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Abstract. For many important complex traits, Genome Wide Associ-
ation Studies (GWAS) have only recovered a small proportion of the
variance in disease prevalence known to be caused by genetics. The most
common explanation for this is the presence of multiple rare mutations
that cannot be identified in GWAS due to a lack of statistical power. Such
rare mutations may be concentrated in relatively few genes, as is the case
for many known Mendelian diseases, where the mutations are often com-
pound heterozygous (CH), defined below. Due to the multiple mutations,
each of which contributes little by itself to the prevalence of the disease,
GWAS also lacks power to identify genes contributing to a CH-trait.
In this paper, we address the problem of finding genes that are causal
for CH-traits, by introducing a discrete optimization problem, called the
Phenotypic Distance Problem. We show that it can be efficiently solved
on realistic-size simulated CH-data by using integer linear programming
(ILP). The empirical results strongly validate this approach.

1 Biological Background and CH-Model

Identifying specific genetic variants that are associated with disease risk or other
measurable phenotypes has been one of the major of objectives of modern human
genetics. Today, the most commonly used technique is association mapping. As-
sociation mapping tries to detect correlations between genotypes and phenotypes
in random population samples, or in case-control samples. Most commonly, asso-
ciation mapping is performed using so-called Genome Wide Association Studies
(GWAS), in which each variable position in the genome, called a Single Nu-
cleotide Polymorphism (SNP), is tested independently. There have been many
successes using GWAS, but for many of the important complex traits, such as
obesity, Type 2 Diabetes (T2D), cardio-vascular diseases, and many psychiatric
disorders, GWAS have only recovered a minor proportion of the variance in dis-
ease prevalence known to be caused by genetics [12]. This problems is known as
the ‘missing heritability’ problem [8].

Different explanation have been proposed for missing heritability, including
epigentic factors, gene-environment interactions, and epistasis [12, 15]. However,
the most common explanation is the presence of multiple rare mutations that
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could not be identified in GWAS due to a lack of statistical power [16]. Such
rare mutations may be concentrated in relatively few genes affecting the trait
in question. This is the case for many Mendelian diseases in which multiple
mutations, sometimes hundreds or even thousands of rare mutations in the same
gene, or genomic region, may contribute to the disease [2, 11, 9]. There may be
a similar concentration of rare mutations in relatively few genes in complex
diseases as well. If so, it might be possible to identify genes affecting the trait
even though each individual mutation in the gene contributes very little to the
population level variance. This insight has been one of the main motivations
for the development of a number of different statistical methods for combining
information from multiple mutations in the same gene, including SKAT [13], C-
alpha [10], KBAC [6] and their derivatives. However, in many cases these tests
have not been able to recover much more of the genetic variance than standard
tests [5, 1, 7]. In this paper, we address this problem using a discrete optimization
method rather than a purely statistical approach.

Compound Heterozygous traits Mendelian diseases caused by multiple mutations
often have a mode of inheritance in which individuals are affected by the dis-
ease if they are homozygous or compound heterozygous for disease mutations.
A compound heterozygous (CH) individual is an individual who carries disease-
causing mutations in both copies (homologs) of their DNA, but not necessarily
in the same exact position on their respective homologs. In fact, the two muta-
tions rarely occur at the same position (hence each such site is heterozygous),
although they typically will fall in the same gene. If both the copy of the gene
received from the father and from the mother carry a disease mutation (although
at different positions in the gene), the offspring will have a greater risk for the
disease, relative to individuals without those mutations. Examples of compound
heterozygous traits include phenylketonuria and Tay-Sachs disease.

Existing GWAS efforts have generally had difficulty identifying causal genes
for CH-traits because the effect of each mutation is only observed when it occurs
in combination with another mutation–by itself, each mutation may contribute
very little to the disease. To address this problem, we propose modeling the
phenomena of CH traits in terms of a discrete optimization model that we call
phenotypic distance (PD) (defined in detail in below).

