The Structure and Complexity of
Sports Elimination Numbers !

Dan Gusfield and Chip Martel

Computer Science Department
University of California, Davis.

Appeared in Algorithmica (2002) 32: 73-86

!Research partially supported by grants DBI-9723346 and CCR 94-03651

from the National Science Foundation.

The Structure and Complexity of Sports
Elimination Numbers

Dan Gusfield' Chip Martel?

Abstract

Identifying the teams that are already eliminated from contention
for first place of a sports league, is a classic problem that has been
widely used to illustrate the application of linear programming and
network flow. In the classic setting each game is played between two
teams and the first place goes to the team with the greatest total
wins. Recently, two papers [Way| and [AEHO] detailed a surprising
structural fact in the classic setting: At any point in the season, there
is a computable threshold W such that for every team i, ¢ is eliminated
(has no chance to win or tie for first place) if and only if ¢ cannot win W
or more games. They used this threshold to speed up the identification
of eliminated teams. In both papers, the proofs of the existence of a
threshold are tied to the computational methods used to find it.

In this paper we show that thresholds exist for a wide range of elim-
ination problems (including European Football), thus greatly general-
izing the classic setting; we use a simpler proof which is not connected
to any particular computational method; we resolve the more refined
issue (in the classic setting) of which teams have a chance to be the
strict winner of the most games; examine these issues in the context
of multi-division leagues with playoffs and wildcards; and establish
NP-hardness results for certain elimination questions.

"Dept. of Computer Science, Univ. of California, Davis. Research par-

tially supported by NSF grant DBI-9723346. email: gusfield@cs.ucdavis.edu

{Dept. of Computer Science, Univ. of California, Davis. Research par-
tially supported by NSF grant CCR 94-03651. email: martel@cs.ucdavis.edu

1 Introduction

Consider a sports league with n teams, where specific pairwise games are
played according to some schedule, and where some of these games have
already been played. The classic question asks which teams are already
eliminated from first place. That is, under every win/loss scenario for the
remaining games, which teams will necessarily win fewer total games than
some other team. This problem goes back more than thirty years to B.
Schwartz [Sch66], and to Alan Hoffman and T. Rivlin [HR70]; it is widely
used to illustrate linear programming and network flow!.

For team ¢, w(¢) denotes the number of games already won, and g¢(7) is
the number of remaining games to be played. In the classic version, no game
ends in a tie. Define the quantity W (i) = w(i) 4 g(¢) for each team i. Kevin
Wayne [Way]| recently showed the surprising fact (previously unsuspected by
us, and not suggested in the classic literature) that there is a threshold value
W* such that for every team ¢, ¢ is eliminated if and only if W(i) < W*.
This fact is all the more surprising because the classic elimination problem is
very well known and widely taught in diverse courses in computer science?,
mathematics and operations research. Using the existence of the threshold,
Wayne also showed how to find W* in time proportional to a single network
flow computation in a graph with n nodes. Previously, the best approaches
required a separate flow computation or linear programming computation
for each team 7, and no relationship between the results of the computations
was observed. With Wayne’s result, all the eliminated teams can now be
identified as quickly as one could previously test whether a single specific
team is eliminated.

Adler et al. [AEHO] independently established this elimination threshold
using linear and integer programming formulations for elimination problems.
They show that the threshold can be computed by solving one linear program
with ©(n?) variables and constraints (one for each pair of teams which play
at least one more game). They also give a nice overview of the errors which
are often made by sports writers in determining when a team is eliminated.

In addition to the classic question, three seemingly more difficult ques-
tions about the classic setting (single division, no ties) were also previously
examined in the literature:

1See the website http://riot.ieor.berkeley.edu, where the eliminated teams are identified
as the baseball and basketball seasons unfold.
2We have used it yearly for over ten years in graduate algorithms classes.

1. Q1 If team ¢ is uneliminated, what is the minimum number of games
i can win and still at least tie for first place in some win/loss scenario?

2. Q2 For team 1, is there a scenario in which team ¢ is the undisputed
winner, winning strictly more games than any other team, and if so,
what is the minimum number of wins for 7 to be an undisputed winner
in at least one scenario?

3. Q3 For team 1, is there a scenario where 7 can at least tie for k’th
position, i.e., where at most £ — 1 teams win strictly more games than
does 17

Question Q1 was shown in [GM92] to be solvable in time proportional to
a single network flow, provided the number of remaining games is 0(2”2).
McCormick eliminated the later requirement in [McC96]. However, the con-
structive method in [Way| implies that the answer to question Q1 is W* for
every team ¢ where W (i) > W*. Hence no additional computation is needed
for Q1, once the classic elimination problem has been solved.

Question Q2 can be approached by a modification of the ideas in [GM92],
in time proportional to a single network flow (for a single team).

Question Q3 was shown to be NP-complete when k is part of the input
in [McC96], but it is solvable in polynomial time for any fixed k.

