let by denote the binary number represented by column k& of
M. If O; C Oy then b; < by, so column k will be to the left of column
J in M’'. Now suppose that for some column j, L(z,7) = k = L(j), and
L(i',j) = k' < k. Then O; N O # 0, and O; is not a subset of Oy, since cell
(¢',7) has value one but cell (¢, k) has value zero. So by Lemma 1, M has no
phylogeny unless Oy C O;. But this is impossible, since £ < j in M’. This
proves the necessary side of the theorem.

Conversely, suppose that L(z,7) = L(j) for every cell (i,7) € O. First,
for any column j, O; N O, = ( for any p strictly between L(j) and j. So
such pairs of columns j and p satisfy the conditions of Lemma 1. Second, if
L(]) # 0 then 0; C OL(]').

Now for an arbitrary, but fixed column j, let L(j) = k& > 0, and let
L(k) =K. If k' > 0 then it follows that O; C Oy, and that O; N O, = 0 for
any p strictly between &' and k. If & = 0 then O; N O, = 0 for any p from 1
to k— 1. Continuing in this way, we see that columns j and p satisfy Lemma
1 for every p < j. Since j was arbitrary, all pairs of columns in M’ satisfy
the conditions of Lemma 1, and M has a phylogenetic tree. O

The algorithm can be implemented in time O(nm) by using radix sort
in step 1, with pointers to avoid all but the last column permutations (see
[AHU] for details on O(nm) time radix sort). All other operations in the



algorithm are trivially done in that time bound.

Unlike the previous algorithms for this problem, the sorting done in step
1 does not sort the columns according to the number of ones they contain;
its purpose is to put column k to the left of column 5 whenever O; C Oy,
and to collect together any identical columns.

1.2 Constructing a Phylogeny

The algorithm above decides whether M has a phylogeny. If it does, then
the following O(nm) time algorithm constructs one, taking M’ as input.

1. Create a node n; for every column j of M’. For each node n; such that
L(7) > 0, direct an edge from np;) to n;, and label the edge with character
J and the indexes of all columns identical to column j (which were deleted
in step 2). Create a root node r, and for each node n; such that L(j) = 0,
direct an edge from r to n; labeled with character j, and the indexes of all
columns identical to j.

2. For each row 1, let ¢; be the largest index such that cell (7, ¢;) has value
one in M’', and let e be the edge labeled with character ¢;. If the head of
edge € is a leaf, then attach object ¢ to that leaf. If the head of e is not a leaf,
then create a new edge directed from the head of e and attach 7 to the new
leaf created. The resulting directed tree T' is a phylogenetic tree for matrix
M.

Theorem 2: The above algorithm correctly builds a phylogenetic tree T
for M.

Proof: Note first that there is a directed path in 7" from a node n;
to node ny if and only if Oy C Oj, and hence along that path the size of
the characters (|Og| for column k) strictly decrease. Now for any object 1,
character ¢; is the smallest character that 7 has (that is |O.,| < |Og] for every
k such that ¢ has character k), so the path from object ¢ to the root of T
encounters all the characters of 7. Further, each character is attached to
exactly one edge of T', so T' is a phylogenetic tree for M. O

Definition: A column of a binary matrix has the consecutive ones prop-
erty if and only if all the ones in the column are in consecutive rows, where
rows n and 1 are not considered to be consecutive.

It is known [H] that if M has a phylogenetic tree then the rows of M
can be permuted so that every column has the consecutive ones property.
The consecutive ones property allows a visually nicer presentation of the



matrix. An O(n*m) algorithm to reorder the rows was given in [H]. Linear
time, but fairly complex, algorithms are known for creating, when possible,
the consecutive ones property [BL], but for matrices with a phylogenetic tree
there is a simpler linear time method.

Execute line 1 of the algorithm to test for a phylogenetic tree,
and then execute the following: 1.5) Considering each row of
M as a binary number, use radiz sort to sort these numbers in
decreasing order, placing the smallest number in row 1.

Theorem 3: If M has a phylogenetic tree then after steps 1) and 1.5),
each column of M has the consecutive ones property.

Proof: The proof is by induction on the number of columns that radix
sort has examined in step 1.5. Radix sort (of the rows of M) examines the
columns in order m down to 1; when it examines column k, it stably permutes
the rows of M so that all the rows with a zero in column k are above all the
rows with a one in column k. A stable permutation of rows (for column k)
does not change the relative order of two rows which have the same element
in column k.

