
String Barcoding: Uncovering Optimal Virus Signatures

Sam Rash
University of California at Davis

1 Shields Avenue
Davis, CA 95616
1-530-752-7004

rash3@llnl.gov

Dan Gusfield
University of California at Davis

1 Shields Avenue
Davis, CA 95616
1-530-752-7004

gusfield@cs.ucdavis.edu

ABSTRACT
There are many critical situations when one needs to rapidly
identify an unidentified pathogen from among a given set of
previously sequenced pathogens. DNA or RNA hybridization
chips can be designed for such identifications. Each cell in the
chip can report the presence or absence of a specific substring of
DNA in the unidentified pathogen. Properly designed, the
collection of reports obtained from the cells can uniquely identify
any pathogen in the set, or determine that the unidentified
pathogen is not in the set. There is a limit to the number of cells
on a chip, and a range of substring lengths that a cell can handle.
So, given the full sequences of a set of pathogens, the problem is
to design the chip by selecting the smallest set of substrings of the
appropriate lengths, so that each pathogen in the set has a unique
set of cells that report a substring. For any given pathogen, the set
of reporting cells is its signature, and hence the entire system is a
"barcode" system for the pathogens.

Previous work addressed this problem [1], but focused on
pathogens of bacterial size, and hence had to make many
compromises for the sake of efficiency. The substrings lengths
were severely restricted, and no optimality or near-optimality was
guaranteed. In this paper, we focus on viral-size pathogens. We
show that for genomes of this size, it is practical to solve the
barcode design problem optimally, or near-optimally, without
artificially constraining the problem. We also efficiently find
barcodes that provide a level of redundancy, tolerating a number
of errors or mutations. The key technical ideas are the use of
suffix trees to identify the critical substrings, integer-linear
programming (ILP) to express the minimization problem, and a
simple idea that dramatically reduces the size of the ILP, allowing
it to be solved efficiently by the commercial ILP solver CPLEX.
We report extensive tests of our approach on various collections
of virus DNA and RNA sequences.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences] - Biology and genetics

General Terms
Algorithms and Performance.

Keywords
String barcoding, barcoding, virus signatures, testing set, suffix
trees.

1. INTRODUCTION
The string barcoding problem is a problem useful in identifying
an unknown string as one of a set of known strings. In particular,
consider the case where we have a database of strings. We are
then given an unknown string and wish to know which of the
strings in our database the unknown one is most similar to. In the
biological realm this may be the case where we have a database of
the DNA for known viruses and wish to identify an unknown
virus. If we have access to the entire DNA sequence for the
unknown virus, we can simply use known similarity searching
programs such as BLAST[2] to identify the unknown virus. In
reality, it is not this simple, however. We do not have access to
the entire sequence for the unknown virus (string). Instead, we
can only test for the presence of some particular substring in the
unknown string and get a "yes" or "no". These can simply be
called substring tests. In this case, it is still possible to identify
the unknown virus. What we need is a set of substring tests such
that on every virus in the known set, the set of answers (yes or no)
that we receive is unique with respect to any other virus in the
known set. Then, if we have an unknown virus, we perform the
entire set of tests and compare the answers we receive with the
answers for every known virus.

In the realm of biology, however, each substring test carries a
cost. Due to this cost, we would like to minimize the number of
tests. This is the purpose of the string barcoding problem
presented in this thesis. We present an approach that starts with a
set of known strings (viruses) and builds a minimum cardinality
set of substrings that allow us to identify an unknown string using
substring tests.

We present a method that uses suffix trees [3] to reduce all forms
of the string barcoding problem to an Integer Linear Program
(ILP). The implementation presented includes many features that
make it a practical and realistic package. This includes features
such as length constraints and error tolerance measures to
accommodate mutations.

2. BACKGROUND
Just prior to completion of this paper, another paper was
published on a problem that is essentially the same as the string
barcoding problem. Borneman et al [1] discuss what they call
probe selection algorithms. The key difference in their problem
formulation is that they can precisely control the set of candidate
substrings (probes) that they wish to use for tests in order to build
a barcode. They typically do this by limiting the length of all
substrings to exactly one length (8, for example). In the approach
here, we do not use any such prior limitations on the data. We
allow length constraints as the biological model requires, but they
are not necessary in order to find a solution.