Until recently, and for all three questions Q1, Q2, and Q3, no threshold-
value result was suspected that would connect the separate results obtained
for each team.

New Results

In this paper we do seven things. We generalize the threshold-value result
of [Way| and [AEHO], showing that it holds in a wide range of problem
settings, using a pure “scenario argument” not tied to linear programming or
network flow formulations of any problem setting; we show how the solution
to question Q1 extends to these general settings; back to the classic setting,
we solve question Q2 using an algorithm that runs as fast, or faster than a
single additional network flow, and which simultaneously gives the answer to
Q2 for every team; we extend these results to problems of multiple divisions
with wild-card advancement to playoffs between divisions; we show that the
problem of determining if a team is eliminated from the wild-card slot is

NP-complete; we note that in some settings, even when there is a threshold-
value result, the problem of computing the threshold can be NP-hard; and
we establish that computing the probability that a given team can come in
first is NP-hard, when a probability for the outcome of each remaining game
is given.

2 A general threshold-value result

In the general setting there is, as before, a history of games already played,
and a schedule of remaining games. But now, each game results in one of a
finite set of payoffs for the two teams. For example, in the classic setting,
the winner gets one point and the loser gets zero; if ties are allowed one
might allocate one point to each team when a tie occurs, and two points to
the winning team, and none to the losing team, when a win occurs (this is
the scoring method for in the National Hockey League ®. In a more general
setting a winner might get three points and the loser gets zero, while a tie
gives one point to each team. This is the scoring system used for Furopean
Football. * It was recently shown that the elimination question in this
scoring system is NP-Complete [BGHS]. Abstractly, each game has a finite
set of possible outcomes, each of which is associated with a specific payoff
pair (z,y), where one team gets = points and the other gets y points. The
league leader is the team with the most total points. The problem is again
to determine which teams have been eliminated, i.e., cannot strictly win or
tie for the most points, under any scenario for the remaining games. In this
setting, let w(i) be the points team i has won so far, and let g(z) be the
maximum possible points that team 7 could get from it’s remaining games,
and define W (1) = w(z) + g(7).

For the following result, we use a monotonicity restriction on the possible
payoffs. For a game between two teams z and y, let 2,05 (Ymas) be the
best possible payoff for x (y) in this game, and let Z,in (Ymin) be the worst
possible payoff for z (y) in this game. The monotonicity restriction is:

There always exists payoff pairs (Zmaz, Ymin) and (Zmin, Ymaz)-

Clearly, the three settings mentioned above, (1,0); (2,0), (1,1); and (3,0),(1,1),

31t is ”folklore” that this setting can be reduced to the classic setting, turning each
game into two games between the same teams.

4Thanks to G. Brinkmann and Rob Irving for bringing to our attention that this is the
current practice in European Football.

obey this restriction. Another way of looking at this condition is that we can
always improve the payoff of one team to its best possible result without
increasing the payoff to the other team (the other team’s payoff might have
to decrease). While the monotonicity condition may seem stronger than this,
it is in fact equivalent to it.

Theorem 1. In any setting where the monotonicity restriction holds, there
is a threshold-value W* such that team ¢ is eliminated if and only if W(z) <
W,

Proof. Let S denote a selection of outcomes for the remaining games (a
scenario for the remaining games), and let W () denote the maximum num-
ber of points (from games already played and from the remaining games)
won by any team under scenario S. Over all possible scenarios, define S* as
a scenario S where W(S) is minimum. Define W* to be W(5*).

Consider any team ¢. If W(i) < W(S*), then by the definition of W (5*),
team ¢ is eliminated in all scenarios. So assume W(i) > W(S*). If ¢ is
not the leader (either strict or tied) in S*, then modify scenario S* so that
i receives a total of g(i) points from its remaining games (i gets the best
possible outcome from each game: by the monotonicity restriction, for each
game (7,7) make the new result (imaz, jmin)). Thus team ¢ now has W (i)
points. No other team receives more points than it received under S*, so
under the modified scenario, team ¢ is either the undisputed leader, or ties
for the lead. O

Note that the above proof has no connection to network flow, cuts or
linear programming, showing that the general threshold phenomenon is not
inherently related to these structures, or to any other structures used to com-
pute the thresholds. That point is a fundamental contribution of this section.
(However, in the classic setting, W* and S* can be efficiently computed using
network flow, as established in [Way] or using linear programming [AEHO].
In Section 4.2 we show that there are settings where a threshold result exists,
but computing the threshold is NP- hard). Note also that Theorem 1 has
easy extensions to games played between more than two teams at a time,
provided the natural generalization of monotonicity holds.

Theorem 1 tells us which teams are eliminated. Question Q1 asks the
finer question of computing the minimum number of points needed by team
i to avoid elimination. Call this value E(1).

