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Abstract. The Multi-State Perfect Phylogeny Problem is an extension
of the Binary Perfect Phylogeny Problem, allowing characters to take
on more than two states. In this paper we consider three problems that
extend the utility of the multi-state perfect phylogeny model: The Miss-
ing Data (MD) Problem where some entries in the input are missing
and the question is whether (bounded) values for the missing data can
be imputed so that the resulting data has a multi-state perfect phy-
logeny; The Character-Removal (CR) Problem where we want to
minimize the number of characters to remove from the data so that the
resulting data has a multi-state perfect phylogeny; and The Missing-
Data Character-Removal (MDCR) Problem where the input has
missing data and we want to impute values for the missing data to min-
imize the solution to the resulting Character-Removal Problem.

We detail Integer Linear Programming (ILP) solutions to these prob-
lems for the special case of three permitted states per character and
report on extensive empirical testing of these solutions. Then we develop
a general theory to solve the MD problem for an arbitrary number of
permitted states, using chordal graph theory and results on minimal tri-
angulation of non-chordal graphs. This establishes new necessary and
sufficient conditions for the existence of a perfect phylogeny with (or
without) missing data. We implement the general theory using integer
linear programming, although other optimization methods are possible.
We extensively explore the empirical behavior of the general solution,
showing that the methods are very practical for data of size and com-
plexity that is characteristic of many current applications in phylogenet-
ics. Some of the empirical results for the MD problem with an arbitrary
number of permitted states are very surprising, suggesting the existence
of additional combinatorial structure in multi-state perfect phylogenies.

Keywords: computational biology, phylogenetics, perfect phylogeny, in-
teger programming, chordal graphs, graph triangulation.

1 Introduction and Background

In the k-state Perfect Phylogeny Problem, the input is an n by m matrix
M whose values are integers from the set Z(k) = {1, 2, ..., k}. We refer to each
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A:

(1,2,3)

(3,2,3)

(1,2,3)E:

(1,1,3)D:

(2,3,2)B:

(3,2,3)C:

(3,2,1)

Fig. 1. A three-state perfect phylogeny with n = 5, m = 3. The input M consists of
the five vectors that label the leaves of the tree. The subtree T3(3) contains the leaves
labeled C,D,E, and the two interior nodes.

row of M as a taxon (plural taxa), to each column of M as a character, and to
each value in a column c as a state of character c. A k-state Perfect Phylogeny
for M is a tree T with n leaves, where each leaf is labeled by a distinct taxon of
M , and each internal node of T is labeled by a vector in Z(k)m (which need not
be in M), such that for every character c and every state i of c, the subgraph of
T induced by the nodes labeled with state i for character c (which we denote by
Tc(i)) must be a connected subtree of T . The requirement that subgraph Tc(i)
be a subtree is called the convexity requirement. Clearly, for any character c
and states i �= j, the subtrees Tc(i) and Tc(j) of perfect phylogeny T are node
disjoint. An example is shown in Figure 1.

Another way to view convexity is to arbitrarily designate a node in T as the
root; direct all the edges in T away from the root, and consider this directed tree
as a giving a history of character mutations. The convexity requirement is then
equivalent to saying that for any character/state pair (c, i), there is at most one
edge in T where the state of character c mutates to i.

The k-state Perfect Phylogeny Problem is to determine, for input M ,
if there is a k-state perfect phylogeny for M , and if there is one, to construct
one. The special case of k = 2 (the binary perfect phylogeny problem) has been
extensively studied and is motivated by the “infinite sites” model from popu-
lation genetics. The cases of k > 2 arise from non-binary integer data, and are
further motivated by the related “infinite alleles” model from population genet-
ics, rather than the infinite sites model. In the last decade, SNP data (which is
binary) has been the dominant data type in population genomics, but increas-
ingly non-binary integer population genomic data is becoming available and
informative.
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If neither k nor n nor m is fixed, so k can grow with n, then the k-state perfect
phylogeny problem is NP-complete [3,25]. In contrast, if k is any fixed integer,
independent of n and m, then the k-state Perfect Phylogeny Problem can be
solved in time that is polynomial in n and m. This was first shown for k = 2 in
[6] (and shown to be solvable in linear time in [13]), for k = 3 in [5], for k = 3 or
4 in [18], and for any fixed k in [1]. The later result was improved in [19], and a
related method for the near-perfect phylogeny problem was developed in [9]. An
excellent survey of most of these results appears in [8].

In this paper we consider the following three problems that extend the utility
of the basic k-state Perfect Phylogeny model.

The Missing-Data (MD) Problem: If the input matrix M contains some cells
with no values (and each cell with a value takes a value from Z(k) = {1..k}),
can integers from Z(k) be assigned to the cells with missing values so that the
resulting matrix has a k-state perfect phylogeny?

Even for k = 2 this problem is NP-complete, although a directed version of it,
when k = 2, can be solved in polynomial time [23]. The requirement that missing
values be selected from Z(k) is both biologically meaningful and computationally
challenging. The MD problem has a very simple solution if integers up to n can
be assigned [24].

The Character-Removal (CR) Problem: If there is no missing data in M ,
and M does not have a k-state perfect phylogeny, what is the minimum number
of characters to remove so that the resulting matrix does have a k-state perfect
phylogeny?

It is well known [24,7] that for binary data (k = 2), the CR problem reduces
to the node-cover problem, but this is not true for k > 2, where the CR problem
was previously unaddressed.

