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Abstract. The haplotype inference (HI) problem is the problem of in-
ferring 2n haplotype pairs from n observed genotype vectors. This is a
key problem that arises in studying genetic variation in populations, for
example in the ongoing HapMap project [5]. In order to have a hope of
finding the haplotypes that actually generated the observed genotypes,
we must use some (implicit or explicit) genetic model of the evolution of
the underlying haplotypes. The Perfect Phylogeny Haplotyping (PPH)
model was introduced in 2002 [9] to reflect the “neutral coalescent” or
“perfect phylogeny” model of haplotype evolution. The PPH problem
(which can be solved in polynomial time) is to determine whether there
is an HI solution where the inferred haplotypes can be derived on a
perfect phylogeny (tree).

Since the introduction of the PPH model, several extensions and mod-
ifications of the PPH model have been examined. The most important
modification, to model biological reality better, is to allow a limited
number of biological events that violate the perfect phylogeny model.
This was accomplished implicitly in [7,12] with the inclusion of several
heuristics into an algorithm for the PPH problem [8]. Those heuristics
are invoked when the genotype data cannot be explained with haplo-
types that fit the perfect phylogeny model. In this paper, we address
the issue explicitly, by allowing one recombination or homoplasy event in
the model of haplotype evolution. We formalize the problems and pro-
vide a polynomial time solution for one problem, using an additional,
empirically-supported assumption. We present a related framework for
the second problem which gives a practical algorithm. We believe the
second problem can be solved in polynomial time.

1 Introduction

In diploid organisms (such as humans) there are two (not completely identical)
“copies” of each chromosome, and hence of each region of interest. A description
� Research partially supported by grant EIA-0220154 from the National Science Foun-

dation.

R. Casadio and G. Myers (Eds.): WABI 2005, LNBI 3692, pp. 152–164, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Algorithms for Imperfect Phylogeny Haplotyping (IPPH) 153

of the data from a single copy is called a haplotype, while a description of the
conflated (mixed) data on the two copies is called a genotype. In complex diseases
(those affected by more than a single gene) it is often much more informative to
have haplotype data (identifying a set of gene alleles inherited together) than to
have only genotype data.

Today, the underlying data that forms a haplotype is usually a vector of val-
ues of m single nucleotide polymorphisms (SNP’s). A SNP is a single nucleotide
site where exactly two (of four) different nucleotides occur in a large percentage
of the population. Genotype data is represented as an n by m 0-1-2 (ternary)
matrix G. Each row is a genotype. A pair of binary vectors of length m (haplo-
types) generate a row i of G if for every position c both entries in the haplotypes
are 0 (or 1) if and only if G(i, c) is 0 (or 1) respectively, and exactly one entry
is 1 and one is 0 if and only if G(i, c) = 2. The international Haplotype Map
Project [5] is focused on determining the common SNP haplotypes in several
diverse human populations.

Given an input set of n genotype vectors of length m, the Haplotype Inference
(HI) Problem is to find a set of n pairs of binary vectors (with values 0 and 1),
one pair for each genotype vector, such that each genotype vector is generated by
the associated pair of haplotypes. The ultimate goal is to computationally infer
the true haplotype pairs that generated the genotypes. This would be impossible
without the implicit or explicit use of some genetic model to guide the algorithm
in constructing a solution. A powerful genetic model that has been used in the
HI problem is the population-genetic concept of a coalescent [14,21].

The coalescent model of SNP haplotype evolution implies that the evolution-
ary history of 2n haplotypes, one from each of 2n individuals, can be displayed
as a rooted tree T with 2n leaves, where some ancestral sequence labels the root
of the tree, and where each of the m sites labels exactly one edge of the tree.
A label i on an edge indicates the (unique) point in history where a mutation
at site i occurred. Sequences evolve down the tree, starting from the ancestral
sequence, changing along a branch e = (u, v) by changing the state of any site
that labels edge e. The state changes from what it is at u to the opposite state,
recorded at v. The tree “generates” the resulting sequences that appear at its
leaves. In more computer science terminology, the coalescent model says that 2n
haplotype (binary) sequences that appear at the leaves of T are generated on a
perfect phylogeny. See [9] for further explanation and justification of the perfect
phylogeny haplotype model.