In the classic setting, F(7) is exactly W* for any uneliminated team ¢,
because the only payoff pair is (1,0) [Way] and [AEHO]. In general settings,
E(7) is not always W™ (e.g. when no possible combination of points allows
team ¢ to reach an exact total of W* points). In addition, computing F(z)
may be NP-hard even if W* and S* are known, since it can be as hard as a
subset sum problem.

One particularly interesting special case to consider is the (3,0), (1,1)
payoffs for European Football. We now show that in this setting F(7) is not
always W*, and in fact computing F(7) is NP-hard. To show that it may be
impossible for some teams to win with W* points, consider a setting where
team A has 100 points and no more games, while B has one more game
versus each of the teams C and D. Team B has 97 points while C and D
have 98. Teams B, C and D have no other games, and no other teams are
in contention. Team A can win with 100 points in scenario S* where B ties
both remaining games, so B, C, and D all end with 99. Thus W* = 100.
Teams C and D of course cannot end with exactly 100 points, so must get
to 101 to avoid elimination. Team B can win by winning both games and
getting to 103 points, or by getting one tie and a win for a total of 101 points.
However, though B can get to exactly 100 points (e.g. by winning against C
and losing versus D), B does not win in such a scenario, since team D would
get to 101 points. Thus E(B) = 101.

The example above shows that with European Football scoring, given a
scenario S* where a team A wins with W*, there may be another team B
which can only get to exactly W* wins by changing one of its ties (in S*) to a
win, and another tie to a loss. Changing the tie to a loss increases the points
of another team (D in the example above). If this moved D’s total above W*
we are stuck in the example above, but if D had other unplayed games, we
would then have to determine if we could change the results of these games
(and perhaps of D’s opponents) to create a new scenario where all teams stay
at or below W* wins. This problem of determining if we can modify 5™ to
keep all teams at or below W* wins is similar to the problem of determining
W*. 1t is possible to modify the NP-hardness proof of [BGHS] to show that
for European Football scoring, even if you know W*, determining whether a
given team can win with exactly W* wins is also NP-hard.

2.1 Problem Q2: Becoming an Undisputed Winner

We now show how to efficiently solve problem Q2 for all teams simultaneously,
in the classic problem setting, i.e., where (1,0) is the only payoff pair. As
shown in [Way], W* can be computed in time proportional to a single network
flow computation in a network with O(n) nodes ©(n?) edges.

We want to compute for each team ¢ the minimum number of games that
team ¢ must win in order to be the undisputed winner if possible (that is, to
win strictly more games than any other team). Clearly any team ¢ such that
W (i) > W*, can be the strict winner with W* 4+ 1 wins (just change #'s loses
in S* to wins until the total wins for ¢ reaches W* 4+ 1). Thus the only issue
to resolve is which teams can be undisputed winners with exactly W* wins.
Some uneliminated teams cannot be the undisputed winner with only W*
wins. For example, consider teams A, B and C all with 99 wins, and team D
with only 98 wins. Suppose the only remaining games are A against B and
C against D. One of team A or B will be the undisputed winner with 100
wins if D wins, but even if C wins, it will be in a tie for the lead with A or
B.

We now show how to find the set of teams which can strictly win with
only W* wins. Let scenario 5* be as defined in the proof of Theorem 1,
and recall that S* can be computed efficiently in the classic setting. By
construction, under S*, there is at least one team whose total wins (new plus
old) is exactly W*, and no team wins more than W* total games. Let L* be
the set of teams under scenario S* which each win a total of W* games.

Given a scenario S, we say that team 1, is reachable in S from team 1,
if there is a chain i1, 19, ...,2, such that 7; beats i3 in at least one of the new
games in S, 15 beats i3 in one of the new games, ... , and 1,_; beats 7, in one
of the new games. Now we try to modify scenario S* as follows to obtain a
new scenario with fewer teams that win exactly W* games:

Set S to S* and L to L*

WHILE there is a pair of teams 7 and j such that 2 is in L, j is reachable
in S from ¢, and 5 wins less than W* — 1 games in S,

BEGIN

Reverse the outcome of each game on a chain connecting ¢ and j; let S
again denote the resulting scenario, and let L be set to L — 7, which is again
the teams that win exactly W* games in the new S.

{Under this new S, ¢ wins a total of W* —1 games, j wins at most W* —1
games, and the number of games any other team wins is unchanged.}

END

The above process must terminate in at most n iterations because one
team is removed from L in each iteration, and none are added. It is easy to
implement this process to run as fast as a single network flow computation,
and faster implementations seem plausible. An alternate, explicit network
flow computation is detailed in appendix A.

Let [denote the size of L at the termination of the above process. Clearly,
[> 1, because otherwise a scenario has been created where all teams win
less than W* games, a contradiction to the definition of W*. After the above
process terminates, define T' to be the current L unioned with all the teams
that are reachable (under the current S) from at least one team in L. By
construction, each team in T'— L wins exactly W* — 1 games in the current

S.