The Missing-Data Character-Removal (MDCR) Problem: If the input
matrix M contains some cells with no values, and the answer to the MD problem
is ‘no’, how should the missing values be set in order to minimize the solution
to the resulting CR problem?

Problem MD is motivated by the reality of missing entries in biological
datasets. For molecular genomic applications, missing data tends to be in the 1%
to 5% range, and for phylogenetic applications, missing data in the 30% range
is not uncommon. The CR and MDCR problems are motivated by the common
practice in phylogenetics of removing characters when the existing data does not
fit the perfect phylogeny model. This is most often done when the data is binary,
but the problem and practice also arise for non-binary data [8,20]. The expecta-
tion in phylogenetics is that while there may be some characters that must be
removed to make a perfect phylogeny, and hence some data are lost, if a perfect
phylogeny can be constructed using a large percentage of the original characters
then the resulting tree will give valid evolutionary information about the taxa.
There are similar scenarios that motivate removal of sites in molecular data that
arises in population genomics. Of course, in order to get the most informative
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tree, we want to remove as few characters or sites as possible, motivating the
Character-Removal problem.

In [14] we showed how to effectively solve, using Integer Linear Programming,
the MD and the MDCR problems (and several other related problems) on binary
data (i.e., k = 2) of size and complexity that is characteristic of many current
applications in biology.

In this paper, we examine the MD, CR and MDCR problems for k > 2. We
have developed Integer Linear Programming (ILP) solutions to these problems
for the special cases of 3, 4 and 5 permitted states per character, but will only
detail here the case of 3 states. We report on extensive empirical testing of these
solutions. Then we develop a general theory to solve the MD problem for an
arbitrary number of permitted states, using chordal graph theory and results on
minimal triangulation of non-chordal graphs. This establishes new necessary and
sufficient conditions for the existence of a perfect phylogeny with (or without)
missing data. We implement the general theory using integer linear program-
ming, although other optimization methods are possible. We extensively explore
the empirical behavior of the general solution, showing that the methods are
very practical for data of size and complexity that is characteristic of many
current applications in phylogenetics. Some of the empirical results for the MD
problem with an arbitrary number of permitted states are very surprising, sug-
gesting the existence of additional combinatorial structure in multi-state perfect
phylogenies.

When there is no missing data, these methods also establish alternative al-
gorithms for the Perfect Phylogeny Problem. All of the software (other than
the ILP solver) needed to replicate the results stated in this paper is available
through the author’s homepage: http://wwwcsif.cs.ucdavis.edu/~gusfield/.

2 The MD, CR and MDCR Problems for Three States

We have developed specialized methods for the cases of k = 3, 4, 5. For lack of
space, we will only discuss the case of k = 3. For the MD problem, the general
method for any k is more efficient on large problem instances than the specialized
methods for k = 3, 4, 5.

First we state a needed definition and fact. In a binary matrix, two columns
are called “incompatible” if they contain all of the binary pairs 0,0; 0,1; 1,0; and
1,1. Otherwise they are called “compatible”. In our solution [14] to the MD and
MDCR problems for binary data, we define a binary variable Y (i, j) for every
cell (i, j) that has a missing value in M , and a binary variable I(p, q) for every
pair of characters p, q. In [14] we developed compact linear inequalities that set
I(p, q) to 1 if and only if the Y variables are set in a way that makes characters
p and q incompatible. These inequalities are also needed in our ILP formulations
for the MD and MDCR problems with k > 2; in this paper we assume their
existence, but refer the reader to [14] for details.

We next restate the main result from the paper by A. Dress and M. Steel
[5] that establishes that the 3-state perfect phylogeny problem can be solved in
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polynomial time. For this exposition, create another matrix M derived from M ,
with three characters Cc(1), Cc(2), Cc(3), for each character c in M . All the taxa
that have state i for c in M are given state 1 for character Cc(i) in M , and the
other taxa are given state 0 for Cc(i). So, the original input matrix M is recoded
as a binary matrix M with three expanded characters for each character in M .
Each expanded character defines a split of the taxa. The main structural result
in [5], interpreted in terms of M is:

Theorem 1. [5] Given matrix M with k = 3, there is a perfect phylogeny for M ,
if and only if there is a set of characters S of M which are pairwise compatible,
and where for each character c in M , S contains at least two of the characters
Cc(1), Cc(2), Cc(3).

In [5], a polynomial-time algorithm is given to find an appropriate set S, if one
exits, but we will not need that here. In [15] we note that Theorem 1 can be
used to reduce the three-state perfect phylogeny problem to the 2-SAT problem.

To explain our ILP solution to the MD problem for k = 3, we first describe
how to solve the 3-state perfect phylogeny problem (without missing data) using
integer linear programming. For each character c in M , let S(c, 1), S(c, 2), S(c, 3)
be three binary variables associated with the characters Cc(1), Cc(2), Cc(3) in
M , and create the inequality

(*) S(c, 1) + S(c, 2) + S(c, 3) ≥ 2.

Variable S(c, z) (for z from {1,2,3}) is set to 1 to indicate that character Cc(z) is
selected in set S. Binary variable I(Cc(z); Cc′(z′)) is set to 1 if and only if char-
acters Cc(z) and Cc′(z′) are incompatible in M . To implement the requirement
that every pair of characters in S must be compatible, create the inequality:
S(c, z) + S(c′, z′) + I(Cc(z); Cc′(z′)) ≤ 2. Then by Theorem 1, there is a 3-state
perfect phylogeny for M if and only if there is a feasible solution to the ILP
created by the above inequalities. Note that when there is no missing data, the
value of I(Cc(z); Cc′(z′)) is determined from M and fixed, but when there is
missing data, its value may be affected by the values given to missing data.