In short, where they control the computational complexity by
restricting the set of candidate probes/substrings, we keep the
complexity practical by using suffix trees and other methods to
reduce the size of the ILP. The key difference between our
method and theirs is that our reductions in the problem size do not
change the optimal solution obtained whereas their approach may
exclude the optimal solution. Another key point is that while their
paper only mentions that using a redundancy parameter for
robustness would be a good idea, our implementation already uses
this parameter (discussed later).

One comment from the paper also stands out. Borneman et al [1]
write, "Furthermore, even if we did have complete sequences of
these clones, computing optimal probe sets for large data sets is
computationally infeasible." Since we have actually solved the
problem on fairly large datasets, the validity of their statement is
called into question. However, the statement is quite ambiguous.
While the number of strings in some of their datasets is higher
than ours, they do not mention the lengths of the strings within
those datasets. Since the complexity of our approach is based on
both parameters, it is difficult to assess the validity of their
statement with respect to our results. Nevertheless, what can be
ascertained is that their statement helps make the point that our
reductions using suffix trees and other techniques are sufficient to
transform what appears to be an unsolvable problem into one that
is solvable in practice. Lastly, their NP-hard result does not have
an implication for the problem presented here.

The Chemical and Biological National Security Program
(CBNSP) headed by Tom Slezak at Lawerence Livermore
National Laboratory (LLNL) has also been doing work similar to
DNA barcoding. They key difference between the string
barcoding problem and CBNSP's goal is that they do not aim to
find a barcode for every string in a set. Rather, they may input
500 viruses and wish to have signatures for only 10 of those
viruses. This change alone typically simplifies the complexity of
the problem in our approach.

Thus far, the approach at CBNSP has been to use suffix trees to
find the minimum number of relevant substrings and then test
each of those as a signature using BLAST and a BLAST database
of all the viruses they are concerned with. When they have
multiple genomes of a single virus that they are interested in, they
have used MSA (Multiple Sequence Alignment) to expedite the
process. The MSA technique allows them to quickly find
conserved regions in the genomes of interest which can be used as
candidate primers. It should be noted that while this technique is
a sufficient method, it may miss many good signatures due to the

way the global alignment of the sequences may turn out using
MSA.

3. PROBLEM DEFINITION AND
COMPLEXITY
We will be given a set of m strings (virus genomes), S = {s1 , s2 ,
..., sm}. The goal is to find a set of substrings S' such that for any
pair of strings si, sj ∈ S, there is at least one substring s' ∈ S' such
that s' is a substring of si or sj, but not both. We say S'
distinguishes S if it has this property. We then wish to find the
minimum cardinality set S'. We call the set S' the testing set. A
substring that is in the testing set may also be referred to as a
signature substring. Also, a finite alphabet is assumed.

Once we have found an S', we can associate a binary vector of
size |S'| with each string in S. In the vector for s ∈ S, there is a 1
in position i if and only if s'i ∈ S' is a substring of s. Otherwise,
position i has a 0. We call this vector the barcode for string s.
We also consider all the positions in the barcode for s that have
1's. Take the substrings corresponding to the 1's. This set of
strings defines the signature for s. Note that no other string will
have exactly that set of substrings present since the barcode for s
is unique. Obvious upper and lower bounds of log2m and m
exist on the size of S' as well.

The problem of general barcoding, a close cousin to string
barcoding, is NP-hard [4]. Garey and Johnson refer to this
problem as the minimal testing set problem and state that this is
an NP-hard problem. It is unknown whether or not the
unconstrained, basic string barcoding problem is NP-complete or
not. However, if we add one more parameter k to the problem and
instead ask what the minimum cardinality set S' is such that that
each s' ∈ S' is length k or shorter, the problem is NP-complete.
We refer to this variant of the problem as the max-length string
barcoding problem.

• Theorem 1.1: The max-length string barcoding problem with
an alphabet of size at least 3 is NP-complete.

Additionally, the ILP generated has properties such that it cannot
be approximated to a within a factor of n1-ε for any ε > 0 [5].