1.1 A formal model of a CH-trait at a single gene

Here we give a more formal definition of a CH trait at a single gene. The data for
a single gene g consists of n pairs of binary vectors of length m each (the SNP
haplotype pairs) from the two homologs of the gene. The two haplotypes in the
i’th pair are denoted Hi,1, Hi,2 respectively; and jointly, the i’th haplotype pair
is denoted Hi. The matrix of the n haplotype pairs is denoted H. For example,
Table 1 shows data for n = 2 and m = 7.

We let binary vectorXg denote which of them sites are causal (i.e., contribute
to the CH-trait), and which are not. That is, Xg(c) = 1 if site c is causal, and
Xg(c) = 0 otherwise. Then, given Xg and H, we define
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Xg : 0 1 1 0 0 1 1
H1

H1,1 : 1 0 1 1 1 0 0
H1,2 : 1 1 0 0 1 1 0

H2

H2,1 : 1 0 0 1 1 0 0
H2,2 : 0 1 1 0 1 0 1

Table 1. Vector Xg and two haplotype pairs. CH(1) is 1, and CH(2) is 0.

CH(i) = [
∨
c

(Xg(c) ∧Hi,1(c))] ∧ [
∨
c

(Xg(c) ∧Hi,2(c))], (1)

where Hi,1(c) and Hi,2(c) are the values of Hi,1 and Hi,2 at site c. So, given Xg

and H, CH(i) will have value 1 if and only if there is a site c with Xg(c) =
1, where site c in haplotype Hi,1 also has value 1; and there is also a site c′

(possibly c) with Xg(c
′) = 1, where site c′ in haplotype Hi,2 also has value 1

(see Table 1). We let CH denote the vector of length n, containing the values
CH(1), ..., CH(n). If CH(i) = 1, we say that individual i is CH, or is a CH-
individual.

Hidden Phenotypic Distance For a given CH-trait, we cannot observe which
individuals are CH, although we can determine which individuals have a phe-
notype (say disease) that is hypothesized to be associated with the CH-trait.
Those individuals are the cases, and the others are the the controls. So, for each
individual i, the input data contains a single bit, T (i), (the phenotype), which
determines whether the individual has been classified as a case (coded 1), or as
a control (coded 0). We let T denote the vector of the n phenotypes.

Definition Given vectors T and CH (which is a function of H and Xg) at a gene
g, the hidden phenotypic distance, denoted HPD(CH, T ), is equal to the Hamming
distance between the vectors CH and T . The Hamming distance is the number
of positions where the values in the two vectors disagree. For example, with the
data in Table 1, if T (1) and T (2) are both one, the Hamming distance between
CH and T is one.

Thus, the hidden phenotypic distance at g reflects how well the data at gene
g fits the CH-model. The word “hidden” is used because we generally don’t
know vector CH (or Xg), and so HPD(CH, T ) can’t be determined from the
known data, H and T . But, the hidden phenotypic distance can be determined
in simulated data, where Xg is known.
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2 The Phenotypic Distance Problem

The fact that vectors Xg and CH are unknown in real data, but a classification
of the individuals into cases and controls is known (given as vector T ), leads
to the problem of estimating Xg (and CH). Informally, the phenotypic distance
problem is to estimate vector Xg, given matrix H and vector T , so that the
implied CH vector matches the phenotype vector T as closely as possible. More
formally, for each SNP site c, we associate a variable X̃(c) that can be assigned

either value 0 or 1; and let X̃ denote the vector of those m values. Then, given
H and X̃, the CH model is reflected by the values of variables C̃H(i), for i from
1 to n, defined as:

C̃H(i) = [
∨
c

(X̃(c) ∧Hi,1(c))] ∧ [
∨
c

(X̃(c) ∧Hi,2(c))]. (2)

Vector X̃ is an estimate of the unknown Xg, and indicates which of the m sites
in the gene might contribute to (or be causal for) the CH-trait. Compare this to

equation 1. We let C̃H denote the vector of all the C̃H(i) values.

Definition Given the haplotype matrix H, and a phenotype vector T , the Phe-
notypic Distance Problem is the problem of setting the values of vector X̃ to
minimize the Hamming distance between the resulting vector C̃H and the phe-
notype vector T . We call that Hamming distance the Phenotypic Distance for
H and T , and write it PD(H,T ).