To solve the MD problem for 3-state data, we extend the above ILP for
the 3-state perfect phylogeny problem as follows: If cell (i, j) of M is miss-
ing a value, we add the inequality Y (i, j, 1) + Y (i, j, 2) + Y (i, j, 3) = 1, where
Y (i, j, 1), Y (i, j, 2), Y (i, j, 3) are binary variables that select how the missing
value in cell (i, j) should be set. We also add in the inequalities (introduced
in Section 1) that set each binary variable I(Cc(z); Cc′(z′)) to 1 if and only if
the Y variables are set in a way that makes the resulting columns Cc(z) and
Cc′(z′) in M incompatible.

We modify the above formulation for the MD problem to create an ILP that
solves the MDCR problem. We remove the (*) inequalities, and create a binary
variable R(c) for each character c in M . Then for each c in M , we add the
inequalities S(c, 1) + S(c, 2) + S(c, 3) − 2R(c) ≥ 0, which ensures that R(c) will
be set to 1 only if at least two of the variables S(c, 1), S(c, 2), S(c, 3) are set to 1.
Finally, use the objective function of maximizing

∑
c R(c). Problem CR is solved

in the special case that there are no missing values in M .
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3 The MD Problem for Arbitrary k

In this section we develop the conceptually deepest method, leading to the most
surprising empirical results of this work. We consider a formulation to the MD
problem that is correct for any allowed number of states, k. Note that although
there is no restriction on what k can be in the formulation, k is known and fixed
for any particular problem instance, and imputed values for missing entries must
be from Z(k). We show that an approach which at first might seem impractical,
but in fact works extremely well in practice on data of size and complexity that
are consistent with many (but not all) current applications in phylogenetics.

Our approach to the MD problem for arbitrary k is to use a classic, but not
widely exploited, result about the Perfect Phylogeny Problem, together with
newer combinatorial results on chordal graphs, clique-trees and minimal trian-
gulations of non-chordal graphs. We assume throughout that the rows of M are
distinct. We first introduce the classic theorem due to Buneman [4,24].

Given an n by m input matrix M define the PI (partition intersection) graph
G(M) for M as follows: G(M) has one node for every character-state pair (c, i)
that occurs in M ; there is an edge between the nodes for character-state pairs
(c, i) and (c′, i′) if and only if there is a taxon in M with state i for character c
and with state i′ for character c′. Thus G(M) is formed by the superposition of
n cliques (one for each taxon), each of size m, and G(M) is an m-partite graph
with m classes, one class for each character. Each class is sometimes refereed to
as a color. A pair of nodes (c, i), (c′, i′) where c �= c′, defines a legal potential
edge (or ‘legal edge’ for short) if that edge is not already in G(M). A pair of
nodes (c, i), (c, i′), for some single character c, defines an illegal potential edge
(or ‘illegal edge’ for short), and is not in G(M). A pair of nodes in the same
class of G(M) are called a mono-chromatic pair.

A cycle C in a graph G is called chordless if G does not contain any edge e
between two nodes in C unless e is an edge of C. A graph is chordal if and only
if it contains no chordless cycles of size four or more. A triangulation or chordal
fill-in H(G) of a graph G is a chordal super-graph of G, on the same nodes as
G. The edges in H(G) − G are the added edges. Given M , a legal triangulation
of G(M) is a triangulation where all of the added edges are legal. Note that
G(M) might itself be chordal, but if not chordal, there might not be any legal
triangulation of G(M).

Buneman’s Theorem [4,24]. M has a perfect phylogeny if and only if G(M)
has a legal triangulation H(G(M)).

We will also need the following definition and facts.

Definition. Let G be a graph and T be a tree containing one node for each
maximal clique (a clique where no additional nodes can be added) in G. It is
useful to label each node v in T with the nodes of G that form the maximal
clique in G associated with node v in T . Then T is defined to be a clique-tree for
G if and only if for each node w in G, the nodes in T which contain the label w
form a connected subtree of T .
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Theorem [11,4,12,20]. A graph G is chordal if and only if there is a clique-tree
T for G.

When G(M) is the PI graph for an input M , and a legal triangulation
H(G(M)) exists for G(M), each node in G(M) represents a character-state pair,
and each taxon in M induces a maximal clique in G(M) and in H(G(M)). It is
then easy to see that any clique tree for H(G(M)) is a perfect phylogeny for M .
It is known [20] that a clique tree for a chordal graph can be found in time linear
in the size of the chordal graph. Hence, when G(M) has a legal triangulation, a
perfect phylogeny for M can be found in linear time from H(G(M)).