4. ILP IMPLEMENTATION

4.1 Basic Implementation
The method in which we solve this problem is by reducing it to an
integer linear program. Naively, we could enumerate all possible
distinct substrings from the original set of strings. We next create
a variable for each substring in the integer linear program. We
have an equation for each pair of strings in the original set. We
put the variable for a substring s in an equation for a pair of
strings S1, S2 if s appears in exactly one of those strings. For
example, let S1 and S2 be strings and s1, ..., sk be the set of all
substrings present in exactly one of S1 or S2. Then each vi is a
variable for each si then the equation for that pair would look like:

 v1 + ... + vk ≥ 1 (1)

We have an equation for every pair. The objective function for
the constructed ILP will be to minimize the sum of the vi's. It
should be clear that if we find a solution to this system of
equations, we can take the substrings for variables that are set to

1. If there exists a substring for a pair of strings that is in exactly
one of the strings, then it will have a variable in the equation for
that pair. If there is a variable in the equation for a pair, then
there must be a substring that exists in exactly one of the pair.
This creates a one-to-one correspondence between substrings that
can differentiate a pair of strings and variables that can satisfy an
equation for a pair. This creates the necessary mapping.
Furthermore, since we minimize the sum of the vi's, this in turn
minimizes the number of substrings in S' and hence the optimal
solution to the ILP is indeed the optimal solution to the string
barcoding instance used to construct the ILP.

The complexity of this problem primarily depends on the number
of variables and the number of constraints in the ILP. The major
approach taken in this project is to reduce the number of variables
necessary in the integer linear program by using suffix trees on the
original set of strings. The reader should consult [3] for the
details of suffix trees.

As discussed in [3], the suffix tree encodes the information about
each substring that we need. In a suffix tree for a set of strings,
each leaf is labeled to indicate which string it occurs in. For
example, if a leaf is labeled j, this means that the suffix spelled out
on the walk from the root to this leaf is a suffix of string j.
Furthermore, we also know that the string created from a walk on
the root ending at any point on this path is a substring of string j.
If we choose substrings based only on what pairs they
differentiate, then we need only choose one string per root to node
walk. The next point is a key point, if not the key point with
respect to the advantages of using suffix trees: The string used for
a given root to node walk can be any string that starts at the root
and ends on the edge into the node (including at least 1 character
from the edge). This is so because all of the strings that can be
generated for a given root to node walk will occur in exactly the
same set of original strings and hence distinguish the same pairs
of original strings. For simplicity's sake, this is assumed to be the
substring including the entire label on the edge unless otherwise
stated.

Now, if we consider each node, it has a set of leaves below it.
This means the substring spelled out by the walk from the root to
this node is present in the full strings that label the leaves below
it. Then, for each node v, we can find all strings that have leaves
below it and then we know the substring on the walk to v is
present in all those strings. We can immediately extrapolate this
data to say that the string on the walk from the root to v is present
in all strings with nodes below it and not in any other and hence
can distinguish all the relevant pairs. Then, the string barcoding
problem can be phrased in terms of suffix trees. That is, find a
minimum cardinality set of nodes such that in the suffix tree
described above, for every pair of strings i,j at least one node v in
S' has a leaf below it labeled i (or j) but not j (or i). We must
discuss one more detail about the use of suffix trees and then an
example will be presented in order to clarify the whole process.

Since it is important for efficiency to reduce the number of
variables in the ILP, we present one more immediate optimization
to reduce the number of number of variables. We consider that
each node in the suffix tree has a binary vector associated with it.
The vector is of size n where n is the number of strings in S.
Position i in this vector has a 1 if a leaf below has si in its label.
Then, if two nodes have the same binary vector, we only need one
variable for those two nodes. To decide which string to associate

with the variable, we can either use some secondary criteria or
arbitrarily choose one. Since both distinguish the same set of
pairs of strings, we need only use one. In general, we only need
one variable for each unique binary vector that is present. We say
that two nodes are distinct in this context if they have different
binary vectors associated with them. In the current
implementation, the criteria is arbitrary since all other filters are
done prior to this duplicate removal. In our data, we saw
reductions in the number of variables of around 75% or even up
to 90% in some data.

4.2 Example: from strings to ILP
In order to clarify the process of using suffix trees, we present a
small example. As input we will use the three strings cagtgc,
cagttc, and catgga. We label these strings 1, 2, and 3
respectively. The reader should refer to figures 1.1-1.5 as details
are mentioned.

If we use the most naive approach and enumerate all distinct
substrings, we have 41 distinct substrings. However, using the
suffix tree alone reduces the number of substrings to 24. In figure
1.2, nodes are labeled with subsets instead of binary vectors in
order make the example easier to follow. Note that it is easy to go
from the subset to a binary vector. If we examine figure 1.2, we
will find that only 6 distinct subsets label nodes. Furthermore,
any substring that occurs in all strings cannot be used to
differentiate any pair. This means that any node labeled with all
strings is not useful, so we end up with 5 candidate signature
substrings. This is a further saving over the 24 nodes in the suffix
tree. Compared to the most naive approach which contained 41
substrings, we now only have 5. This is just over 12% of the
original number of substrings.