Lemma 1. In any win/loss scenario where the winning team wins exactly
W* games in total, at least [teams of 1" must win W* games in total.

Proof. Let Wy be ¥,crw(z), the given total number of old games won by
teams in T let G(S)r be the total number of new games won by teams
in 7', in scenario S. By the maximality of T, every new game won by a
team in T is played between two teams in T'. Hence in any scenario, the
total number of new games that will be won by teams in 7" must be at least
G/(S)r, and so the total number of games won by teams in 7' must be at least
Wr + G(S)r = |T|(W*— 1)+ 1. It follows that in any scenario where W* is
the maximum total number of games won by any team, at least [teams in
T must win W* games. O

The following is immediate.

Corollary 1. Since [> 1, no team outside of T' can be the undisputed
winner (in any scenario) with exactly W* wins. Further, if [> 1, then no
team can be the undisputed winner with exactly W* wins.

Lemma 2. If [=1, then for every team i, in 7', there is a scenario where
1, 1s the undisputed winner with exactly W* wins.

Proof. If ¢, is the single team in the current L, then S is the desired
scenario. Otherwise, by the definition of T" and 5, 1, is reachable from the
single team ¢ with W* wins. Reversing the wins along the chain from ¢ to ¢,
results in a scenario where i, has exactly W* wins, and all other teams have
less than W* wins. O

In summary,

Theorem 2. A team : can be the undisputed winner with exactly W* wins,
if and only if { =1 and team ¢ is in 7'. If 2 cannot be the undisputed winner
with W* wins, it can be the undisputed winner with W* + 1 wins if W(z) >
W>. Hence question 2 can be answered for all teams simultaneously, as fast
(or faster) than the time for a single network flow computation, once W* and
S* are known.

In the case of question Q2, there is no single threshold that holds for all
uneliminated teams (it is either W* or W* + 1), but the existence of the
threshold W* for question Q1, the main result of [Way], is critical for the
efficient solution to question Q2.

3 Multiple divisions, playoffs and wild-cards

Often a sports league will partition the teams into multiple divisions. At the
end of the season, the (single) team with the best record in each division
makes the playoffs. In addition to the division winners, the playoffs may
include a wildcard team, which is a team with the best record among those
teams that do not win their division. In some sports leagues more than one
wildcard team is advanced to the playoffs. For example, the current Major
League Baseball format (in 1999) has three divisions in each of two leagues.
In each league, the three division winners and a wild card team advance to
the playoffs. Thus, if we want to determine which teams are eliminated from
playoff contention or the minimum number of wins needed for a team to
make the playoffs, we need to consider not only which teams can win their
respective division, but which teams can be the wildcard team. While we
can extend our results to more general settings, we restrict our discussion
here to the classical setting where each game is either won or lost.

To formalize the problem, assume that the n teams are partitioned into
k Divisions which we will denote by Dy,..., Dg. At the end of the season
the team in Division D; with the most wins is the D; Division’s winner (we

assume that if there is a tie for most wins this tie will be broken by a random
draw or a playoff before the wildcard team is determined). Over all the
divisions, the team with the most wins which is not a division winner is the
wildcard winner (again we assume that if there is a tie, it is broken by a
random draw or playoff). A team is eliminated from playoff contention only
if it cannot win its division and it cannot be the wildcard team.

We will show in Section 4.1, that if the number of divisions is an input
to the problem, determining if a given team can be the wildcard winner
is NP-Complete. However, for a fixed number of divisions, k, the problem
is solvable in polynomial time. And, in practice (for existing baseball and
basketball leagues) integer programming can be used to efficiently determine
the minimum number of games each team needs to win in order not to be
eliminated from playoff contention [AEHO]. In this section we also show
there is a threshold value of wins to avoid elimination from the playoffs
which applies to all teams (across all divisions) who cannot win their division.
That extends the threshold result in [AEHO] which was established for each
division separately. In appendix B, we show how to solve this problem using
network flow techniques, using O(n*) flows in the worst case, but far fewer
in typical cases.

We first examine an elimination threshold for the winner of any single
division. For any division Dy, there is a number W] such that any team :
in division Dy can be the division winner if and only if W () > Wj;. The
number W; can vary between divisions. This was established in [AEHO]
using a linear programming formulation. A more direct way to establish this
result is again by the pure scenario argument: For scenario S (for all teams
in the league), let W;(.S) be the maximum number of games won by any
team in division Dy; let W be the minimum W;y(S) over all S, and let S
be the scenario associated with Wj;. Then there is a scenario where team :
in Dy can win the most games (or tie) if W (i) > W — simply change S by
letting team : win all of its remaining games.