3.1 The PI-Graph Approach to the MD Problem

If M contains missing data, let G(M) now be created by only using cells in
M where the value is not missing. If a taxon has q out of m cells with known
values, then that taxon induces a clique in G(M) of size q rather than a clique
of size m; G(M) is again an m-partite graph formed by the superposition of n
cliques. The key point, which is easy to establish, is that Buneman’s Theorem
continues to hold for G(M) created in this way, i.e., for input M with missing
values, even if G(M) now has fewer nodes. Indeed, even when M has no missing
values, unless G(M) is chordal without adding any edges, a legal triangulation
can be thought of as adding new data (in fact, new taxa) to M which will be
represented at internal nodes of the perfect phylogeny. When M has missing
data, then a legal triangulation essentially adds new data to the taxa in M that
are missing entries, along with adding new taxa to M . In more detail, let M
be input where a taxon q has some missing entries, and suppose there is a legal
triangulation H(G(M)) for G(M); let T be a clique-tree for H(G(M)). Every
node in T corresponds to a maximal clique in H(G(M)), and the original clique
in G(M) induced by taxon q must be completely contained in one or more maxi-
mal cliques in H(G(M)). Also each taxon in M that has no missing data induces
a maximal clique in H(G(M)). Therefore there is one node in T for each taxon
with no missing data in M , and at least one node v in T whose label contains
all the nodes in the clique in G(M) associated with taxon q. We then assign
taxon q to node v of T , and if v is not a leaf, we add a new edge connect-
ing v to a new leaf labeled q. The resulting tree T is now a perfect phylogeny
for M .

We next use T to impute values for any missing data in M . Consider again
taxon q as above. Recall that node v in T is labeled with nodes of G(M), and
hence is labeled with character/state pairs from M with at most one state for
any character. Assign all the character/states that label v to taxon q. For any
character c which does not have an associated label in v, do a breath-first search
from v until reaching some node v′ in T which is labeled by character/state pair
(c, i), for some state i. Then label each node on the path from v to v′ in T with
(c, i), assigning state i for character c to taxon q. Successively repeat this until
all taxa have values for all characters. The result is a filled matrix M which has
a perfect phylogeny T .
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Finding a Legal Triangulation

The PI-graph approach to the k-state Perfect Phylogeny problem is conceptually
perfect to handle missing data. However, it is not clear how to efficiently find a
legal triangulation in practice, or determine that there is none, so and it may
seem that this would not be a productive approach. We next show, by exploit-
ing more contemporary results about triangulation in general graphs, that this
approach can be effectively implemented in practice on data of realistic size for
many current application in biology. We first state some definitions and facts.

Definition. A triangulation of a non-chordal graph G is called minimal if no
subset of the added edges defines a triangulation of G.

There is a large and continuing literature on the structure of minimal trian-
gulations and on algorithms for finding them [16]. Clearly, for an input graph
M , if there is a legal triangulation of G(M) (and hence a perfect phylogeny
for M), then there is a legal triangulation which is minimal, and we can apply
appropriate results from the literature on minimal triangulations.

Definition. An a,b separator in a graph G is a set of nodes whose removal
separates node a from node b. A minimal a,b separator is an a,b separator such
that no subset of it is an a,b separator. A separator is called a minimal separator
if it is a minimal a,b separator for some pair of nodes a,b. A minimal separator
K is said to cross a minimal separator K ′ if K is a separator for some pair of
nodes in K ′.

It is easy to establish [22] that crossing is a symmetric relation for minimal
separators; testing whether two minimal separators cross can be done in time
proportional to the number of edges in G. Clearly, a minimal separator which is
a clique cannot cross any other minimal separator, because crossing is symmetric
and no separator can separate two nodes that are connected by an edge.

Definition. Two minimal separators that do not cross each other are said to be
parallel.

Definition. A minimal separator K is completed by adding in all the missing
edges to make K a clique.

It is also easy to establish [22] that when a minimal separator K is completed,
every minimal separator that K crossed (before K was completed) now ceases
to be a minimal separator.

Definition. A set Q of pairwise parallel minimal separators in G is said to be
maximal if every other minimal separator in G crosses some separator in Q.

The capstone theorem in the study of minimal triangulations, due to A. Parra
and P. Scheffler, is

Minimal Triangulation Theorem [21,22]: Every minimal triangulation of
a non-chordal graph G can be created by finding a maximal set Q of pairwise
parallel minimal separators in G and completing each separator in Q. Conversely,
the completion of each separator in any maximal set of pairwise parallel minimal
separators in G creates a minimal triangulation of G.
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Now we can relate these general definitions and results about minimal tri-
angulations to the multi-state Perfect Phylogeny Problem. Given input M , a
minimal separator K in the partition intersection graph G(M) is defined to be
legal if, for each character c in M , K contains at most one node (c, i) associated
with character c. That is, only legal edges will be added if K is completed. A
minimal separator that is not legal is called illegal. With the above, we can estab-
lish the following new characterization of the existence of a multi-state Perfect
Phylogeny, even when there is missing data.

Theorem 2 (MSP). There is a perfect phylogeny for input M (even if M has
missing data) if and only if there is a set Q of pairwise parallel legal minimal
separators in G(M) such that every illegal minimal separator in G(M) is crossed
by at least one separator in Q.

Proof. If there is a perfect phylogeny for M then there is a legal triangulation
of G(M) (by Buneman’s theorem and its extension to the case of missing data),
and so there is a minimal triangulation H(G(M)) that is legal. By the Minimal
Triangulation theorem, there is a maximal set Q of pairwise parallel minimal
separators of G(M) whose completion results in the graph H(G(M)). Set Q
cannot contain an illegal minimal separator K, for if it did, the completion of
K would add an illegal edge, contradicting the fact that the triangulation is
legal. Therefore Q only contains legal minimal separators, and the fact that it
is maximal (with respect to all separators, legal or not) means that every illegal
minimal separator must be crossed by at least one separator in Q.