Figure 1.3 shows the actual input to CPLEX. In order, the input
is the objective function, a list of the ILP constraints, and the
objective function. The variable numbers correspond to the node
number. For example. node v18 appears in the ILP as X18. Also
note that the theoretical minimum is included to accelerate the
search (CPLEX can do more pruning).

If we solve the ILP in figure 1.3, we find that an optimal solution
of value 2 by setting X18 and X22 to 1 and all other variables to
0. This corresponds to using nodes v18 and v22. Hence, we
examine the suffix tree in figure 1.1 and find that this means using
the strings tg and atgga. The following two figures illustrate the
process.

Figure 1.1 - suffix tree for set of strings cagtgc,

cagttc, and catgga

v1 - {1,2,3} v2 - {1,2,3} v 3 - { 3 } v 4 - { 1 } v 5 - { 3 }

v6 - {1,2} v 7 - { 2 } v 8 - { 1 } v9 - {1,2,3} v10 - {1,2,3}

v11 - {1,2} v 1 2 - { 1 } v13 - {2} v 1 4 - { 3 } v15 - {1,2,3}

v 1 6 - { 2 } v 1 7 - { 2 } v18 - {1,3} v 1 9 - { 1 } v 2 0 - { 3 }

v21 - {1,2,3} v 2 2 - { 3 } v23 - {2} v24 - {1,2} v 2 5 - { 1 }

Figure 1.2 - table of string labels for each node in suffix tree
from figure 1.1

minimize
X18 + X22 + X11 + X17 + X8 #objective function
st
X18 + X22 + X11 + X17 + X8 >= 2 #this is the theoretical minimum
X18 + X17 + X8 >= 1 #constraint to cover pair 1,2
X22 + X11 + X8 >= 1 #constraint to cover pair 1,3
X18 + X22 + X11 + X17 >= 1 #constraint to cover pair 2,3
binaries #all variables are 0/1
X18 X22 X11 X17 X8
end

Figure 1.3 - ILP constructed for suffix tree in figure 1.1 using
no additional constraints (length, etc)

cagtgc 1 0

cagttc 0 0

catgga 1 1

Figure 1.4 - barcodes

cagtgc {"tg"}

cagttc ∅
catgga {"tg", "atgga"}

Figure 1.5 - signatures

4.3 Extensions to Basic Implementation
We implement length constraints by filtering out strings that fall
outside the valid length range. This further reduces the number of
variables in the ILP.

The next set of features deal with the problem of errors that occur
when testing an unknown sequence. Errors in this problem
typically refer to the case where a signature is first developed for a
virus. The virus then mutates in nature and we wish to still be
able to identify the mutated version. We implement two methods
for dealing with this problem.

In order to deal with (point) mutations and sequencing errors that
occur, we have implemented a method of redundancy. Instead of
requiring a single substring for every pair of strings, we require r
substrings for each. This results in the equation of the form

v1 + ... + vk ≥ r (2)

Solving this modified ILP will result in having r substrings to
differentiate each pair of strings that gives a larger barcode than if
a smaller redundancy is used.

The analysis of this approach is omitted due to space limitations.
However, the conclusion from it is that using low values such as
r=5 result in a high confidence that a signature will remain valid
given reasonably high mutation rates, short generation times such

as those observed in viruses, and a reasonable period of time (1
year).

The second method for error tolerance is to impose a minimum
edit distance between substrings that are present in the testing set,
S'. An edit distance between a pair of strings is simply a way to
measure how many unit operations on one string are necessary to
change it into the other (it is a symmetric value). In the world of
DNA, we can essentially consider these as mutations (point
mutations, insertions, deletions). Enforcing a minimum edit
distance lowers the likelihood that a small number of mutations
will cause a chosen substring to appear in a virus that it did not
previously appear in. For a discussion of edit distances and how
to compute them, we refer the reader to [3]. The change to the
ILP is that for each pair of candidate substrings si, sj (with vi,vj
being the respective variables) that are not at least the minimum
edit apart, we add a constraint to the ILP of the form

vi + vj ≤ 1 (3)

This enforces that at most one of the substrings will be in S'.
Again, the analysis is omitted for brevity. The result of the
analysis, however, again shows that using small edit distances
such as two or four results in added confidence that mutations in
nature will not invalidate a signature.