Intuitively, small phenotypic distance at g (relative to the number of SNPs, and
compared to other genes) suggests the hypothesis that gene g is causal for the

CH-trait, and that the sites with value 1 in X̃ are causal sites.

Computing Phenotypic Distance When the number of sites, m, is small, it is
feasible to explicitly enumerate all 2m subsets of sites, and for each subset S, set
the value of X̃(c) to 1 if and only if site c is in S. Finding the Hamming distance

between each resulting vector C̃H and vector T solves the Phenotypic Distance
Problem. However, this approach is infeasible for many values of m that are of
realistic biological interest. For example, there are genes of interest with more
than two hundred sites, and we cannot test 2200 possible values for X̃. Further,
Yufeng Wu has proved that the problem of computing the Phenotypic Distance
is NP-hard [14]. For that reason, we have developed and explored an approach
based on integer linear programming (ILP).

In the next section, we discuss the formulation and solution of the Phenotypic
Distance Problem through the use of ILP. Extensive testing of simulated data
with up to n = 4000 haplotype pairs and m > 200 sites, shows that this approach
is convincingly effective, i.e., both fast and accurate. Moreover, the Phenotypic
distance can be used to effectively distinguish genes that are likely causal for the
CH-trait, from genes that are not.
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2.1 An ILP Formulation for the Phenotypic Distance Problem

Definition For each haplotype pair Hi, the two entries Hi,1(c) and Hi,2(c) in a
column c are called type 0 if they are 0,0; type 1 if they are 0,1; type 2 if they
are 1,0, and type 3 if they are 1,1. In other words, the type of the two bits is
determined by considering them as a binary number, reading top to bottom.
Note that the type of a column is relative to Hi, so the same column can have
a different type for two different values of i.

The ILP Variables

Overloading symbols a bit, for each column c, we will use the variable X̃(c) (from
the Phenotypic Distance problem) as a binary ILP variable. Then, the value of

X̃(c) in an optimal solution to the ILP formulation will be interpreted as the

value of X̃(c) in the Phenotypic Distance Problem. Similarly, for each haplotype

pair Hi, we will use the variable C̃H(i) (from the Phenotypic Distance problem)
as a binary ILP variable; it’s value in an optimal solution to the ILP formulation
will be interpreted as its value in the Phenotypic Distance problem. There will
also be two binary ILP variables Zi,1 and Zi,2 for each Hi ∈ H1, where H1 is the
set of Hi pairs with T (i) = 1; similarly H0 is the set of Hi pairs with T (i) = 0.
Variables Zi,1 and Zi,2 have a technical use in the ILP, and will be discussed
next. A binary ILP variable is restricted to have only value 0 or 1.

The ILP Inequalities

For each haplotype pair Hi ∈ H1, the ILP formulation for the Phenotypic Dis-
tance will have the following inequalities:

C̃H(i)−
∑

c is type 2 or 3

X̃(c) ≤ 0

C̃H(i)−
∑

c is type 1 or 3

X̃(c) ≤ 0

The first inequality ensures that for any Hi ∈ H1, C̃H(i) can be set to 1 only

if some X̃(c) is set to 1 for a column c where Hi,1(c) = 1. The second inequality

says the similar thing for C̃H(i) and Hi,2(c). So, for any Hi ∈ H1, C̃H(i) will

be set to 1 only when the values of X̃ and Hi satisfy equation 2.
The converse, that for Hi ∈ H1, C̃H(i) will be set to 1 if equation 2 is

satisfied, will be enforced through the objective function that will be defined
below. That is, the objective is to minimize the sum of several terms, one of
which is −

∑
Hi∈H1 C̃H(i), so in any optimal solution to the ILP formation for

the Phenotypic Distance Problem, any C̃H(i) ∈ H1 will be set to 1 unless doing
so violates one of the two inequalities above. The result is that in an optimal
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ILP solution, (|H1|−
∑
Hi∈H1 C̃H(i)) is the number of haplotype pairs Hi where

T (i) = 1 but C̃H(i) is set to 0.