Conversely, suppose there is a set Q of pairwise parallel legal minimal separators
in G(M) such that every illegal minimal separator in G(M) is crossed by at least
one separator in Q. If Q is not maximal (because there are additional legal minimal
separators that are not crossed by any member of Q), Q can be extended to become
maximal by greedily adding in legal minimal separators until every remaining legal
minimal separator crosses some separator in the extended Q. Then by the Minimal
Triangulation theorem, the completion of each separator in Q results in a chordal
graph. Since only legal edges were used in this triangulation, Buneman’s theorem
establishes that M has a perfect phylogeny. �
Theorem MSP leads to three corollaries which, when they apply, each solve the
MD problem without a complex search for Q and without the need to solve an
optimization problem.

Corollary 1 (MSP1). If G(M) has an illegal minimal separator (or mono-
chromatic pair of nodes) that is not crossed by any legal minimal separator, then
M has no perfect phylogeny.

Corollary 2 (MSP2). If G(M) has no illegal minimal separators, then M has
a perfect phylogeny.

Corollary 3 (MSP3). If no pair of legal minimal separators in G(M) cross,
and every illegal minimal separator (or mono-chromatic pair of nodes) is crossed
by at least one legal minimal separator, then M has a perfect phylogeny.
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Each of these corollaries applies in some problem instances in our empirical
tests. Strikingly, in our tests, Corollary MSP1 applies in almost every problem
instance that has no perfect phylogeny, and Corollaries MSP2 and MSP3 apply
frequently.

Theorem MSP can be extended in a way that leads to a simpler characteriza-
tion of the existence of a perfect phylogeny, with practical consequences in some
cases.

Theorem 3 (MSPN). There is a perfect phylogeny for input M (even if M
has missing data) if and only if there is a set Q of pairwise parallel legal minimal
separators in G(M) such that every mono-chromatic pair of nodes in G(M) is
separated by some separator in Q.

Proof. We prove the ‘if’ direction first. Let i, j be a pair of states of a character
(color) c in M , and let ui, uj be the mono-chromatic pair of nodes in G(M)
representing states i, j of c. Every (ui, uj) separator crosses every illegal minimal
separator that contains (ui, uj). By definition, an illegal minimal separator must
contain a monochromatic pair of nodes. So the existence of a set of pairwise-
parallel legal minimal separators that separate every monochromatic pair of
nodes in G(M) demonstrates that there is a maximal set of pairwise-parallel
minimal separators all of which are legal, and hence, by Theorem MSP there is
a perfect phylogeny for M .

The ‘only if’ direction is more subtle. If M has a perfect phylogeny, then by
the Buneman theorem there is a legal triangulation of the partition-intersection
graph G(M). As argued earlier, any clique-tree T derived from G(M) is a perfect
phylogeny for M . For clarity, we will use the term “nodes” for G(M) and “ver-
tices” for T . By convexity, for any pair of states i, j of a character c in M there
must be an edge e(i, j) in T that separates all vertices in T labeled with state i
for c from all vertices labeled with state j for c. Let ui, uj be the nodes of G(M)
associated with states i, j of c. To prove this direction of the theorem, we first
want to identify a legal, minimal separator in G(M) that separates ui and uj .
To do this, we the fact that T is a clique-tree, and two facts about clique-trees.

Each vertex v in T is labeled with a a subset of nodes of G(M) that form
a maximal clique in G(M). Let S and S′ be the two maximal cliques in G(M)
associated with two end-vertices of an edge e = (v, v′) in T . The removal of e
from T creates two connected subtrees Tv and Tv′ ; let Nv and Nv′ be the two
sets of nodes in GM that label the vertices in these subtrees. We now state two
central facts about chordal graphs (in general) and their clique-trees, specialized
to G(M) and T : a) the nodes in S ∩ S′ form a minimal separator, K, in G(M),
which is an a, b minimal separator for every pair of nodes a ∈ (Tv − K) and
b ∈ (Tv′ −K); b) the set of all such minimal separators, obtained from the edges
in T , are pairwise parallel. See [20,22] for the general version of the first fact,
and [22] for the general version of the second fact. As a side note, these facts
can be used to speed up the k-state perfect phylogeny algorithms from [1,19] in
practice, but we will not detail that in this paper.

Now we apply these facts to edge e(i, j). By convexity, node ui cannot be part
of labels of vertices in both subtrees of T − e(i, j), and the same holds for uj .
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Therefore, neither ui nor uj can be in the minimal separator K(i, j) of G(M)
associated with e(i, j), and hence K(i, j) separates ui and uj . Further, K(i, j)
is legal because the nodes in K(i, j) are the intersection of two maximal cliques
in G(M), and no clique in G(M) has two nodes representing states of the same
character (for then G(M) would have an illegal edge). Hence, we have proved
that if M has a perfect phylogeny, it has a perfect phylogeny, T , where the set
of edges of T define a set of legal, pairwise-parallel minimal separators of G(M)
which separate every mono-chromatic pair of nodes. �

We can also establish a different characterization as follows. Suppose K is a
minimal separator in G(M), and x is a sequence in M . Recall that there is a
clique in G(M) associated with x. Note that if one of the nodes in that clique is
in the connected component C of G(M) - K, then all nodes of that clique must
be in C∪K. This follows because there can be no edge between nodes in different
connected components of G(M) − K. Therefore, we say that K separates two
taxa x and x′ in M if and only if K separates a node in the clique for x from a
node in the clique for x′.