As in the case of CBNSP, it is sometimes the situation that we
may have a set of organisms and wish to find signatures for only a
subset of the organisms. Our implementation includes this
feature. We can control what pairs are distinguished by adding or
removing the appropriate equation of the form (1) or (2) in the
ILP.

5. RESULTS
We used CPLEX version 7.100 with its default parameters.
CPLEX was run on a Compaq AlphaServer 6/525 DEC21000. It
had 8 cpus each running at 523mhz with a 4 mb cache.. However,
only one cpu was used per execution of CPLEX (no parallelism
was exploited). The machine had 4 gigabytes of physical
memory.

5.1 Input Parameters and Output Measures
The input parameters measured include the properties of the data
and the parameters fed to the program. The data properties
include the size of the problem (number of strings and lengths of
strings) and the average edit distance between pairs of string. The
edit distance is normalized to be edit operations per character.
The program parameters include the set of viruses within the input
set that we actually want signatures for, the minimum edit
distance required between signatures, and redundancy of
coverage. This is how many substrings we want for each pair of
original strings that can be used to determine which one of the
original pair an unknown string potentially is.

CPLEX bounds how close a solution is to the optimal is by a gap
measurement. Since CPLEX is a branch and bound algorithm, we
note that best node refers to the best solution value to the LP
relaxation at any queued (unexplored) node. The value of best
integer is the best solution value obtained thus far. Then, CPLEX
defines gap = abs(best integer - best node)/(1e-10 + abs(best
integer)). Note that the gap is a bound, of course, and that a
solution that has a non-zero gap may indeed be optimal, but just

has not been proven by completely searching the solution tree.
The primary output measurements we took were the time to reach
a 25% gap and the gap measurement after 4 hours of execution. A
25% gap was chosen as this would guarantee a solution that was
at most 33% larger than the optimal. An execution time of 4
hours was chosen as it seemed to be a reasonable amount of time
to devote to building signatures for a set of viruses.

5.2 Data Collection Methods
Timing data was collected on a variety of datasets that were
generated by randomly sampling a set of viruses obtained from
Genbank. For each set of parameters, a set of 15-25 files with
similar input data properties were run through the pipeline and
averages were computed. The input files to the r-runs, s-runs, and
len-run were sampled from the same master file. The hiv-runs
used another set that used strains of the HIV virus. Tables 1.1 and
1.2 summarize the results on the various datasets (discussed
shortly).

5.3 Data Used
All data were viral sequences taken from Genbank. We
essentially had two master datasets. The first was a random
selection of 10,462 viruses from Genbank. The second was a
selection of 4,548 HIV distinct sequences that were different HIV
strains. The first dataset was the master data file that the input for
the r-runs, s-runs, and len-runs. The HIV master file was used to
generate input files for the hiv-runs. The difference between these
two master datasets is the average edit distance per character is
lower in the HIV dataset. This was the goal as the HIV set was
used in order to test if the similarity of the viruses in an input set
would have a noticeable effect on the running time or solution
size.

The final data set was one from Lawrence Livermore National
Laboratory. The data here was a file containing 536 viruses.
Included in these files were 19 distinct sequences for Venezuelan
equine encephalitis (VEE) and 4 versions of Variola (smallpox).
The goal on this dataset was to obtain a signature for each of the
two sets of interest (one for VEE and one for smallpox).

5.4 Results by Dataset
Our baseline was a single run on a dataset from the Genbank
master file in which no constraints were applied to data. This is
the hardest case to solve and 4 hours was not enough for CPLEX
to even find a single integer feasible solution using its default
behavior. It is omitted from the table as no real data could be
collected. However, in this case it is possible to use set cover
approximations to achieve much faster run times and an answer
that is within a logarithmic factor of the optimal. While the
guaranteed factor here may not be acceptable in large datasets, the
empirical results show that the theoretical minimum is often
obtained.

In all subsequent cases of data sizes and program parameters, we
obtained a practical solution in a reasonable amount of time. The
rest of the results section is spent examining what parameters have
the largest effect on execution time. The complete results are in
tables 1.1 and 1.2.

The first set of data we will examine is the r-runs. We discuss the
most notable results here. These datasets show that increasing

redundancy decreases the running time. This is a big plus as
increased redundancy also makes a signature more robust and
error tolerant (sec 4.7). The other interesting item with respect to
increasing redundancy is that on our datasets, using a redundancy
of 5 resulted in slower times than using 2, but using 10
outperformed both cases. This means that execution time is not
monotonically decreasing as we increase redundancy. Figures 3.1
and 3.2 illustrate this graphically.