Another important point was established in [AEHO]: there is a scenario
where some team in division Dy wins exactly W games, and yet every team
in division Dy loses all of its remaining games played with teams outside of
Dy. Again, modify scenario S by making each team in D, lose to any team
outside of ;. Clearly, no team in D; wins more games than before, but by
definition of W7, some team in D, still wins W games. It follows that we
can compute W for division D, in isolation of the other divisions (as is done
in [AEHOQ]), since games between teams in D; and teams outside Dy can

10

all be set to wins for the outside teams. Therefore, the computation of W}
reduces to the case of the classical setting where all teams are in the same
division. Hence we need not discuss further how W is computed.

Now we turn attention to a wild-card threshold for teams that cannot
win their division (in any scenario). Note that this threshold does not apply
to teams which have a chance to win (or tie) the division (see example at
the end of this section). Thus we are concerned with which teams among the
non-division contenders still have a chance to be the wildcard team, and for
each such team, we want to know the fewest games it must win to still have
a chance at the wildcard position. Over all possible scenarios for playing
out the remaining games, let MW be the smallest number of wins for the
wildcard team (there may be a tie at M W), and let SW be a scenario where
the wild card team wins MW games.

Theorem 3. Any team ¢ which is not a division winner in scenario SW

can make the playoffs if W (i) > MW.

Proof. Consider any team i which is not a division winner in SW, and
W(i) > MW. Change SW to SW’ by increasing ¢’s wins until ¢ has MW
wins. At that point, the only teams which could possibly have more than
MW wins in SW' are the k division winners in SW. Thus at most one team
per division can beat 7, so ¢« must now be a division winner or the wildcard
team (possibly in a tie). O

Corollary 2. Any team 2 which cannot win its division is eliminated from

the playoffs if and only if W(i) < MW.

Corollary 3. For a team ¢ which can win its division, Dy, but is not the
winner of its division in scenario SW, the minimum number of games 7 must
win to make the playoffs is MIN{Wj;, MW }.

It is interesting to note that the Corollary does not extend to the k teams
that win their respective divisions in scenario SW. For example, suppose
teams A and B are in division 1, teams C and D in division 2. A, B and D
have 80 wins, C has 120 wins, and A has 10 games remaining versus each of
B and D and these are the only (relevant) games. Teams B and D can tie for
the wildcard with 80 wins if A wins all its games. However, team A cannot
make the playoffs unless it wins at least 85 games (if A loses 16 games it gets

11

to 84 and both B and D have at least 86). Thus, in this example SW is the
scenario where A wins all its games, MW = 80 and W} = 85. A is a division
winner in SW but needs 85 wins wins to make the playoffs which is larger
than MW = 80.

In Appendix B we describe how to compute MW and also the minimum
number of wins needed by the k& teams who are division winners in scenario

SW.

4 NP-hard elimination questions

There are many generalizations of the classic elimination question that have
no known efficient solution. In this section we examine three natural ques-
tions.

4.1 Multiple divisions and wild cards

Theorem 4. When there are multiple divisions and wildcard team(s), the
problem of determining whether a given team ¢ is eliminated from the playoffs
is NP-complete in the classic setting.

Proof. The reduction is from the version of 3-SAT where each clause has
two or three variables and each literal appears in at most two clauses [Pap94].
Given a formula F' with k distinct variables (where each variable is assumed to
appear both negated and unnegated in F') and ¢ clauses, we create an instance
of a k4 1-division baseball problem. It is convenient to use a bipartite graph
H = (A, B), representing formula F, to describe this problem instance. The
A side contains 2k nodes, one for each literal that appears in F'; the B side
contains ¢ nodes, one for each clause in F'. There is an edge between node ¢
in A and node j in B if and only if literal 7 appears in clause j (so each node
in B has two or three incident edges). The corresponding baseball schedule
is created by letting each node in H represent a baseball team, and each edge
in H represent a game yet to be played. In this problem instance, we assume
that every team in A has won z games so far, and every team ¢ in B has won
z —d(q) + 1 games so far, where d(q) is the degree of ¢ in H.

The £+ 1 divisions are next described. For every variable x that appears
in I, the two teams associated with literals x and z are in a single division,
and no other teams represented in H are in that division. All the nodes in B

12

are in a single division, denoted DB. Team ¢ is also assumed be in division
DB, but it has played all of its games, winning a total of z games. Since ¢
has no games to play, it is not represented in H. We further assume that
there is another team in DB that has played all its games and has already
clinched the title for DB. There may be additional teams not represented in
H (in order to make the divisions bigger and more realistic), but they are all
assumed to be eliminated from their division title and from contention for the
wild-card slot. Hence only the teams in A are competing for their respective
division titles, and only the teams in H together with ¢ are competing for
the wild-card slot.

Now assume there is a satisfying assignment F to F'; we will construct a
scenario where team ¢ is at least tied for the wild card slot i.e., at most one
team from each division wins more games than ¢.