Generally, most solutions to the HI problem will not fit a perfect phylogeny,
and this leads to The Perfect Phylogeny Haplotyping (PPH) Problem:
Given an n by m matrix M that holds n genotypes from m sites, find n pairs of
haplotypes that generate M on a perfect phylogeny.

It is the requirement that the haplotypes fit a perfect phylogeny, and the
fact that most solutions to the HI problem will not, that enforce the coalescent
model of haplotype evolution, and make it plausible that a solution to the PPH
problem (when there is one) is biologically meaningful.
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There are several polynomial-time solutions to the PPH problem [2,4,8,9] and
a linear-time algorithm [6]. An additional empirical result that will be exploited
in this paper is that when there is a PPH solution, it is highly likely that there is
only a single, unique, PPH solution [3,4]. The frequency of uniqueness increases
with the number of genotypes, and a surprisingly small number of genotypes is
needed before the solution is highly likely to be unique.

Since the introduction of the PPH model, a central goal has been to extend
the range of applicability of model by incorporating more biological complexity,
yet preserving polynomial-time solvability. Biologically, the most important ex-
tension is to allow a limited amount of recombination or homoplasy (recurrent
or back mutation) in the model of haplotype evolution. Homoplasy allows a site
to mutate more than once, and hence allows a site to label more than one edge
in the tree. As before, if a site i labels the directed edge (u, v), then the state of
site i at u mutates to the opposite state, which is the state of i at v. If the two
occurrences of site i are on the same path from the root of T , then the second
occurrence is a “back mutation”, otherwise it is a “recurrent mutation”.

An H-1 Phylogenetic Tree T is derived from a perfect phylogeny by allow-
ing exactly one site to label two distinct edges of T . An H-1 phylogenetic tree
generates M if the sequences in M label the leaves of T .

A single-crossover recombination between two equal-length sequences P and
S creates a third “recombinant” sequence of the same length consisting of a prefix
of P followed by a suffix of S. The point where the recombinant sequence changes
from P to S is called the “crossover” or “break” point. Recombination occurs
during meiosis (and in other contexts) and is a primary mechanism creating
genomic diversity in a population.

An R-1 Phylogenetic Network N is derived from a perfect phylogeny by al-
lowing one recombination event, represented at a node v of N by two edges
entering v, one from the node labeled by sequence P , and one labeled by se-
quence S. The crossover point is also noted at v. a recombination node (e.g.,
to have two incoming edges), where a single-crossover recombination occurs. An
R-1 phylogenetic network generates M if the sequences of M label the terminal
nodes (nodes with no descendants) of N . An R-1 phylogenetic network can also
be described as a galled-tree with exactly one gall [11].

Given an input set of genotypes M , we define two problems.

1. The H-1 Imperfect Phylogeny Haplotyping (IPPH) Problem: Find an H-1
Phylogenetic Tree generating haplotypes that solve the HI problem for M .

2. The R-1 Imperfect Phylogeny Haplotyping (IPPH) Problem: Find an R-
1 phylogenetic Network generating haplotypes that solve the HI problem
for M .

In this paper, we develop algorithms for both problems. Both solutions first
solve a PPH problem for a subset of the data, and we will assume (following
the observations in [3,4]) that those solutions are unique. Given that assump-
tion, our solution to the H-1 IPPH problem runs in polynomial time. We have
implemented our H-1 IPPH algorithm in C++ and evaluated its performance
using simulated data. As we elaborate later, our study shows that our method is
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both practical and highly accurate. We are currently working on extending our
method to IPPH with multiple homoplasy events. Our present solution for the
R-1 IPPH problem takes exponential time, but a polynomial-time algorithm for
that approach looks promising, and we believe a related, more complex, method
runs in polynomial time.

In what follows, we use M to denote an n×m genotype matrix. Its haplotype
matrix, of size 2n × m, is denoted by M ′. Following [2], we say that two rows in
M ′ are mates if they come from a single row in M .