At this time, we have one plausible explanation for why a
redundancy level of 5 was worse than other levels tested, both
higher and lower. Consider a single equation of the form in
equation (2) and assume around 10 variables in it. Since 10
choose 10 and 10 choose 2 are smaller numbers than 10 choose 5,
there are fewer feasible ways to satisfy equation (2). This results
in fewer branches to explore in the solution tree for CPLEX. If
this is the case, then the redundancy pattern that resulted in the
minimal computation time would depend on the number of
variables in the ILP and how many variables exist in the
constraint for each pair. Still, the main conclusion is that
increasing the redundancy of coverage decreases computation
time drastically.

The len1 run tested whether restricting the length of candidate
substrings to a very narrow range, 17 to 21 bp, would have a
major effect on the time to solve the ILP. This run used the same
dataset as the r-runs. While there was an apparent drop in the
time to reach a 25% gap and average 4 hour gap versus the
comparable r-run (r2), it was not dramatic. Such a drop should be
expected as the tight length restriction reduces the number of
variables in the ILP and therefore limits the possible branches in
the solution tree to be explored. We conclude that restricting the
length beyond the standard restriction (15-40bp) is not necessary
to improve the computability of the string barcoding problem.

The final set of runs done on the Genbank (non-HIV) data were
the s-runs. This was to see how the growth of the problem size
would affect the running times and gaps. This is illustrated in
figures 2.1 and 2.2. In general, increasing the total input size and
the number of strings increases the time to reach 25% gap and the
gap at 4 hours. We do notice that as the size increases, the
increase in time appears to slow. The reader should note that the
sizes of problems solved are practical.

The last set of results based on the data from Genbank are the hiv-
runs. Recall that these runs were to test the effect of increased
similarity on execution time. The results we obtained suggest that
increased similarity may lower computation time slightly. The
reader can see this in table 1.2 and examines r7 vs hiv0. This
drop may be due to fewer variables or because increased similarity
results in fewer substrings that may be used to differentiate each
pair of strings and hence there are fewer paths to explore in the
solution tree. Note that the drop in time to reach 25% gap is
larger than the drop in gap at 4 hours.

The last dataset of interest is that of the CBNSP effort at LLNL.
We only wish to briefly mention that our method was successful
in finding signatures for the LLNL dataset. The only problem is
that their assay requires that a signature substring actually be three
substrings that are all within 300 bp of each other. We believe
our implementation could be adapted to solve this special case,
but time did not permit us to do so. The significance of this result
is that we were able to run on an input file containing almost 550

viruses. A dataset this large is typically not possible as the ILP
becomes too large for CPLEX to run with only 2 gigabytes of
memory available for data (CPLEX constraint). Since the goal at
CBNSP is to obtain a signature for a small subset of the 550
viruses, the resulting ILP was much smaller.

6. Conclusion
It should be clear there is an urgent need for rapid virus detection.
The string barcoding problem is an ideal expression of this
problem and the solution presented here is quite practical.

The CBNSP is an effort already in place to begin to satisfy this
need. Given the usefulness of the problem, it is unfortunate that
the most basic constraints ensure that the problem is NP-
complete. Despite this fact, however, there is still hope of solving
this problem in practice. The implementation presented here finds
the provable optimum in many cases of data and parameter
combinations. In even more cases, it can get provably close to the
optimum (10% gap or less) in just 4 hours or reach a 25% gap
rather quickly (in minutes). Additionally, since signature
development would likely be done once, and then those signatures
used many times, one can afford to spend more time on the initial
signature computation in order to minimize the cost of producing
field technology. This means that in practice, the solution
obtained may be bounded even tighter and provably closer to the
optimum since a longer time than 4 hours may be used.

Furthermore, the size of datasets that can be processed are
reasonable. Depending on the redundancy and other parameters
that affect the size of the ILP, we can process anywhere from 150-
300 strings in a dataset. Even larger dataset sizes are possible
(1000 or even larger) if the subset of the viruses for which
signatures are desired is small (as in CBNSP). Additionally, as
we see advances in memory and processor technology, the size of
datasets that can be processed will increase even more, which will
increase the effectiveness of this method.

Lastly, the reader should recall that the implementation here
provides more flexibility and robustness than any prior approach.
The CBNSP approach is for a special case of the string barcoding
problem and hence is not as well suited for the general case as our
method. While the approach presented by Borneman et al [1]
does address a more general version of the string barcoding
problem than the CBNSP, it still is not as complete and flexible as
our method. In short, the method presented here solves the
broadest version of the string barcoding problem of any other
known method at the time of this writing.