Clearly, when a particular column k is examined, the row permutations
create the consecutive ones property in column k, so we need to show that
the consecutive ones property of any columns to the right is preserved by
those permutations. Assume that the columns down to &£+ 1 have the con-
secutive ones property, and consider the affect on column 5 > k of the row
permutations resulting when column k is examined. If Ox N O; = (}, then
every row with a 1 in column j has a zero in column &, and since the permu-
tations are stable, these consecutive rows will stay together as a consecutive
block, so column j will retain the consecutive ones property. If Ox N O; #£ ()
then O; C Oy, so the consecutive rows containing ones in column j also
contain ones in column k. Since the row permutations (for column k) are
stable, these consecutive rows remain together, and so column j retains the
consecutive ones property. O

1.3 Q(nm) time is needed for the phylogeny problem

We show that any algorithm to decide if M has a phylogenetic tree must, in
worst case, examine every cell in M. The proof is by the so called adversary



method, in which we show how an adversary can give consistent answers to
the queries of any unknown algorithm, forcing the algorithm to query every
cell of M. If the algorithm does not query every cell, then the adversary
can fill in unqueried cells, so as to make the algorithm’s answer incorrect.
A query is specified by the location of a cell, and an answer is either 0 or
1, indicating the value at that cell. The adversary decides which answers to
give the algorithm as follows.

1. Answer 1 to each query until a query is made to a cell (7, j) such that
all other unqueried cells are either in a single column or a single row.
Answer 0 for the query to cell (1, 7).

S

Suppose that all unqueried cells are in column k. Answer 1 to any
remaining query (these are all in column k) as long as column & has at
least three unfilled cells. When column £ has only two unfilled cells,
let (r,k) denote the cell being queried. If r = ¢ (the same 7 as from
step 1) then answer 1, else answer 0. We will prove that in either case
the last unfilled cell must be queried.

3. Suppose that all unqueried cells are in row ¢q. Answer 1 to any re-
maining query (in row ¢) as long as row ¢ has at least three unfilled
cells. When row ¢ has only two unfilled cells, let (g, z) be the cell being
queried. If z = j (the same j as from step 1) then answer 1, else answer
0. We will prove that the last unfilled cell must be queried.

Theorem 4: The above adversary forces a query of every cell of M in
order to determine whether M has a phylogenetic tree.

Proof: First, if the algorithm stops before step 1 finishes, then all the
entries are 1 and there are at least two unqueried cells (7, 5) and (s,¢) which
are not in the same row or column. If we set these cells to 0 and all other
cells to 1 then, by Lemma 1, M has no phylogenetic tree, while if all cells are
set to 1, then it does. So the algorithm must run until the adversary finishes
step 1. In steps 2 and 3 we maintain the condition that the matrix has only
one 0 entry until there are only two unfilled cells left. Up to that point
the algorithm cannot correctly conclude that there is no phylogeny for, by
Lemma 1, there must be at least two 0 entries in a matrix with no phylogeny.
Further, one of the unqueried cells is in neither the same row or column as
cell (7,7), so it is possible to make that cell 0 and the other 1, and so the
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algorithm cannot correctly conclude that a phylogenetic tree must exist for
M. So any correct algorithm must make at least these nm — 2 queries.

If the answer to query nm — 1 is 1, then there is only one 0 in the matrix
and the remaining unfilled cell is neither cell (i, %) nor (¢,7). By Lemma 1,
M has a phylogeny if and only if this remaining cell is filled with a 1. If
the answer to query nm — 1 is 0, then the last unfilled cell is either (7, k)
or (q,7). In either case, by Lemma 1, M has a phylogeny if and only if the
remaining cell is filled with a 0. Hence the algorithm must explicitly examine
the remaining cell. O

One might object that the adversary above creates a very unnatural ma-
trix since most of the objects are identical. It remains an open question
whether the ©(mn) lower bound holds when all objects have a distinct set
of characters.

1.4 Extension to Undirected Characters

In the phylogeny problem discussed so far, it was assumed that each char-
acter has two states, 0 and 1, and that at the root of the phylogeny, each
character is in state 0. The second assumption is often too strong. A weaker
assumption is that each character is binary, but it is unknown which state
of each character is ancestral. However, once choices for the root states are
made, the states can be relabeled so that the root states are all zero, and
the resulting matrix can be tested to see if it has a phylogenetic tree. So the
more general problem is to determine if there is a phylogenetic tree for at
least one of the 2™ choices for the root character states. An intuitive choice
for the root state of a character j is the majority state: assign the root state
of character j to be 1 if and only if |O;| > n/2. It was shown [MC] that
if there is any choice of root states that leads to a phylogenetic tree, then
the majority choice for each character will also. Hence the general problem
reduces to one instance of the phylogeny problem already discussed, and so
the general problem can also be solved in O(nm) time.

2 Determining the Compatibility of Two Trees

Another extension of the phylogeny problem that has been given consider-

able attention [F],[EJM75,76a,76b][EMS80], is how to determine whether two



phylogenetic trees describe compatible evolutionary history, and if so, how
to combine them into a single phylogenetic tree incorporating all the known
history. Such a problem arises when the two trees are first constructed sepa-
rately, using different characters. In [EM80] it was shown that this problem
reduces to an a single instance of the phylogeny problem in a table of size at
most n by 4n, and hence the problem can be solved in O(n?) time, as above.
In this section we show how to solve the problem in O(n) time.