Now we consider the inequalities for a haplotype pair Hi ∈ H0. Let Ai be the
number of type 2 or type 3 columns in Hi, and let Bi be the number of type 1
or type 3 columns in Hi. For each haplotype pair Hi ∈ H0, the ILP formulation
will have the three inequalities:∑

c is type 2 or 3

X̃(c)− |Ai|Zi,1 ≤ 0

∑
c is type 1 or 3

X̃(c)− |Bi|Zi,2 ≤ 0

Zi,1 + Zi,2 − C̃H(i) ≤ 1

The first inequality ensures that Zi,1 will be set to 1 if there is a column c

where X̃(c) is set to 1 and Hi,1(c) = 1. The second inequality ensures that Zi,2
will be set to 1 if there is a column c where X̃(c) is set to 1 and Hi,2(c) = 1.

The third inequality ensures that C̃H(i) will be set to 1 if both Zi,1 and Zi,2 are
set to 1.

The converse, that for Hi ∈ H0, C̃H(i) will be set to 1 only if those in-
equalities are satisfied, will be enforced through the objective function. That is,
the objective function has the term +

∑
Hi∈H0 C̃H(i), and since the objective

is a minimization, any C̃H(i) ∈ H0 will be set to 0 unless doing so violates one
of the three inequalities above. The result is that in an optimal ILP solution,∑
Hi∈H0 C̃H(i) is the number of Hi pairs where T (i) = 0, but C̃H(i) is set to 1.
It follows that in an optimal ILP solution, the Hamming Distance between

C̃H and T is (|H1|−
∑
Hi∈H1 C̃H(i))+

∑
Hi∈H0 C̃H(i). So, the ILP formulation

optimizes the objective function

Minimize(|H1| −
∑

Hi∈H1

C̃H(i)) +
∑

Hi∈H0

C̃H(i),

and hence the optimal solution has value exactly PD(H,T ). The formulation has
at most 3n+m variables and at most 3n inequalities, and so has modest size.

3 Simulated Data

The ILP formulation was extensively tested on simulated data under a range
of biological assumptions and choices of parameters. Here we describe how data
was generated to model DNA with CH-traits.

Realistic simulations of genetic data from case-control studies are compli-
cated by the fact that the patterns of allele frequencies in different SNPs are
correlated, with a complex structure that depends on the specifics of the popu-
lation history (see e.g. [4]). To simulate realistic data for a single gene, we use
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the program MS [3], which uses an explicit population genetic model to simu-
late data from multiple individuals sampled from a population. The parameters
specified to MS are: s (segsites), the number of SNP sites; r, the population re-
combination rate (a parameter that determines the degree of correlation among
SNPs); and N (nsam), the MS sample size.

Population samples created by MS are then processed to produce data mim-
icking case-control samples from a typical association mapping study using a
disease model of CH-traits. The parameters specified are pp, the population
prevalence of the phenotype (disease) of interest; a, the proportion of cases de-
sired in the case-control sample (often 0.5); α, the disease prevalence among in-
dividuals who are CH; β, the disease prevalence among individuals who are not
CH; and n ≤ N , the number of individuals in the case-control sample (n ≤ N).

A case-control sample for a single gene g is created from the MS output in four
steps: (1) First each of the SNP sites is given a value of 0. Then (2) an iterative
algorithm determines which SNPs to declare as causative (and given value 1)
until the proportion of individuals with the phenotype is equal to or larger than
the desired population prevalence (pp). In more detail, at each iteration, a SNP
site with value 0 is chosen uniformly at random to be switched from 0 to 1; then
equation 1 is applied to determine the current vector CH and NCH , the number
of individuals that are now CH. The process stops when N × pp ≤ α ×NCH +
β × (1 − NCH). This yields the vector Xg, and the final vector CH. (3) Each
individual is then assigned to be a case with probability α if the individual is CH,
and with probability β otherwise. This yields the vector T . Notice that unless
α = 1 and β = 0, T will likely not be equal to CH, and so the data will contain
false positives and false negatives. (4) A sample of n individuals is randomly
chosen from the N individuals. For case-control data, na and n(1 − a) cases
and controls, respectively, are randomly chosen. If these specifications cannot
be satisfied with this sample, it is rejected. The advantage of this method is
that it can simulate realistic case-control data, while controlling the relative risk
(αβ ) and the phenotype prevalence in the population. The phenotype (disease)
prevalence is often known for specific phenotype. However, the proportion of
causative mutations is typically not known, but is here controlled by α, β, and
pp.