7. Future Directions
The first item is to determine if the unconstrained problem is NP-
complete or not. The proof obtained for the max-length variant
breaks down when you try to apply it to the unconstrained case.
Another approach may be necessary. The other theoretical
question left open is to explain the large reduction in unique
nodes in the suffix tree. Recall that each node has a binary vector
associated with it. We say a node is unique in some set of nodes
if no other node exists with the same binary vector. We observed
a much greater reduction than a simple analysis could account for.

On the implementation side of things, it would be helpful to
expand on the implementation's robustness as far as the size of
problem it can handle. For example, we would like to use 1000

viruses and find signatures for the entire set simultaneously. This
would not be feasible in the current implementation. The suffix
tree, other auxiliary data structures, and the ILP itself require too
much memory in order to execute on a dataset of such a size. A
divide and conquer approach where the whole problem is split
into sub problems and solved and then combined may be
appropriate. Along the same lines, it would be helpful to adapt
our approach to work for the special case with the CBNSP.

8. ACKNOLWEDGEMENTS
We would like to thank the National Science Foundation. The
research here was partially supported by grant DBI-9723346 from
the National Science Foundation.

9. TABLES AND GRAPHS OF RESULTS

Time to reach 25% Gap vs size of problem

0

5

10

15

0 50000 100000 150000

characters

m
in

ut
es

Figure 2.1 - effect of problem size on time to reach 25% gap

Average 4 hour gap vs size of problem

0
2
4
6
8

10
12

0 50000 100000 150000

characters

pe
rc

en
t

Figure 2.2 - effect of problem size on average 4 hour gap

Redundancy vs Avg 25% Gap Time

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12

redundancy

m
in

ut
es

min edit dist 2

min edit dist 4

Figure 3.1 - effect of redundancy on avg 25% gap

Redundancy vs Avg 4 Hour Gap

0

5

10

15

20

25

0 2 4 6 8 10 12

redundancy

pe
rc

en
t

min edit dist 2
min edit dist 4

Figure 3.2 - effect of redundancy on avg gap at 4 hours

Table 1.1 - Input data properties for each run
run avg num of

str
avg string size
(chars)

avg total input size
(chars)

avg edit
distance

avg num vars % vars left

s0 51.12 1123.17 57416.30 0.603 2842.48 6.17

s1 70.64 942.19 66556.20 0.597 5154.80 8.33

s2 105.96 897.63 95112.60 0.596 7273.24 9.11

s3 129.92 948.56 123237.00 0.595 11107.28 9.64

hiv0 91.44 967.50 88468.70 0.589 3712.04 5.01

hiv1 89.28 684.91 61149.00 0.584 2176.28 3.34

hiv4 90.80 723.47 65691.00 0.583 2353.00 3.45

hiv5 90.40 1085.01 98084.90 0.589 4635.84 5.82

hiv6 90.92 849.47 77233.70 0.585 4884.92 6.57

len0 105.40 1086.28 114494.00 0.600 5047.44 6.57

len1 83.60 1044.12 87288.50 0.606 3358.60 5.87

r0 83.60 1044.12 87288.50 0.606 1679.80 2.21

r1 83.60 1044.12 87288.50 0.606 3103.67 4.10

r2 83.60 1044.12 87288.50 0.606 5316.67 7.05

r3 83.60 1044.12 87288.50 0.606 6180.40 8.21

r4 83.60 1044.12 87288.50 0.606 9140.73 12.23

r5 83.60 1044.12 87288.50 0.606 1679.80 2.21

r6 83.60 1044.12 87288.50 0.606 3103.67 4.10

r7 83.60 1044.12 87288.50 0.606 5316.67 7.05

r8 83.60 1044.12 87288.50 0.606 6734.47 8.84

r9 83.60 1044.12 87288.50 0.606 9140.73 12.23

Table 1.2 - program parameters and output measures
run min

len
max
len

min
edit
dist

red avg sol
size

%
feasible

% opt
4 hr

% 25%
gap 4 hr

avg opt
time (num
sample)

avg 25% gap
time in min (num
sample)

avg % gap 4
hr (num
samples)

s0 15 40 4 5 99.92 100.00 12.00 100.00 50.92(3) 1.30(25) 7.67(25)