2 IPPH with a Single Homoplasy Event

In this section, we construct an IPPH method that allows for exactly one back or
recurrent mutation. Suppose that a genotype matrix M does not admit a PPH
solution. If that is due to a single homoplasy event at a particular site, then
removing the column in M corresponding to that site will render the remaining
data Mr compatible with a perfect phylogeny, and therefore there will be a PPH
solution for Mr. In our work, we consider partitioning M column-wise into two
parts, one (denoted Ms) containing exactly one column of M and the other
(denoted Mr) the rest. We denote this partitioning by M �−→ Mr ⊕ Ms. Our
algorithm proceeds by trying all such partitions of M and checking whether Mr

admits a PPH solution (i.e. a perfect phylogeny T ), and, if so, whether the single
column in Ms can be explained by a single homoplasy event in T , possibly after
some refinement. If these conditions are satisfied by at least one partition of M ,
then we say that there exists a solution to IPPH with a single homoplasy event.

2.1 H-1 IPPH When There Exists a Unique PPH Solution for Mr

In what follows, we describe our main ideas through an explicit example. Con-
sider the genotype matrix M shown on the left hand side of Figure 1. The only
partition of that genotype matrix that leads to a PPH solution for Mr is the
one shown on the right hand side of Figure 1. In fact, that Mr admits a unique
PPH solution M ′

r, shown on the left hand side of Figure 2; a PPH solution M ′
s

for Ms is shown there as well. The question that remains is whether we can
appropriately combine M ′

r with M ′
s to create an H-1 IPPH solution M ′ for the

entire genotype matrix M ; i.e., for each 1 ≤ i ≤ n, we want to ask whether we

M

i1 i2 i3 i4 i5 i6 i7

g1 1 2 1 2 1 2 2
g2 2 2 2 0 1 0 0
g3 2 2 2 2 1 2 2
g4 1 1 0 1 0 0 0
g5 1 1 1 1 2 2 0

�−→

Mr

i1 i2 i4 i5 i6 i7

g1 1 2 2 1 2 2
g2 2 2 0 1 0 0
g3 2 2 2 1 2 2
g4 1 1 1 0 0 0
g5 1 1 1 2 2 0

⊕

Ms

i3

g1 1
g2 2
g3 2
g4 0
g5 1

Fig. 1. Partition of M into Mr and Ms, where Ms contains column i3
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M ′
r

i1 i2 i4 i5 i6 i7

r1 1 0 0 1 0 0
r′
1 1 1 1 1 1 1

r2 1 1 0 1 0 0
r′
2 0 0 0 1 0 0

r3 0 0 0 1 0 0
r′
3 1 1 1 1 1 1

r4 1 1 1 0 0 0
r′
4 1 1 1 0 0 0

r5 1 1 1 0 0 0
r′
5 1 1 1 1 1 0

M ′
s

i3

s1 1
s′
1 1

s2 0
s′
2 1

s3 0
s′
3 1

s4 0
s′
4 0

s5 1
s′
5 1

s1

s′
1

s′
2

s′
5

s5

s′
3

s3

s2

s4

s′
4

r4 r′
4 r5

r′
5

r′
1

r′
3r3

r′
2

r2r1

Tr

Ts

Fig. 2. Separate PPH solutions and perfect phylogenies for Mr and Ms in Figure 1

can appropriately order the rows si, s
′
i in M ′

s with respect to the rows ri, r
′
i in

M ′
r, such that the combined matrix is an H-1 IPPH solution for M . For each

1 ≤ i ≤ n, row ri can get paired with either si or s′i. Therefore, if ri and r′i are
distinct, and so are si and s′i, for all 1 ≤ i ≤ n, then there are 2n possible ways of
pairing the rows. Hence, checking whether there exists an H-1 IPPH solution for
each way of pairing would be impractical when n is large. The approach we take
is to work not with haplotype matrices directly but with perfect phylogenies.
The problem of finding an H-1 IPPH solution therefore translates to a graph
theoretical problem.

Returning to our example, consider the perfect phylogenies shown on the
right hand side of Figure 2. Trees Tr and Ts correspond to the PPH solutions
M ′

r and M ′
s, respectively. To create an H-1 IPPH solution for the entire genotype

matrix M , we need to combine the information contained in Tr with that in Ts,
but, before we can do that, we first need to identify the leaf labels ri, r

′
i in Tr

with the leaf labels si, s
′
i in Ts. There are O(2n) ways to do this in general.

