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There are many important  phylogeny problems that 
depart from simple tree models: 

• Missing entries 
• Data generated by complex biology, such as 

recombination or recurrent mutation 
• Genotype (conflated) sequences, rather than 

simpler haplotype sequences 
!

 Most of these problems are NP-hard, although 
some elegant poly-time solutions exist (and 
are well-known) for simpler data.



Question
  Can Integer Programming efficiently solve 

these problems in practice on ranges of 
complex data of current interest in biology? 

!
We have recently developed ILPs for many such 

problems and intensively studied their 
performance (speed, size and biological 
utility). 
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In this talk I will first concentrate on  
ILP problems relating to networks caused by 
back mutation and recombination.  Then, if time  
permits, I will talk about RNA folding. 
!
We start with the Perfect-Phylogeny Model, which 
is the case when neither back mutation or  
recombination are allowed.



00000
1

2

4

3

510100

10000
01011

00010

01010

12345sites
Ancestral sequence

Extant sequences at the leaves

Site mutations on edges
The tree derives the set M:	
10100	
10000	
01011	
01010	
00010

Only one mutation per site	
allowed.

Starting Model: Perfect Phylogeny 
(infinite sites) model for binary sequences



 Classic NASC: Arrange the sequences in 
a matrix. Then (with no duplicate 
columns), the sequences can be 
generated on a unique perfect 
phylogeny if and only if no two columns 
(sites) contain all three binary pairs:  

                    0,1 and 1,0 and 1,1 
             This is the 3-Gamete Test.

When can a set of sequences be 
derived on a perfect phylogeny?



Each binary pair is called a gamete.  
!
 A pair of sites that has all three gametes is 
called incompatible. 



Problem MD: Missing Data 

 Given ternary sequences (0s, 1s, ?s), 
change the ?s to 0s and 1s in order to 
minimize the resulting number of 
incompatible pairs of sites. NP-hard. 

!



Simple ILP for the  
Missing Data problem

Create a binary variable Y(i,p) for a ? in cell (i,p), 
indicating whether the cell will be set to 0 or to 1.  

For each pair of sites p, q that could be made 
incompatible, let D(p,q)  be the set of missing or 
deficient gametes in site pair p,q. 

!
  For each gamete a,b in D(p,q), create the binary 

variable B(p,q,a,b),   
    and create inequalities to set it to 1 if the Y variables 

for cells for sites p,q are set so that gamete a,b is 
created in some row for sites p,q.



Example

D(p,q) = {1,1;  0,1}
p q	
----	
0 0	
? 1	
1 0	
? ?	
? 0	
0 ?

To set the B variables, the ILP will have inequalities 	
for each a,b in D(p,q), one for each row where a,b could be created	
at site p,q.	
!
For example, for a,b = 1,1 the ILP has:	
Y(2,p) <= B(p,q,1,1)      for row 2	
Y(4,p) + Y(4,q) -- B(p,q,1,1) <= 1    for row 4	



Example continued

D(p,q) = {1,1;  0,1}
p q	
----	
0 0	
? 1	
1 0	
? ?	
? 0	
0 ? !

For a,b = 0,1 the ILP has:	
!
Y(2,p) + B(p,q,0,1) => 1      for row 2	
Y(4,q) -- Y(4,p) -- B(p,q,0,1) <= 0    for row 4	
Y(6,q) -- B(p,q,0,1) <= 0    for row 6	



The ILP also has a  variable C(p,q) which is set to 1 if	
 every gamete in D(p,q) is created at site-pair p,q.

So, C(p,q) is set to 1 if (but not only if) the Y variables for sites p, q	
(missing entries in columns p, q) are 	
set so that sites p and q become incompatible.

B(p, q, 1, 1) + B(p, q, 0, 1) -- C(p,q) <= 1

In the example:

If M is an n by m matrix, then we have at most nm Y variables;  
2m2  B variables; m2/2 C variables; and O(nm2) inequalities in  
worst-case.



Finally, we have the objective function:

Where P is the set of site-pairs that could be made to be	
incompatible.   	
!
Or, we could require that the sum of the C(p,q) variables 	
be zero, and then there is a way to set the missing values	
to form a Perfect Phylogeny, if and only if the ILP is feasible. 	

C(p, q)Σ
(p,q) in P

Minimize
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Empirically these ILPs solve very quickly, in fractions of 
seconds or seconds for n and m up to hundreds of rows  
and columns.

The software for to create the ILP formulations was written 
in 2006, but is paying dividends now.
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Persistent and Dollo: 
Deviations from Perfect Phylogy

• Extends the Perfect Phylogeny Model by  
allowing each site to revert from state 1 
to state 0. 

• Persistent Phylogeny: Each site mutates 
back to 0, at most once in the tree.  So 
this is like the infinite sites model in for 
both forward and backward mutations. 

• Dollo Model: Forward mutation once, but 
backwards any number of times.
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A range of possibilities

• So given binary data either it can be 
generated on a Perfect Phylogeny, or a 
Galled-Tree, or a Persistent Phylogeny, 
or a Dollo Phylogeny, or none of the 
above - i.e., a more general network is 
needed. 