s1 15 40 4 5 117.20 100.00 0.00 100.00 n/a 3.84(25) 8.73(25)

s2 15 40 4 5 115.70 92.00 0.00 100.00 n/a 12.28(23) 9.68(23)

s3 15 40 4 5 200.91 92.00 0.00 100.00 n/a 8.14(23) 10.29(23)

hiv0 15 40 4 4 89.44 100.00 52.00 100.00 58.42(15) 2.64(25) 0.79(25)

hiv1 15 40 4 2 45.12 100.00 40.00 100.00 63.84(10) 2.17(25) 2.47(25)

hiv4 15 40 2 2 43.88 100.00 32.00 100.00 77.99(8) 2.77(25) 2.44(25)

hiv5 15 40 2 5 132.76 100.00 0.00 100.00 n/a 3.79(25) 7.49(25)

hiv6 15 40 4 5 126.61 92.00 0.00 100.00 n/a 4.19(23) 7.06(23)

len0 17 21 4 5 160.29 96.00 0.00 100.00 n/a 8.90(24) 9.90(24)

len1 17 21 2 4 106.67 100.00 73.33 100.00 42.70(11) 3.33(15) 0.51(15)

r0 15 40 2 1 43.20 100.00 0.00 93.33 n/a 28.03(14) 19.34(15)

r1 15 40 2 2 50.13 100.00 33.33 100.00 20.54(5) 4.84(15) 2.94(15)

r2 15 40 2 4 95.67 100.00 53.33 100.00 28.15(8) 5.16(15) 0.95(15)

r3 15 40 2 5 140.93 93.33 0.00 100.00 n/a 7.58(14) 9.37(14)

r4 15 40 2 10 255.64 93.33 71.43 100.00 31.26(10) 5.71(14) 0.20(14)

r5 15 40 4 1 45.73 100.00 0.00 93.33 n/a 37.63(14) 19.09(15)

r6 15 40 4 2 53.60 100.00 40.00 100.00 56.58(6) 7.02(15) 2.62(15)

r7 15 40 4 4 102.64 93.33 50.00 100.00 53.06(7) 6.16(14) 0.81(14)

r8 15 40 4 5 127.43 93.33 14.29 100.00 155.77(2) 7.63(14) 5.00(14)

r9 15 40 4 10 269.42 80.00 58.33 100.00 10.21(7) 5.41(12) 0.30(12)

REFERENCES
[1] James Borneman, Marek Chrobak, Gianluca Della

Vedova, Andres Figueroa, Tao Jiang, Probe Selection
Algorithms with Applications in the Analysis of
Microbial Communities, Bioinformatics, Vol No. 1,
pages 1-9.

[2] http://www.ncbi.nlm.nih.gov/BLAST/
[3] Dan Gusfield. Algorithms on Strings, Trees, and

Sequences. Cambridge University Press, New York
1999.

[4] Michael R. Garey, David S. Johnson, Computers and
Intractability : A Guide to the Theory of NP-
Completeness, W H Freeman & Co, 1979

[5] Pierluigi Crescenzi, Viggo Kann. A compendium of NP
optimization problems, available online at

[6] http://www.nada.kth.se/~viggo/wwwcompendium/node
199.html

[7] Thomas Kämpke, Marksu Kieninger, Michael
Mecklenburg. Efficient primer design algorithm.
Bioinformatics Vol. 17, 2001, pp. 214-225.

[8] Ralf Herwig, Armin O. Schmitt, Matthias Steinfath,
John O'Brien, Henrik Seidel, Sebastian Meier-Ewert,
Hans Lehrach, Uwe Radelof. Information Theoretical
probe selection for hybridisation experiments.
Bioinformatics, Vol. 16, 2000, pp. 890-898

[9] Pearson, W. R., Robins, G., Wrege, D. E., and Zhang,
T. On the Primer Selection Problem for Polymerase
Chain Reaction Experiments, Discrete and Applied
Mathematics, Vol. 71, 1996, pp. 231-246.

[10] Koichiro Doi, Hiroshi Imai. A Greedy Algorithm for
Minimizng the number of Primers in Multiple PCR
Experiments, Japanese Society for Bioinformatics,
http://www.jsbi.org/journal/GIW99/GIW99F08.html

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L
Rivest. Introduction to Algorithms. McGraw-Hill
Book Company, New York 1999, pgs 974-978.

[12] http://www.niaid.nih.gov/dait/cross-species/page5.htm
[13] http://www.ilog.com/products/cplex/