Note that since the simulation creates the vectors Xg and CH, the hidden
Hamming distance between CH and T , HPD(CH,T), can be computed in the
simulation. However, neither Xg nor CH is part of the input to the Phenotypic
Distance Problem.

Genomic Data To simulate genomic data, we generate one dataset with a causal
gene, g, as discussed above. Let Tg be the phenotype vector created for gene
g. Tg represents the observed cases and controls. Then, we generate additional
datasets with the same number of haplotype pairs, but possibly differing numbers
of sites. These are the non-causal genes. For each non-causal gene g′, we replace
its phenotype vector T with Tg (from the chosen causal gene g). This models what
would be encountered in a true genomic context, i.e., the observed phenotypes
would be produced by the causal gene.
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Significance Tests and biological fidelity After computing PD(H,T ) for some gene,
we want to evaluate the statistical significance of that distance. There are several
natural approaches. In one approach, we repeatedly, and randomly, permute the
mapping of the phenotype values in T to the haplotype pairs in H. We use T p

to denote a permuted vector T . For each permutation, we compute PD(H,T p).
Then the p-value of PD(H,T ) is simply the number of permuted mappings where
PD(H,T p) ≤ PD(H,T ), divided by the total number of permuted mappings ex-
amined. The p-value can be computed both for simulated and real data.

When using simulated data, another reflection of the biological fidelity of an
ILP result is the Hamming Distance between the computed X̃ vector, and the
original vector Xg. This Hamming Distance is called the SNP-distance between

X̃ and Xg.

Tests in a genomic context As described above, data for one causal gene g is
generated, and we let Tg denote the phenotype vector at that gene. Many non-
causal genes are also generated, and we solve the Phenotypic Distance Problem
at each of those genes, using Tg in place of their generated phenotype vector.
For each gene, causal and non-causal, we permute Tg, creating T p, and solve
the Phenotypic Distance Problem at the gene, using T p. What we expect is
that the values PD(H,T pg ) and PD(H,Tg) will be very similar at the non-causal
genes, but PD(H,T pg ) will be significantly larger than PD(H,Tg) at the causal
gene. Hence the p-value at a causal gene will be significantly smaller than at a
non-causal gene. Also, we expect that PD(H,Tg)/(number of SNPs in gene g)
will be significantly lower when g is the causal gene than when g is a non-causal
gene. These difference allow us to distinguish the causal gene from the rest of
the set.

4 The Most Striking and Positive Empirical Results

Empirical testing has shown that modeling CH-traits using the concept of phe-
notypic distance is very effective, and that the phenotypic distance problem can
be solved convincingly fast in practice, by integer linear programming.

The most striking computational result is how quickly phenotypic distance
can be computed via integer linear programming, particularly at causal genes,
compared to the time needed for explicit enumeration and testing of all possible
values for the vector X̃. For example, Table 2 shows that for every simulated
causal gene with 4000 haplotype pairs and more than 200 sites, the ILP always
finds the phenotypic distance in under three seconds (running GUROBI 6.0 on
a 2.3 GH Macbook Pro laptop with 4 processors).

A related significant empirical result is that the time used to compute PD(H,Tg)
(via the ILP), is consistently less, and often overwhelmingly less, than the time
used to compute PD(H,T pg ), i.e., when the phenotype vector is permuted. In
those cases, the time needed is typically more than ten times that needed for the
non-permuted vector. In the context of computing p-values at non-causal genes,
the time can be reduced as detailed in Section 4.1.
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Biological Fidelity With respect to the fidelity of the phenotypic distance compu-
tations, the most striking empirical results are that at a causal gene g, PD(H,Tg)
is typically very close, and often equal, to HPD(CH, Tg) (which we know in simu-
lated data); and that there is typically a very large difference between PD(H,Tg)
and PD(H,T pg ). See Table 3. At a non-causal gene g′, vector Tg acts like a random
phenotype vector, so that the values of PD(H,T pg ) at g′ are typically close to n/2
(when there is an equal number of cases and controls in T ), which is a value

obtainable by setting X̃ to the all-zero vector (or in some cases the all-1 vector).