But, an important observation allows us to avoid considering all O(2n) pairings
of leaf labels explicitly. Because we do not know a priori how the leaf labels
ri, r

′
i in Tr should be paired up with the leaf labels si, s

′
i in Ts, we can actually

use that freedom to set ri, r
′
i, si, s

′
i equal to a new label, say xi, and study the

re-labeled trees T̃r and T̃s to see whether there exists an H-1 IPPH solution; an
H-1 IPPH solution exists if having two mutation events in T̃r can induce the
same bipartition of the multiset {x1, x1, x2, x2, . . . , xn, xn} as that captured by
the tree topology of T̃s. Once the location of the two mutation events in T̃r is
determined, we can go back to Tr and determine the phase of the entire data
M ; i.e., the location of the two mutation events in Tr determines the order of
si, s

′
i in Ms with respect to ri, r

′
i in Mr.

Equivalently, if T̃r is a binary tree, an H-1 IPPH solution exists if there exist
two edges e1 and e2 in T̃r that are not incident with a common vertex, such
that removing those edges partitions T̃r into three subtrees, of which two are
non-adjacent, with the following properties:
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(i) The multiset union of leaf labels for the two non-adjacent subtrees—i.e.,
those subtrees not joined by e1 or e2 in T̃r—is equal to the multiset of leaf
labels on one side of the unique interior edge eI in T̃s, and

(ii) the multiset of leaf labels for the remaining subtree is equal to that on the
other side of eI in T̃s.

Whether there exists such a pair of edges can easily be answered in polynomial
time. If the answer is affirmative, then the phasing of the single column in Ms

can be determined, up to exchange of 0s with 1s in the entire column, by looking
at the topology of Tr and the position of the two mutation events in Tr.

If T̃r is not binary, things are more complicated. For ease of discussion, we
introduce the following definition (see [17] for graph theoretical terminology):

Definition 1 (Cut-subtree). By a cut-subtree τ of a leaf-labeled unrooted tree
T , we mean a subtree of T that can be obtained by removing an edge e in T ,
or by first refining a vertex of degree ≥ 4 and then removing the newly created
edge e. The remaining part of T , after deleting any degree-2 vertex created by
removing e, is denoted T \ τ .

If T̃r is not binary, we need to ask whether there exist two disjoint cut-subtrees
τ1 and τ2 of T̃r, such that

(i′) the multiset union of leaf labels for τ1 and τ2 is equal to that for one side of
eI in T̃s, and

(ii′) the remaining part of Tr has a label multiset equal to that for the other side
of eI in T̃s.

A polynomial-time algorithm for finding such cut-subtrees, if they exist, is
described in Section 2.2. For now, we return to the simple example in Figure 2. It

h1 h2

h′
5

h′
3

h′
1

i3

h4

h5

x4 x4 x5

x1

x3

x2
x2x1

x3
x5

h′
2

h3

i3

(a)

(b)

h′
4 (c)

M ′

i1 i2 i3 i4 i5 i6 i7

h1 1 0 1 0 1 0 0
h′

1 1 1 1 1 1 1 1
h2 1 1 1 0 1 0 0
h′

2 0 0 0 0 1 0 0
h3 0 0 0 0 1 0 0
h′

3 1 1 1 1 1 1 1
h4 1 1 0 1 0 0 0
h′

4 1 1 0 1 0 0 0
h5 1 1 1 1 0 0 0
h′

5 1 1 1 1 1 1 0

Fig. 3. (a) Cut-subtrees, denoted by dashed lines, in T̃r that satisfy properties (i′)
and (ii′). (b) Imperfect phylogenetic tree with two mutations for column i3. The two
edges on which mutations for column i3 occur are labeled i3. (c) The corresponding
H-1 IPPH solution for the entire genotype matrix M .
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is easy to see that there does not exist a pair of edges in T̃r such that properties
(i) and (ii) shown above are both satisfied. However, there exist two cut-subtrees,
shown in Figure 3a, that satisfy properties (i′) and (ii′). Having identified the
appropriate cut-subtrees, we can now go back to the original tree Tr and deter-
mine the phase of Ms. An imperfect phylogenetic tree with two mutations for
column i3 and the corresponding H-1 IPPH solution are shown in Figures 3b and
3c, respectively, where haplotype mates are now labeled hi and h′

i. Note that
the H-1 IPPH solution is unique. In terms of pairing the rows in M ′

r and M ′
s,

the H-1 IPPH solution corresponds to pairing s2 with r′2 (and hence s′2 with r2)
and s3 with r3 (and hence s′3 with r′3). In this example, the imperfect phylogeny
for M ′ is binary. In general, an imperfect phylogeny for M ′ may still contain
vertices of degree greater than 3.