For every variable z in F, we let the team associated with literal z (re-
spectively) win all of its remaining games if and only if variable = is set
true (respectively false) in Fs. Hence for every literal pair (z,), one of the
associated teams wins all of its remaining games, and the other loses all of its
remaining games. Since the assumed truth assignment satisfies I, at least
one literal in every clause is set true. Hence every team in B loses at least
one of its remaining games, and no team in B wins more than z games. Thus
exactly one team in each division wins more games than does team ¢, and
hence team ¢ is still at least tied for the wild-card slot.

Conversely, consider a scenario where ¢ is at least tied for the wild-card
slot. That means that no division has two or more teams that strictly win
more games than does ¢. It follows that no team in B can win all of its
remaining games, for then ¢ would place behind two teams in DB. Similarly,
it can’t happen that both teams associated with a variable 2 can win one (or
more) remaining games, for then both of these teams would have more total
wins than does t. So we set variable z true (respectively false) if the team
associated with literal = (respectively) wins one or more of its remaining
games. Any unset variable can be set arbitrarily. This assignment satisfies

F. O

Note that in our reduction every node in H can have degree at most 3,
and thus every team has at most 3 games left to play. Thus, this problem is
hard to decide even when the schedule of games is almost completed.

13

4.2 Thresholds are not always easy to compute

As established above, threshold results occur in a large variety of problem
settings (and we will establish another one here). However, the existence
of a threshold does not necessarily imply that it is easy to compute the
threshold. In a sense, we have already established that point in the case of
multiple divisions. However, to make the point clearer, we examine a case
where there is a single, simple threshold, but the problem of computing it is
NP-hard®.

In the classic setting, consider the question of whether there is a scenario
in which a given team ¢ can come in (possibly tied for) k’th place or better,
i.e., where there are no more than £ — 1 teams who win strictly more games
than does ¢ (k is a variable, given as input — the problem is solvable in
polynomial time for any fixed k). This is a generalization of the classic
elimination question, where k& = 1.

It is easy to establish that there is a threshold result for this problem. For
each scenario S, define W*(S) as the total points that the &’th ranked team
obtains in S; define W* as the minimum of W¥(S) over all scenarios, and let
S* be the scenario that gives W*. If W(:i) > W*, then there is a scenario
in which team ¢ comes in k’th or better —simply modify S* so that team :
wins all of its remaining games. Hence a team ¢ can come in k’th or better
if and only if W (i) > W*. However, McCormick [McC96] has established
that the problem of determining if a given team can come in k’th or better
is NP complete. It immediately follows that it is NP-hard to compute the
threshold W*.

4.3 Probability of elimination

We next examine the elimination question when each remaining game (1, j)
is associated with a probability p;; that team : will win the game, and
probability p;; = 1 — p; ; that team j will win the game. We assume (rather
unrealistically) that these probabilities are independent ©.

>We recently learned that the elimination problem for the European football scoring
scheme, mentioned in Section 2, has also been shown to be NP-complete [BGHS], even
though (as shown in Section 2) there is a single elimination threshold for that scoring
scheme.

6The results in this section were developed by Greg Sullivan and Dan Gusfield in 1983
and forgotten for many years. We thank Greg for allowing the inclusion of these results
in the present paper.

14

We first show that the problem of computing the number of ways (scenar-
ios) that a given team ¢ can avoid elimination is # P-complete. The reduction
is from the problem of computing the number of perfect matchings in a bipar-
tite graph H = (A, B), where |A| = | B| (which is # P-complete [GJ79]). As
before, we interpret each node in H as a team and each edge as a remaining
game. Each node in A is assumed to have won z — 1 games, each node ¢ in
B is assumed to have won z + 1 — d(q) games, where d(q) is the degree of ¢,
and team ¢ is assumed to have won z games, with no more games to play.
Clearly, ¢ is eliminated if any team in B wins all of its games, or any team
in A wins more than one game. So in a scenario where ¢ is uneliminated,
every team in B loses at least one game and every team in A wins at most
one game. Since |A| = |B], every team in A must win exactly one game,
and each team in B must lose exactly one game. Representing the outcome
of a game by a directed edge from the loser to the winner, it is clear that
the directed edges from B to A specify a perfect matching in H. Further,
each such scenario leads to a different perfect matching. Conversely, if we
interpret a perfect matching in H as a set of games where the B-team loses
to the A-team it is matched to (and the B-teams win all the other games),
then team ¢ is uneliminated in this scenario. Further, each perfect matching
leads to a different scenario. Hence the number of perfect matchings in H
equals the number of scenarios where ¢ is not eliminated. Summarizing, we
have proved that

Theorem 5. The problem of computing the number of scenarios where
team ¢ is uneliminated is # P-complete.