Theorem 4 (MSPNN)). There is a perfect phylogeny for input M (even if
M has missing data) if and only if there is a set Q of pairwise parallel legal
minimal separators in G(M) such that every pair of taxa in M is separated by
some separator in Q.

3.2 An ILP Formulation of Problem MD for Arbitrary k

From theorems MSP, MSPN and MSPNN, it is now conceptually simple to
formulate an integer linear program for the Perfect Phylogeny Problem and for
problem MD. This ILP tries to select an appropriate subset Q of legal minimal
separators in G(M). Given input M , the approach based on Theorem MSP
creates the ILP as follows: find all the legal and illegal minimal separators in
G(M); for each legal minimal separator K, determine which minimal separators
cross K; let K be the set of legal minimal separators which each cross some illegal
minimal separator; create a binary variable for each minimal separator in K; a
variable will be set to 1 to indicate that the associated legal minimal separator
will be selected for Q; create inequalities that forbid the selection into Q of
two legal minimal separators in K that cross each other; and create inequalities
that require that each illegal minimal separator be crossed by at least one legal
minimal separator in K. Then, the MD problem has a solution (values for the
missing data can be found so that the resulting data has a perfect phylogeny)
if and only if these inequalities have a feasible solution. Further, if there is a
feasible solution (identifying a set Q), and Q is extended to become maximal
(as in the proof of Theorem MSP), then completing the minimal separators in
Q creates a chordal graph from which a clique-tree and a perfect phylogeny T
for M can then be constructed; imputed values for any missing data in M can
be obtained from T .

Similarly, from Theorems MSPN and MSPNN, we can formulate an ILP so-
lution for the MD problem without knowing the illegal minimal separators of
G(M); it is sufficient to know only the legal minimal separators of G(M).
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Although we have formulated and tested the problem of finding Q as an
ILP, alternative (perhaps more direct) methods are possible and may be more
practical, especially when the number of minimal separators found in G(M) is
small.

3.3 Finding the Minimal Separators

All the minimal separators in G(M) can be found using the algorithm in [2],
which has a worst-case running time proportional to the number of edges in
G(M) times the total number of nodes in all the minimal separators. In worst
case, the number of nodes in G(M) is km and the number of edges is bounded by
min(n, k2) × (

m
2

)
. Note that k ≤ n. However, we only need to find the minimal

separators if the number of edges is less than km(m − 1). This follows from
the fact that a pair of characters i, j cannot have a perfect phylogeny (or be in
a perfect phylogeny) unless the subgraph of G(M) induced by the set of state-
nodes of characters i and j is acyclic [10,24], meaning that the induced subgraph
can have at most 2k − 1 edges. This required bound continues to apply if edges
are added to G(M). When we build G(M) from M , we check that the number of
edges induced by each pair of characters is less than km(m− 1) (we call this the
graph-density test) and then search for the minimal separators only on graphs
that pass the test. Moreover, there is a faster alternative approach to finding
the legal minimal separators, detailed next, in the case that there are no missing
entries.

Theorem 5. No minimal separator in Q can have m nodes, and so we only
need to find the legal minimal separators in G(M) of size m − 1 or less. When
M has no missing data, the number of legal minimal separators of size m− 1 or
less in G(M) is bounded by the number of proper clusters in M (the main object
in the algorithms of [1,19]) and all these legal minimal separators can be found
in O(2knm2) time.

Following Theorems MSPN and MSPNN, Theorem 5 can be used to more effi-
ciently construct an ILP for the k-state perfect phylogeny problem, and this also
puts a polynomial bound, for any fixed k, on the size of the ILP needed to solve
the problem. That ILP will have O(2km) variables and O(22km2+min(n2, mk2))
inequalities. Note that Theorems MSPN and MSPNN hold for problem MD, but
Theorem 5 has only been established for the case of no missing data. Whether
this can be generalized to the case of missing data is an open question. An-
other open question is to extend the PI-graph approach to the CR and MDCR
problems.

4 Empirical Results

For biologically informative simulation results, we want data obtained from
simulators that model appropriate biological processes. To generate biologically
informative data that is guaranteed to have a perfect phylogeny, we use the
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well-known coalescent-based program ms [17], with no recombination, to gener-
ate binary matrices that are guaranteed to have 2-state perfect phylogenies. The
following theorem explains how we use those matrices to obtain data guaranteed
to have a k-state perfect phylogeny, for any chosen k.

Theorem 6. Suppose M is an n by m binary matrix that has a 2-state perfect
phylogeny, and that m = mk × (k− 1). Let M ′ be an n by m′ matrix obtained by
partitioning each row of M into mk groups of k − 1 consecutive columns each,
and converting to decimal the (k − 1)-length binary number in each group. Then
each column of M ′ has at most k distinct numbers, and if, in each column, we
map those k numbers to Z(k) (in any arbitrary way), the resulting matrix is
guaranteed to have a k-state perfect phylogeny.

To generate k-state data which might not have a k-state perfect phylogeny we set
the ms recombination parameter r to a value greater than zero so that the binary
data is not guaranteed to have a binary perfect phylogeny; we again group k − 1
consecutive columns, creating binary numbers of length k−1. In each such group,
we scan the rows from top to bottom to find the first k distinct binary numbers,
and map these to the states 0 to k − 1; any binary number outside that set of k
binary numbers is randomly mapped to one of the k states. When r is small, this
problem instance might have a k-state perfect phylogeny but is not guaranteed to.
As r grows, the chance that this data has a perfect phylogeny falls. We used the
ILP solver Cplex 11, running on a 2.5 GHz. iMac with 3 Gig. of memory.