Such settings of X̃ have no biological meaning, illustrating that essentially no
structural relationship between T pg and CH remains at a non-causal gene. In the
genomic context, this means that we can easily distinguish a causal gene from
non-causal genes, and it means that p-values computed at non-causal genes are
much larger than at causal genes (where the p-value is essentially zero).

An additional striking empirical result is that the observed SNP-distance is
typically (but not always) lower when the input T is used, compared to when T p

is used, and is lower at causal genes than at non-causal genes. These empirical
results (the large differences between PD(H,T ) and PD(H,T p), the differences
in computation times, and differences in SNP-distances) are very strong valida-
tions that the Phenotypic Distance Problem does reflect the CH-model used to
generate the data.

hp no. sites HPD PD case, con secs

4000 241 933 919 2000, 2000 1.27
4000 223 776 771 2000, 2000 1.71
4000 264 890 859 2000, 2000 1.72
4000 218 874 868 2000, 2000 0.25
4000 244 877 870 2000, 2000 1.58
4000 253 871 859 2000, 2000 2.25
4000 229 841 826 2000, 2000 2.49
4000 250 871 864 2000, 2000 0.40
4000 255 807 794 2000, 2000 1.54
4000 237 885 870 2000, 2000 1.60

Table 2. The first ten of 50 datasets generated to be causal genes, as explained in
Section 3. In these simulations, the parameters of MS were N = 40,000 individuals, s
= 400 sites, and recombination parameter of 20 (specifically, the call was: ms 40000
50 -s 400 -r 20 1000). Then, simulated CH data was created with parameters pp = .2,
α = .9, β = .1, and n = 4000. Each resulting dataset has 4000 haplotype pairs (hp),
with an equal number of cases and controls, and more than 200 sites in each dataset.
The column labeled HPD shows hidden phenotypic distance between CH and T , and
the column labeled PD shows PD(H,T p) for that dataset. The time to compute the
phenotypic distance was less than three seconds in each dataset. The forty datasets
not shown are statistically similar to these ten.
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4.1 Speeding Up the Computations for Non-Causal Genes and
Permuted Data

ILP solvers solve a minimization problem by alternately focusing on finding
better solutions (i.e., reducing the value, ub, of the best feasible solution at hand),
and by finding better lower bounds on the value of an optimal ILP solution, i.e.,
by producing a number lb, where it is guaranteed that the optimal ILP solution
has value at least lb. Therefore, when computing p-values, at any point during
the computation of PD(H,T p), it is guaranteed that lb ≤ PD(H,T p) ≤ ub, for
the current values of lb and ub. In fact, the ILP solver only determines that
PD(H,T p) has been found when it has computed values of lb and ub that are
equal.

The common, empirically observed phenomena of ILP solvers, is that they
fairly quickly compute a ub that is equal or very close to the optimal solution, in
this case PD(H,T p). The majority of the computation time is taken by computing
a matching lb. In our simulations, the phenotypic distance at causal genes is
significantly lower than the phenotypic distance at non-causal genes, so that even
the computed lb at a non-causal gene quickly exceeds the phenotypic distance
at the causal gene. Since the phenotypic distance at a causal gene is computed
very rapidly, if the computation of a phenotypic distance at a gene (which we do
not know is causal or non-causal) takes significant time, we can conclude that
it is non-causal, or we can terminate the computation and use the computed
ub in place of the actual phenotypic distance. In our genomic simulations, we
use several conditions to terminate early. Table 3 shows that this strategy works
exceedingly well; the computed lb values at non-causal genes are significantly
larger than the phenotypic distance at the causal gene, and the computed ub is
close to the optimal for that problem instance. Hence, in the context of a GWAS,
the computation at any gene will take a bounded amount of time (limited to
three minutes in our simulations).

In the context of computing p-values at a causal locus g, where PD(H,Tg) has
been computed, any computation of PD(H,T pg ) can be terminated when lb for
the permuted data is larger than PD(H,T pg ). Moreover, experimentation shows
that at that point, the computed ub value is almost always equal to PD(H,T p).
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