2.2 Algorithm for Finding Appropriate Cut-Subtrees in Non-binary
Trees for a Single Homoplasy Event

Suppose that T̃r is non-binary. In what follows, the reader should refer to Figure 4
for illustration of notation. If we remove two existing edges E1 and E2 from T̃r,
then that defines two non-adjacent subtrees T1 and T2. Our goal is to check
whether we can choose a set of edges from e1, . . . , ep to create a cut-subtree τ1
and, similarly, choose a set of edges from ep+1, . . . , eq to create a cut-subtree τ2,
such that properties (i′) and (ii′) in Section 2.1 are satisfied. Below we provide
a polynomial-time algorithm for finding all possible such pairs of disjoint cut-
subtrees, when they exist.

Our algorithm is based on coloring a graph G whose q vertices v1, . . . , vq

are in one-to-one correspondence with e1, . . . , eq; vi in G is related to ei in T̃r.
Edges in G will be defined shortly. A coloring procedure may terminate before
reaching the end, if inconsistency is encountered; i.e., if a vertex is assigned more
than one color. If G is colored consistently, the final coloring of the vertices in
G determines which of e1, . . . , eq should be chosen to construct the desired cut-
subtrees τ1 and τ2. In our convention, if vertex vi is colored “red,” then it means
we should “take” ei. If it is colored “black,” then we should “not take” ei.

We use L(T ) to denote the set of leaf labels in T . More generally, L(T ) is a
multiset when we consider trees with duplicate labels. Let X |Y be the bipartition
of L(T̃s) defined by the single interior edge in T̃s, and recall that T̃r and T̃s carry
duplicate leaf labels. Our algorithm is as follows.

1. Choose a pair of existing edges E1, E2 in T̃r that has not been tried so far.
If no such choice remains, terminate the algorithm.

2. Remove E1, E2 to partition T̃r into three subtrees. Let T1, T2 be the two non-
adjacent subtrees as depicted in Figure 4. If L(T1) ∪ L(T2) contains either
X or Y , or both, create q vertices v1, . . . , vq, and go to next step. If not, go
back to step 1; no solution is possible for the current choice of E1, E2.

3. For each Z ∈ {X, Y } satisfying Z ⊂ L(T1) ∪ L(T2), check whether the
following conditions hold:
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E1 E2

tp+1

tp+2

tq

t1
t2

tp

e1

ep

e2

ep+1

eq

ep+2

T1
T̃r

T2

Fig. 4. Schematic depiction of T̃r. Here, ti denote subtrees and the big circle in the
center schematically represents the rest of T̃r.

(a) If x appears only once in Z, then there does not exist a tk in T1 or T2
such that L(tk) contains two xs.

(b) For every x that appears exactly once in Z, create an edge between vi

and vj if x ∈ L(ti) and x ∈ L(tj). Let GZ denote the resulting graph.
Then, every non-trivial connected component of GZ is bipartite1.

If no Z satisfies the above conditions, go back to step 1; there is no solution
for the current choice of E1, E2. Otherwise, pass GZ to the next step.

4. For each GZ passed, check whether it is possible to color the vertices in GZ

as describe below without encountering inconsistency.
(a) If x /∈ Z, find all tk such that x ∈ L(tk) and color vk black.
(b) If x occurs twice in Z, find all tk such that x ∈ L(tk) and color vk red.
(c) If x occurs only once in Z and there exists exactly one tk such that L(tk)

contains a single x, color vk red.
If no GZ admits consistent coloring, go back to step 1. Otherwise, pass
consistently colored GZ to the next step.

5. For each non-trivial connected component of GZ , see whether any of the
vertices has been colored. If so, color the remaining uncolored vertices, if
there are any, in that connected component to respect the bipartite structure
(i.e. red on one side and black on the other). If this is not possible, return
to step 1.

6. If there are k totally-uncolored non-trivial connected components of GZ ,
then there are 2k ways to color them consistently, and hence there are 2k

solutions for the current choice of E1, E2. Go back to step 1.