Turning to probabilities, if we set p;; = 1/2 for each remaining game
and there are (G total games remaining, then the probability that ¢ will be
uneliminated at the end of the season is (1/2)%x (the number of scenarios
where ¢ is uneliminated). Hence

Theorem 6. The problem of computing the probability that team ¢ will
be eliminated is NP-hard.

15

5 Appendix A: Computing Undisputed Win-
ners

To explicitly implement the algorithm in Section 2.1 as a single network flow
computation, consider a “supply-demand” network with an edge for each
remaining game (p, q) directed from p to ¢ if p beats ¢ under S*. Each team
in L* is given one unit of supply, and each team not in L* has demand equal
to W* — 1 minus the total number of games it wins under S*, and each edge
has capacity one. Then compute an integral maximum flow from the supply
nodes to the demand nodes (obeying the supply-demand constraints and the
edge capacities). Since the edge capacities are one, the edges with flow value
one define a set of edge disjoint paths from supply to demand nodes. These
paths define chains that could have been found by the algorithm in Section
2.1, and hence reversing the wins on these edges gives the needed scenario S.

For more efficiency, if two teams have more than one game to play against
each other, we can combine the edges for all those games and set the capacity
of the combined edge (p, q) equal to the number of remaining games where
p beats g. Therefore, the time to find 5 is bounded by the time for a single
network flow computation on a graph with n nodes.

6 Appendix B: Computing the Wildcard Thresh-
old for Multiple Divisions

Recall there are n teams partitioned into k Divisions which we will denote by
D1, ..., Dy. At the end of the season the team in Division D; with the most
wins is that Division’s winner (we assume that if there is a tie for most wins
this tie will be broken by a random draw or a playoff before the wildcard
team is determined). The team with the most wins which is not a division
winner is the wildcard winner (again we assume that if there is a tie it is
broken by a random draw or playoff). A team is eliminated from playoff
contention only if it cannot win its division and it cannot be the wildcard
team.

Consider a point partway through the season. For each division we can
determine which teams have a chance to win that division using the tech-
niques developed for a single division. There will be a single number W}
for each division D such that those teams who can win W) games have a

16

chance to win Dy, and this can be computed in the time for one flow. In
the computation of D;, games with teams not in Dy are ignored, as justified
earlier.

For each division Dy, let T'(d) be the set of teams in that division which
have not been eliminated as division winner, i.e., where W (i) > W;. We
compute MW by considering each combination of possible division winners,
one from each set T'(d). For any such choice of division winners, we create
a flow network WILD. To describe WILD, we use the convention that team
d denotes the division winner for division D, for d = 1,..., k. It is easy to
modify WILD for any other fixed set of division winners.

Let B be a bipartite graph containing two nodes, j and j', for each team
J which is not a division winner (thus for each j > k since we assume 1...k
are the k division winners). For every ordered pair of nodes (i, 7') in B where
1 < 7, connect the 7 node on the left side of B to the 3’ node on the right side
of B, and give it capacity equal to the number of remaining games between
teams 7 and j. Also, create a directed edge from each ¢ to i/, with infinite
capacity. Then create a source s connected to each node 7 on the left of B,
and give edge (s,1) capacity equal to the number of remaining games ¢ plays
with teams numbered greater than ¢. Similarly connect each node j' on the
right of B to a terminal ¢, and give that edge capacity W — w(j), where W
is a parameter. The resulting network is called WILD. For a fixed value of
W, any integral flow in WILD that saturates all the edges out of s gives a
feasible scenario S for the allocation of wins in the remaining games between
non-division winners. Thus, no team 5 > k£ ends with more than W wins in
S.

In WILD we have assumed that the division winners win all their games
versus non-division winners (so those teams aren’t included in the network).
We use WILD to find the smallest W such that all other teams win at most W
games when that happens. Recall that over all possible scenarios for playing
out the remaining games, we let MW be the smallest number of wins for the
resulting wildcard team (there may be a tie at MW), and we let SW be a
scenario where the wild card team wins MW games.

Lemma 3. If we create the network WILD for the division winners in SW,
then there will be a flow that saturates all arcs out of s when W is set to

MW in WILD.

17

Proof. Create a flow in WILD according to SW (i.e., for each team 1, if
i loses r games to j > i, set the flow in the arc (i,7') to r, and if 7 wins w
games versus teams lower than ¢, set the flow in (7,1’) to w). No team ¢ will
have flow greater than MW — w(7) entering node i’ (by the convention that
teams 1 through £ win their respective divisions in SW and the wildcard has
MW wins), and this will saturate all arcs out of s since all games have a
winner in SW. O

Lemma 4. Let WILD be the network associated with some combination
of division winners, and let W* be the smallest value of W that allows all
arcs out of s to be saturated in WILD. Then there is a scenario where some
team becomes the wildcard with W* or fewer wins.