2.1 Definitions

Let T} and T, be two phylogenetic trees for a set of n objects. We will assume
that T} and T, are both in “reduced form”, that is, both are binary trees,
and no node except the root can have exactly one child. A phylogenetic tree
Ts 1s a refinement of T} if Ty can be obtained by a series of edge contractions
of edges of T5. 1If T5 refines Ty, then T5 agrees with all the evolutionary
history displayed in T}, while displaying additional history not contained
in Ty. Trees Ty and Ty are compatible if there exists a phylogenetic tree
T5 refining both 7} and Ty (see Figure 2). Given trees Ty and Ty, the tree
compatibility problem is to determine whether the two trees are compatible,
and if so, to produce a refinement tree T3. In a series of papers [EJMT75,
EJM76] [EMB80] the above definition was shown to be equivalent to several
other notions of compatibility, and was finally solved as follows [EMS80].

Let M; be a 0-1 matrix with one row for each object, and one column
for each internal node j in 7Ty. Entry (7, ) of M; has value one if and only
if object ¢ is found at a leaf of T} below node j. That is, column j of M;
records the objects found in the subtree of T} rooted at node 5. Matrix M,
is similarly defined for 73, and matrix Mj is the matrix formed by the union
of the columns of M; and M,. Then

Theorem 5 [EMS80]: 7; and T, are compatible if and only if there
is a phylogenetic tree for M3. Further, a phylogenetic tree T3 for Mj is a
refinement of both 7} and 75.

Given the above theorem, the compatibility problem can be solved in
O(n?) time using the method of section 1. We now show how to solve the
problem in O(n) time.
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Figure 2: T and T, are compatible; they are refined by T5. Ty and T are

not compatible.
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2.2 An O(n) Time Compatibility Algorithm

1. With a depth first traversal of T} do the following: set a pointer from
each object ¢ to the leaf, V;(7), that ¢ is attached to; for each object 1,
set N1(2) to be the number of objects in the leaf i is attached to; record
for each internal node x, the number of objects at the leaves below x.
Do the similar traversal of T,. Declare all objects to be active.

2. For y =1,2
begin
If j = 1, then set k = 2, else set k = 1.

While there is an active object 7 such that N;(z) > Ni(i), do the
following:

Follow the path from V(i) to the root of T} until a node z is reached
that has at least N;(i) leaves in its subtree T'(z). Check that the objects
at the leaves of T'(z) are the same objects attached to V;(i). If not,
then stop: Ty and Ty are not compatible. Otherwise, replace node V(1)
in T; with T'(z), update the pointers V;(i), and declare each object in
T'(z) to be inactive.

end.

3. Considering the set of objects at a leaf to be its label, check whether
the labeled trees T7 and T5 are isomorphic, and if so, then T35 = T7 = T}
is the desired refinement.

The proof of correctness is straightforward and left for the reader.

2.2.1 Implementation and Analysis

Step 1 takes O(n) time, since all the tasks are done while doing a depth first
search traversal [AHO]. We will implement step 2 so that each iteration takes
time O(N,(2)), and hence the total time of step 2 is O(n). To check if the
objects in T'(x) are the same as those in V;(1), first check that the number of
objects at the leaves of T'(z) is exactly N;(2). If so, traverse T'(z) to identify
the leaves of T'(z). Then for every object p attached to V;(z) check, in unit
time, that Vi(p) is a leaf in T'(z). If all V(i) objects are in T'(x), then the two
sets of objects are the same, since their numbers are equal. Tree T'(z) has size
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O(N; (1)) since T; is in reduced form, so step 2 takes only O(n) time in total.
For step 3, it is known [AHU] that isomorphism testing of general (labeled
or unlabeled) trees can be done in O(n) time, although the algorithm is a
little involved. However, there are very simple isomorphism tests for step 3,
due to the fact that the trees are binary, and that the objects at the leaves
are distinct. The following is one of several simple ways to implement step
3:

3a. Traverse the trees to assign the distance of each node from the root,
and to identify the leaves L of T} whose siblings are also leaves.

3b. Repeat step 3c until only the root node of T} remains.

3c. Choose a node v in L and remove it from L. Find the leaf z in T,
with the same label as v, check that its sibling is a leaf, and that it has the
same label as the sibling of v. If there is no such z, or any of the checks fail,
then the trees are not isomorphic. Otherwise, remove these four nodes from
their respective trees, making the respective parents of v and = (denoted p;
and ps) leaf nodes. Label p; and py with the same unused number from n+ 1
to 2n. Check whether the sibling of p; is a leaf (using the distances), and if
so, add p; to L.

Implementation detail for step 3c

To find = given v we first check if v is an original leaf of T}. If so, then pick
any object ¢ attached to v (hence v = Vi (2)); the only candidate for x is V5(7),
and we can check the label of z in O(|V,(7)|) time as in the implementation
of step 2. If v is not an original leaf of T}, then it is labeled with a single
number, so an index vector can locate x from v in unit time.
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