• Given binary data, how do we determine 
what case we have?
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The Dollo model was introduced more than 100 years 
ago, but the persistent phylogeny model was only 
introduced recently, by T. Przytycka and D. Durand,  
has been studied intensively by P. Bonizzoni  
and co-authors.

The Persistent Phylogeny Problem: Given M, determine 
if M can be derived on a Persistent Phylogeny. 
!
The question of whether the Persistent Phylogeny Problem 
is NP-hard is open.  So, we take an ILP approach.
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The Persistent Phylogeny 
Problem

• The key to the ILP for it, is the following 
formalism developed by P. Bonizzoni et 
al. in 2013.
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 Definition: Given a binary matrix M, the extended 
matrix Me contains two columns, j1 and j2, for 
each column j in M. !
!
Column j1 of Me is derived from column j in M!
by replacing every occurrence of `0' in column j of 
M with `?' in column j1 of Me. !
!
Column j2 of Me is derived from column j1 by 
replacing every occurrence of `1' in j1 with `0’.!
!
So a 0 in j becomes ??, and a 1 becomes 10.
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Completing Me

A completion M’e of Me changes each  
?’ to either 0 or 1, with the requirement 
that for every pair of sites (j1, j2) in 
Me that originated from an entry of 
value 0 in cell (i,j) in M, cells (i, j1) and 
(i, j2) in M’e must get the same value, 
i.e., they either get 0,0 or 1,1.
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M            Me          M’e!
1110   101010??   10101000!
0111   ??101010   11101010!
0000   ????????   00000000!
1010   10??10??   10001000!
1100   1010????   10101100!
1111   10101010   10101010

Extension Me and Completion M’e of M

For character j in M, character j1 in Me is 
``a mutation of character j has occurred”,  
and character j2 is ``a back mutation of character j 
has occurred”. 
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Theorem of Bonizzoni et al.

M can be represented by a Persistent Phylogeny if and 
only if there is a completion M’e of Me that is a Perfect 
Phylogeny. And if so, the perfect phylogeny for M’e is 
a Persistent Phylogeny for M.

This theorem shows the way to formulate the ILP for 
the Persistent Phylogeny problem.
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The ILP 
Given M, we form Me and treat that as 
input to problem MD, but for every 
pair of sites (j1, j2) in Me that originated 
from an entry of value 0 in cell (i, j) in M, 
we add the constraint: Y(i,j1) = Y(i,j2). 
!
Then the ILP has optimal value zero if 
and only if M has a persistent phylogeny. 



Problems related to M1
• Site-Removal Problem for  complete data: 

Remove the minimum number of sites from the 
data, so that no incompatibilities remain. This is a 
common approach to incompatible data in 
phylogenetics. NP-hard.  

•  Site-Removal Problem with missing data (S1): 
Impute values for the missing entries to minimize 
the solution to the resulting Site-Removal 
Problem for complete data. 



ILP for S1 - a simple extension to 
M1

• For each site i,  let D(i) be a variable set 
to 1 if and only if site i is removed. 

• For each site-pair p,q in P, add the 
inequality  D(p) + D(q) -- C(p,q) => 0  

   to the M1 formulation. 
  The objective function is now  
  Minimize Sum  D(i)          



Genotypes and Haplotypes
Each individual has two “copies” of each 

chromosome.  
At each site, each chromosome has one of two 

alleles (states) denoted by 0 and 1 (motivated 
by SNPs)

0  1  1  1  0  0  1  1  0 

1  1  0  1  0  0  1  0  0

2  1  2  1  0  0  1  2  0

Two haplotypes per individual

Genotype for the individual
Merge the haplotypes

More Complex Problems



Haplotyping (Phasing) Problem

• Biological Problem: For disease association studies, 
haplotype data is more valuable than genotype data, 
but haplotype data is hard to collect. Genotype data is 
easy to collect. 
!

• Computational Problem: Given a set of n genotypes, 
determine the original set of n haplotype pairs that 
generated the n genotypes.  This is hopeless without 
a genetic model or objective function that reflects the 
model.  Many such models have been studied.



PPH model and objective

   Given a set of genotypes, find (if possible) an explaining 
set of haplotypes (one pair for each genotype) that 
passes the ``four gamete test”. 

!
 The PPH problem can be solved in linear time by a very 

complex algorithm. But it is simple to formulate an ILP 
    for the PPH problem. 



A Natural Extension of the PPH model

  MinIncompat Problem (HM1): Haplotype to minimize the resulting 
number of incompatible pairs of sites. 

!
NP-hard problem, but solved efficiently in practice by an ILP which 

is a simple modification of the ILP for problem M1. 
!
The MinIncompat ILP becomes an ILP for PPH with the addition of a 

constraint that requires the solution to have value 0.  The 
resulting ILP is feasible if and only if there is a PPH solution. 

!
!
 