Proof. The flow in WILD that saturates all arcs out of s with W set to W™
corresponds to a scenario S*, by converting the flow in the natural way (and
having the designated “division winners” win all their games versus other
teams, and assigning wins to games between “division winners” arbitrarily).
Note that teams 1 through k& might not all be the division winners in S*
since we did not require them to win more than W* games. Let A be the
wildcard team in S* (if there is a tie pick any of the tied teams). Unless A is
one of teams 1 through k it can have at most W* wins, by our construction
of WILD and we are done. If A is one of teams 1 through £ then some team
with index greater than & must win A’s division. However, that new division
winner has at most W* wins, so for A to lose its division it must have W* or
fewer wins. Thus in all cases A has at most W* wins. O

Theorem 7. Let W,,;, be the minimum value of W that allows all arcs out
of s to be saturated, when we construct WILD for all possible combinations
of division winners. Then W,,;, = MW, the smallest number of wins possible
for any wildcard winner.

Proof. By Lemma 3 when we set W to MW in WILD, with the division
winners in SW selected, we will saturate all arcs out of s, thus W,,;, < MW.

Now suppose for contradiction that W,,;, < MW . Then there is some
flow in WILD (for some combination of possible division winners) that satu-
rates all arcs out of s with W* < MW . This saturating flow corresponds to a

18

scenario S*. By Lemma 4 some team is the wildcard in S5* with W* or fewer
wins. However, this means the wildcard team has fewer than MW wins in
S* contradicting our definition of MW . Thus W,,;, cannot be smaller than
MW, proving that it is equal to MW O

6.1 Minimum Wins for Special Division Winners

The division winners in SW can make the playoffs by winning W] games
(the minimum to win their division). However, under some other scenario,
they might be able to be the wild card team with fewer wins. Consider say
team A which is the winner of division D; in SW. If A can be the wild card
with some number of wins, say Wy, with W4 < W then there is clearly
some best scenario S4 where A makes the playoffs with the fewest wins.
In the computation described above we consider all combinations of possible
division winners, so we also construct network WILD for the division winners
in scenario S4. Using the same reasoning as above, we must get the value
W4 when we do this computation. Similarly, if we ever got a value smaller
than Wy for a network which did not include A as a division winner, than A
could reach the playoffs with fewer than W, wins contradicting our definition
of WA.

Thus let W4 be the minimum value we get from all networks WILD where
Ais not selected as a division winner. Then the minimum wins for A to make

the playoffs is MIN{W 4, MW, }.

6.2 Complexity

Each network WILD (for a combination of division winners) is a linear mono-
tone parametric flow network, so we can find the minimum value of W sat-
urating all arcs out of s in the time for one flow [GGT89]. In the worst case
there could be (n/k)lC combinations, but by first computing possible division
winners within each division (at a cost of the time for one flow/division), we
will usually be able to greatly reduce the number of combinations.

This gives us not only MW but also the minimum wins for each division
winner in SW.

Finally, once we have computed the threshold values to at least tie for a
playoff spot for each team we can also determine the minimum number of wins
to make the playoffs without a tie (thus to be the undisputed division winner

19

or wildcard team). For each threshold 7', there is an associated scenario

where some team makes the playoffs with 7' wins. We can determine which

teams need T' versus T+ 1 wins to avoid a tie in a manner analogous to that

used for the case of a single division with one winner.

References

[AEHO]

[BGHS]

[GGTSY]

[GJ79]

[GMY2]

[HR70]

[McC96]

[Pap94]

[Sch66]

I. Adler, A. Erera, D. Hochbaum, and E. Olinich. Baseball, opti-

mization and the world wide web. unpublished manuscript 1998.

T. Burnholt, A. Gullich, T. Hofmeister, and N. Schmitt. Football
elimination is hard to decide under the 3-point rule. unpublished
manuscript, 1999.

G. Gallo, M. Grigoriadis, and R.E. Tarjan. A fast parametric net-
work flow algorithm. STAM Journal on Computing, 18:30-55, 1989.

M. Garey and D. Johnson. Computers and Intractability. W. H.
Freeman and Company, New York, 1979.

D. Gusfield and C. Martel. A fast algorithm for the generalized
parametric minimum cut problem and applications. Algorithmica,

7:499-519, 1992.

A. Hoffman and J. Rivlin. When is a team “mathematically” elim-
inated? In H.W. Kuhn, editor, Princeton symposium on math
programming (1967), pages 391-401. Princeton universtiy press,
1970.

T. McCormick. Fast algorithms for parametric scheduling come
from extensions to parametric maximum flow. Proceedings of the
28th Annual ACM Symposium of Theory of Computing, pages 394—
422, 1996.

C. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

B. Schwartz. Possible winners in partially completed tournaments.

SIAM Review, 8:302-308, 1966.

20

[Way| K. Wayne. A new property and a faster algorithm for baseball elim-
ination. ACM/SIAM Symposium on Discrete Algorithms, January
1999.

21