The above algorithm can be implemented to run in O(n4) time, where 2n is the
number of leaves.

2.3 Empirical Results

We implemented our H-1 IPPH algorithm in C++ and compared its performance
on simulated data with that of PHASE [20]. The input datasets were generated
as follows. We first used Hudson’s program MS [15] to generate homoplasy-
free haplotype datasets satisfying the 5% rule2 described in [4]. To introduce
1 If a non-trivial connected component is not bipartite, then it has an odd-length

cycle, which leads to inconsistent coloring.
2 The 5% rule is a biologically relevant restriction that every column in the haplotype

matrix has minor allele frequency ≥ 5%.
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Table 1. Comparison of our H-1 IPPH method with PHASE for genotype matrices of
size n × m. Shown here are average accuracy measures and average running time (on
a 2.8 GHz Pentium PC) per dataset, based on 100 datasets of each size. Our method
seems comparable to PHASE in accuracy, while being significantly faster than PHASE.

Our H-1 IPPH method PHASE
50×50 100×50 50×100 100×100 50×50 100×50 50×100 100×100

Standard error 0.005 0.005 0.006 0.003 0.006 0.002 0.007 0.001
Switch accuracy 0.999 0.999 1.000 1.000 0.998 0.999 0.999 1.000
% of misphased 2s 0.03% 0.03% 0.02% 0.01% 0.07% 0.02% 0.03% 0.01%
Running time 0.22s 0.41s 1.52s 3.09s 14.2s 27.7s 43.6s 85.8s

Table 2. Performance of our H-1 IPPH method in more detail. The number of datasets
shown is out of 100.

50×50 100×50 50×100 100×100
# of datasets admitting PPH solutions 20 19 16 15
# of datasets admitting H-1 IPPH solutions 80 81 84 85
(with a unique PPH solution for Mr) (80) (81) (84) (85)
Frequency of correctly identifying the homoplasy 95% 98% 96% 98%
column when M admits no PPH solution

a homoplasy event, we randomly chose two distinct edges (on which mutations
occur) in the underlying rooted genealogical tree of each haplotype dataset, with
the probability of choosing an edge being proportional to its length. This process
was repeated for each dataset until a homoplasy site satisfying the 5% rule got
generated. We then randomly inserted the so obtained homoplasy column into
the original haplotype matrix. Finally, a genotype matrix was created by pairing
row 2i with row 2i − 1 in the modified haplotype matrix.

Let GM denote the set of genotypes in dataset M with more than one het-
erozygous site. We used the following three measures of haplotype reconstruction
accuracy: (a) The standard error [20] is the ratio of the number of genotypes in
GM whose haplotypes are incorrectly inferred to the total number of genotypes
in GM . (b) For a genotype g in GM , the switch accuracy [16] of its inferred hap-
lotypes is defined as (h −w − 1)/(h − 1), where h is the number of heterozygous
sites in g and w is the number of switches between neighboring heterozygous sites
needed to transform the inferred haplotypes to the true haplotypes. The switch
accuracy averaged over the genotypes in GM defines the switch accuracy of the
entire inferred haplotype matrix M ′. (c) The last measure is the percentage of
misphased 2s with respect to the total number of 2s in GM .

Our simulation results are summarized in Table 1. For each size n×m, we used
100 simulated genotype matrices. As the table shows, our method is comparable
to PHASE in terms of accuracy, while being tens of times faster than PHASE.
As shown in Table 2, for each combination of n and m used, more than 80
out of 100 datasets did not admit PPH solutions. Every such a dataset had an
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H-1 IPPH solution with a unique PPH solution for the genotype matrix Mr,
in agreement with our assumption. Also, note that, for datasets with no PPH
solutions, our H-1 IPPH method correctly identified the homoplasy column (a
feature that PHASE does not have) with very high accuracy. This study shows
that our method is both practical and highly accurate.