4.1 Empirical Results for k = 3

The ILP formulations developed for problems MD, CR, and MDCR for the
special case of k = 3 are conceptually simple, and so the main result of this
section is the empirical observation that those ILP formulations generally solve
very quickly for biologically meaningful ranges of data. We have done extensive
testing with a wide range of parameters, with results that are consistent with
the illustrative results shown in Table 1. The times reported are for solving the
ILPs; these are the times of interest. The times to generate the ILPs ranged from
under one second to a small number of seconds, but are not reported because
the Perl programs that generate the ILPs are highly unoptimized.

4.2 Empirical Results for Solving Problem MD for Arbitrary k

While the approach to problem MD based on PI graphs is conceptually correct,
one might expect (and we did initially expect) that it would not be practical.
There were two potential bottlenecks, the time needed to find all the minimal
separators in G(M), and the time needed to solve the resulting ILPs. The main
result of this section is the surprising empirical observation that this approach
is very practical in data sizes that cover many current, large phylogenetic appli-
cations, although not genomic size applications. We detail illustrative empirical
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Table 1. Average ILP execution times (in seconds unless noted otherwise) for prob-
lems MD, MDCR and CR (problem MDCR reduces to problem CR when the percent
deletion is 0) with k = 3, on relatively large problem instances. Each average is taken
over 100 instances (except for the last entry in rows b and c) where a 3-state perfect
phylogeny exists. The time for the last entries in rows b and c are averaged over ten
instances. The header shows the percentage of cells whose values were removed before
solving the problems. Row a) is for problem MD on data of size 50 by 25, and row b) is
for problem MD on data of size 100 by 50. Times for instances of problem MD where
the data does not have a 3-state perfect phylogeny are similar, but smaller. Row c) is
for problem MDCR on data of size 50 by 25. Surprisingly, the times are very similar
to the times for problem MD, except for the case of 35% deletion where the variance
in the times for the MDCR solution becomes large. In the ten executions of MDCR
taking an average of 43 minutes, seven took under two seconds, one took two minutes,
one took around two hours, and one took over five hours. Problem MDCR did not
solve quickly enough on data of size 100 by 50 for in-depth exploration, except for zero
deletions, where it solved in an average of 0.05 seconds. On data of size 30 by 100, and
1% deleted values, the MDCR problem solved in an average of 3.3 seconds; with 5%
deleted values it solved in an average of 13 seconds.

0% 1% 5% 10% 20% 35%

a 0.01 0.06 0.18 0.32 0.6 32
b 0.024 0.6 1.8 3.04 19.6 1hr.20mins.
c 0.018 0.06 0.2 0.38 0.81 43 mins.

results in Table 2. The programs implementing the PI-graph approach are writ-
ten in Perl, except for the program to find all of the minimal separators and
their crossing relations, which is written in C for greater efficiency.

We separate the tests with ms recombination parameter, r, set to zero (where
a perfect phylogeny is guaranteed), from tests with r > 0 (where a perfect phy-
logeny is not guaranteed, although one might exist). The choice of r is critical
to test how the PI-graph approach performs on data that does not have a per-
fect phylogeny, and to see how often such data acquires a perfect phylogeny as
the amount of missing data increases. If r is set too high, most instances fail
the graph-density test, establishing trivially that there is no perfect phylogeny
without needing to try to find a legal triangulation of G(M). If r is set too low,
then then there will be a perfect phylogeny. Through experimentation, we have
found values of r that provide a good balance; generally r must decrease as the
size of the problem increases.

The most striking empirical results, and the key observed reasons for the effi-
ciency of the PI-graph approach are: 1) In data where there is a perfect phylogeny
we observe vastly fewer minimal separators than are possible in worst-case; the
minimal separators are found surprisingly quickly in practice; most of the ob-
served legal minimal separators do not cross any illegal minimal separator, and
so do not enter into the ILPs; many of the problem instances are solved by the
use of Corollaries MSP2 and MSP3; in cases where an ILP must be solved, the
ILPs are tiny and most solve in the Cplex pre-solver; all the ILPs, whether solved
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Table 2. Illustrative empirical results for the PI-graph approach. The results in each row
are based on 100 instances (except for the case of n = 100, where 25 instances were used).
When r = 0, each instance is guaranteed to have a perfect phylogeny. When r > 0, an
instance might have a perfect phylogeny, but we are interested in the instances which do
not (the number of instances in any row that have no perfect phylogeny equals d + c1+
inf). Details for the column labels: n, m = dimension of M ; k = number of allowed states;
r = ms recombination parameter; % miss = expected percentage of missing entries; #
v, e = average number of nodes and edges in G(M); L, Iseps = average number of legal
and illegal minimal separators in G(M); sep time = average time to find all the minimal
separators and the needed crossing relations and build the ILP if needed; % d, c1, c2, c3 =
percentage of problem instances failing the graph-density test, or solved using Corollar-
ies MSP1, MSP2 and MSP3 respectively; % ilps = percentage of instances that must be
solved as ILPs; # var, con = average number of variables and constraints in the generated
ILPs; inf = number of the ILPs that are infeasible, establishing that the problem instance
has no perfect phylogeny; % pre = percentage of the generated ILPs that were solved in
the Cplex pre-solver. Note that the number of ILP variables is the number of legal mini-
mal separators that cross at least one illegal minimal separator. Comparing that number
to the number of legal minimal separators shows that most legal minimal separators do
not cross any illegal minimal separator. All ILPs solved in 0.00 Cplex-reported seconds.

n, m k r % miss # v, e # L, Iseps sep time % d, c1, c2, c3 % ilps # var con # inf % pre

20, 20 4 0 0 70.9, 990 16, 0.47 0.07 s 0, 0, 72, 27 1 3, 2 0 100
20, 20 4 0 5 69.8, 952 16.4, 0.75 0.071 s 0, 0, 64, 33 3 3.6, 2.6 0 100
20, 20 4 0 20 66.8, 840 17.7, 1.6 0.066 s 0, 0, 41, 40 19 5.3, 4.3 0 100
20, 20 4 0 35 62.3, 696 20.6, 5.4 0.066 s 0, 0, 10, 15 75 8.4, 10.3 0 88

40, 40 10 0 0 292, 8554 49, 6 0.850 s 0, 0, 23, 33 44 9, 5 0 91
40, 40 10 0 5 287, 8221 51, 8 0.855 s 0, 0, 13, 30 57 9, 15 0 95
40, 40 10 0 20 272, 7141 57, 27 1.03 s 0, 0, 0, 11 89 19, 36 0 91
40, 40 10 0 35 255, 5874 69, 11 2.3 s 0, 0, 0, 0 100 36, 136 0 40

40, 40 20 0 0 447, 12562 56, 23 1.44 s 0, 0, 3, 21 76 13, 41 0 72
40, 40 20 0 5 439, 11954 60, 31 1.58 s 0, 0, 2, 19 79 15, 51 0 71
40, 40 20 0 20 410, 9983 69, 90 2.58 s 0, 0, 0, 1 99 28, 111 0 63

60, 60 15 0 0 601, 27072 83, 31 6.1 s 0, 0, 1, 24 75 13, 43 0 89
60, 60 15 0 10 581, 24904 89, 56 7.4 s 0, 0, 0, 9 91 22, 67 0 89
60, 60 15 0 20 559, 22553 94, 107 9.9 s 0, 0, 0, 1 99 37, 118 0 85

80, 80 10 0 0 613, 38290 96, 19 12 s 0, 0, 4, 44 52 11, 31 0 96
80, 80 10 0 5 606, 37093 99, 24 12.6 s 0, 0, 2, 39 59 13, 37 0 97
80, 80 10 0 10 597, 35841 102, 37 14 s 0, 0, 0, 21 79 18, 48 0 95
80, 80 10 0 20 584, 33863 109, 70 18 s 0, 0, 0, 7 93 32, 83 0 87

80, 80 20 0 0 1026, 62540 118, 85 32 s 0, 0, 0, 12 88 21, 106 0 83
80, 80 20 0 1 1023, 62081 118, 91 33 s 0, 0, 0, 12 88 22, 113 0 84

100, 100 10 0 0 791, 62733 122, 33 33 s 0, 0, 0, 36 64 13, 51 0 94
100, 100 10 0 5 783, 60924 123, 42 34 s 0, 0, 0, 36 64 17, 60 0 94

20, 20 10 1.5 0 124, 1669 21, 5 0.099 s 5, 26, 43, 11 12 6,8 0 100
20, 20 10 1.5 10 119, 1493 23, 6 0.096 s 3, 27, 27, 23 20 6,8 1 95
20, 20 10 1.5 35 103, 1015 29, 16 0.095 s 1, 12, 3, 3 81 12, 21 1 75

40, 40 10 1.25 0 289, 8738 48, 18 1.03 s 37, 28, 4, 13 18 8, 13 1 83
40, 40 10 1.25 20 267, 7217 55, 97 2.4 s 15, 46, 1, 4 34 20,56 1 85
40, 40 10 1.25 35 250, 5899 67, 334 7.3 s 3, 55, 0, 0 42 36,145 1 41

80, 80 10 0.75 0 618, 39621 93, 31 13 s 52, 26, 3, 4 15 10, 26 0 93
80, 80 10 0.75 5 610, 38359 97, 41 15 s 50, 28, 1, 3 18 13, 31 0 94
80, 80 10 0.75 20 584, 34353 105, 117 29 s 35, 42, 1, 2 20 36,86 0 90

80, 80 20 0.5 0 1023, 62911 112, 117 49 s 2, 48, 0, 5 45 20, 104 0 84
80, 80 20 0.5 5 1006, 60449 114, 159 55 s 2, 49, 0, 3 46 27, 128 0 83
80, 80 20 0.5 20 954, 52563 107, 321 82 s 0, 54, 0, 0 46 60, 264 0 65



The Multi-State Perfect Phylogeny Problem 309

in the pre-solver or not, are solved by Cplex in 0.00 Cplex-reported seconds. 2) In
instances which do not have a perfect phylogeny (and do not immediately fail the
graph-density test), the solution to the MD problem was almost always detected
by the use of Corollary MSP1 without even constructing an ILP. The few ILPs
that were constructed for instances without a perfect phylogeny also solved in
0.00 Cplex-reported seconds. Theoretical explanations of these observations will
likely be probabilistic and be related to the way the datasets were generated.
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