3 IPPH with a Single Recombination Event

The case with exactly one single-crossover recombination event is similar in spirit
to the case of a single homoplasy event. Suppose that an n×m genotype matrix
M does not admit a PPH solution. If that is due to a single recombination event
with a breakpoint3 b somewhere between 1 and m, then the part to the left of b
and that to the right of b should each admit a PPH solution. In our approach, we
choose a recombination breakpoint b somewhere between 1 and m, and consider
partitioning M column-wise into two parts, one containing the columns to the
left of b and the other the columns to the right of b. We denote a partitioning
by M �−→ ML ⊕MR, with L (resp. R) denoting left (resp. right). Our algorithm
proceeds by trying all such partitions of M and checking whether each of ML

and MR admits a PPH solution, and, if so, whether the PPH solutions from
the two parts can be combined in a way consistent with there being a single
recombination event, i.e. a galled tree with one gall [11,10]. If these conditions
are satisfied by at least one partition of M , then we say that there exists a
solution to IPPH with a single recombination event.

3.1 R-1 IPPH When There Exist Unique PPH Solutions for Each
Side

Given PPH solutions M ′
L and M ′

R for ML and MR, respectively, the main ques-
tion that we need to ask is whether we can appropriately pair up the mates Li, L

′
i

in M ′
L with the mates Ri, R

′
i in M ′

R, such that there is a galled tree with one gall
for the combined data. If there are n genotypes in M , then in the worst case there
are 2n ways of doing the pairing. Similar to what we discussed in Section 2.1 for
the case of a single homoplasy event, we propose to solve this problem in the
following way: First, for all 1 ≤ i ≤ n, we set Li = L′

i = Ri = R′
i = xi, where xi

is a new leaf label. Then, we work with perfect phylogenies, not with haplotype
matrices, as described below.

Let T̃L and T̃R denote the re-labeled perfect phylogenies corresponding to
M ′

L and M ′
R, respectively. Then, what properties of T̃L and T̃R would imply

that there exists an R-1 IPPH solution? In a galled tree with exactly one gall,
whose recombination breakpoint is denoted b, the rooted tree τL to the left of
b and the rooted tree τR to the right of b are closely related. More precisely,
there exists a single tree rearrangement operation, called the subtree-prune-and-
regraft (SPR) operation, that one can perform on τL to transform it into τR,
or vice versa [1,13,18,19]. This implies that T̃L and T̃R cannot be two arbitrary
3 A breakpoint occurs between two sites.
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trees for there to be an R-1 IPPH solution. Rather, they, too, should be related
by an SPR-like operation. There is an important point that we should highlight
here. For SPR operations to be biologically meaningful, certain restrictions must
be imposed to avoid possible contradictions [18,19]. For example, time-ordering
of certain associated biological events must be obeyed. The reader should be
warned that, as there exists no fixed sense of time direction in unrooted trees,
performing SPR operations on them and drawing conclusions about evolutionary
histories, of which time is an essential component, may not be the right thing
to do. However, because we are working with the case of a single recombination
event, which involves a single SPR operation, it is always possible to root the
two unrooted trees involved to construct a consistent evolutionary history. To
recapitulate, there exists an R-1 IPPH solution if T̃L and T̃R are related by a
single SPR operation.

Determining whether two binary trees T̃L and T̃R are exactly one SPR oper-
ation away is equivalent to checking whether there exists a common cut-subtree
t in T̃L and T̃R such that T̃L \ t is identical to T̃R \ t. It is straightforward to
do this in polynomial time. It is important to note that, in general, perfect phy-
logenies that we need to compare may not be binary. When either one or both
of T̃L and T̃R are non-binary, to determine whether they are exactly one SPR
operation way, we need to check whether there exist a cut-subtree tL of T̃L and
a compatible4 cut-subtree tR of T̃R, such that T̃L \ tL is compatible with T̃R \ tR.
A brute-force way of checking the 1-SPR condition is as follows. As shown in
Figure 4, remove two edges E1 and E2 from T̃L to obtain two subtrees T1 and
T2. We need to find two cut-subtrees τ1 ⊆ T1 and τ2 ⊆ T2 so that we can prune
τ1 and regraft it next to τ2, or vice versa, and check whether the resulting tree
T̃ ′

L is compatible with T̃R. To do this, simply enumerate all possible ways of
generating cut-subtrees τ1 and τ2. After pruning and regrafting, test for com-
patibility. This simple method is feasible when there are not too many unrefined
vertices of large degree. We believe that there is a polynomial-time algorithm
for checking the 1-SPR condition, as well as a related, more complex, method
for solving the R-1 IPPH problem that runs in polynomial time.

3.2 An Example

Consider the genotype matrix shown on the left hand side of Figure 5. For every
partition M �→ ML ⊕ MR, we first need to check whether there exist PPH
solutions for ML and MR. For the particular partition shown on the right hand
side of Figure 5, there exists a unique PPH solution for each of ML and MR.
These PPH solutions M ′

L and M ′
R, and the corresponding the perfect phylogenies

TL and TR, respectively, are shown in Figure 6. After redefining Li = L′
i = Ri =

R′
i = xi, we obtain the trees T̃L and T̃R shown in Figure 7. Now, note that, T̃L

and T̃R contain a common cut-subtree t such that T̃L \ t is identical to T̃R \ t.
Hence, T̃L and T̃R can be related by a single SPR operation in which t gets

4 Two trees T1, T2 are said to be compatible if there exists a third tree that is a
refinement of both T1 and T2.
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M

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

g1 0 2 1 2 1 1 1 2 2 2
g2 2 2 1 1 2 1 2 2 1 1
g3 1 1 2 1 2 2 2 1 2 2
g4 2 1 2 2 1 2 1 1 2 0

�−→

ML

i1 i2 i3 i4 i5

g1 0 2 1 2 1
g2 2 2 1 1 2
g3 1 1 2 1 2
g4 2 1 2 2 1

⊕

MR

i6 i7 i8 i9 i10

g1 1 1 2 2 2
g2 1 2 2 1 1
g3 2 2 1 2 2
g4 2 1 1 2 0

Fig. 5. A partition of M into ML and MR

M ′
L

i1 i2 i3 i4 i5

L1 0 1 1 0 1
L′

1 0 0 1 1 1
L2 0 0 1 1 1
L′

2 1 1 1 1 0
L3 1 1 0 1 1
L′

3 1 1 1 1 0
L4 0 1 1 0 1
L′

4 1 1 0 1 1

M ′
R

i6 i7 i8 i9 i10

R1 1 1 0 1 1
R′

1 1 1 1 0 0
R2 1 1 0 1 1
R′

2 1 0 1 1 1
R3 1 0 1 1 1
R′

3 0 1 1 0 0
R4 1 1 1 1 0
R′

4 0 1 1 0 0
R3

R2

R4R′
1

R′
3

R′
4

L3

L′
3L′

1

L4

L2

L′
4

L′
2

L1

R1

R′
2

TR

TL

Fig. 6. Separate PPH solutions for ML and MR in Figure 5, and their corresponding
perfect phylogenies

T̃R

T̃L

x3

x2

x4x1

x3

x4

x3

x3x1

x4

x2

x4

x2

x1

x2

x1

M ′

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

h1 0 1 1 0 1 1 1 1 0 0
h′

1 0 0 1 1 1 1 1 0 1 1
h2 0 0 1 1 1 1 1 0 1 1
h′

2 1 1 1 1 0 1 0 1 1 1
h3 1 1 0 1 1 0 1 1 0 0
h′

3 1 1 1 1 0 1 0 1 1 1
h4 0 1 1 0 1 1 1 1 1 0
h′

4 1 1 0 1 1 0 1 1 0 0

Fig. 7. Re-labeled perfect phylogenies and an R-1 IPPH solution for the entire geno-
type matrix M in Figure 5. If the edges denoted by dashed lines are removed, then a
common 2-leaved subtree t labeled by x3 and x4 gets pruned, and T̃L \ t and T̃R \ t
become identical.

pruned and regrafted to transform T̃L into T̃R, or vice versa. Going back to TL

and TR with original leaf labels, it is then possible to conclude that L1 should
get paired with R′

1, L2 with R2, L3 with R′
3, and L4 with R4. The R-1 IPPH

solution just described is shown on the right hand side of Figure 7, where hi and
h′

i denote haplotype mates for genotype gi.
The partition shown in Figure 5 led to two binary trees. Other partitions do

not have this nice property, however. For instance, the partition that divides M
between columns 4 and 5 leads to a non-binary tree T̃L for the left part and
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a binary tree T̃R for the right part. There are several other possible partitions
such that each part admits a PPH solution; but, in fact, all such partitions lead
to the same R-1 IPPH solution shown in Figure 7.
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