
Integer Programming for NP-
hard Phylogenetic (and

Population- Genetic)
Problems

D. Gusfield

Isaac Newton Institute

September 4, 2007

Phylogeny problems often
have data with

> Missing entries

> Homoplasy

> Genotype (conflated) sequences, rather than
simpler haplotype sequences

 Most of these problems are NP-hard, although
some elegant poly-time solutions exist (and
are well-known) for special cases.

Question

 Can Integer Programming efficiently solve
these problems in practice on useful ranges
of data? Clearly not genomic or tree-of-life
scale.

 We have recently developed ILPs for over
fifteen such problems and intensively studied
their performance (speed, size and biological
utility). We discuss five related problems in
this talk.

00000

1

2

4

3

510100

10000
01011

00010

01010

12345sites
Ancestral sequence

Extant sequences at the leaves

Site mutations on edges
The tree derives the set M:
10100
10000
01011
01010
00010

Only one mutation per site
allowed.

Starting Model: Compatibility,
Perfect Phylogeny, with binary

sequences

 Classic NASC: A set of sequences with
no duplicate columns can be generated
on a unique perfect phylogeny if and
only if no two columns (sites) contain all
four binary pairs (gametes):

 0,0 and 0,1 and 1,0 and 1,1

 This is the 4-Gamete or Compatibility Test

Everyone here knows

And

The set of splits of a tree uniquely
determine the tree.

 A pair of sites that has all four binary pairs is called
 incompatible, otherwise is called compatible.

For M of dimension n by m, the existence of a
perfect phylogeny, or the test for pairwise compatibility
for M, can be tested in O(nm) time and a
tree built in that time, if there is one.

Problem M1: Perfect
Phylogeny with Missing Data

 Given binary sequences M with some ? entries, change
each ? to 0 or 1 in order to minimize the resulting
number of incompatible pairs of sites.

 Special Case (Existence Problem):
 Determine if the ?s can be set to 0, 1so that there are

no resulting incompatibilities.
NP-hard in general, but if the root of the required tree is
specified, then the problem has an elegent poly-time
solution (Pe’er, Sharan, Shamir).

Simple ILP for Problem M1

If cell (i,p) in M has a ?, create a binary variable Y(i,p)
indicating whether the value will be set to 0 or to 1.

For each pair of sites p, q that could be made
incompatible, let D(p,q) be the set of missing or
deficient gametes in site pair p,q, needed to make
sites p,q incompatible.

 For each gamete a,b in D(p,q), create the binary
variable B(p,q,a,b),

 and create inequalities to set B(p,q,a,b) to 1 if the Y
variables for cells for sites p,q are set so that gamete
a,b is created in some row for sites p,q.

Example

D(p,q) = {1,1; 0,1}
p q

0 0
? 1
1 0
? ?
? 0
0 ?

To set the B variables, the ILP will have inequalities
for each a,b in D(p,q), one for each row where a,b could be created
in site pair p,q.

For example, for a,b = 1,1 the ILP has:
Y(2,p) <= B(p,q,1,1) for row 2
Y(4,p) + Y(4,q) -- B(p,q,1,1) <= 1 for row 4

Example continued

D(p,q) = {1,1; 0,1}
p q

0 0
? 1
1 0
? ?
? 0
0 ?

For a,b = 0,1 the ILP has:

Y(2,p) + B(p,q,0,1) => 1 for row 2
Y(4,q) -- Y(4,p) -- B(p,q,0,1) <= 0 for row 4
Y(6,q) -- B(p,q,0,1) <= 0 for row 6

The ILP also has a variable C(p,q) which is set to 1 if
 every gamete in D(p,q) is created at site-pair p,q.

So, C(p,q) is set to 1 if (but not only if) the Y variables for sites p, q
(missing entries in columns p, q) are
set so that sites p and q become incompatible.

B(p, q, 1, 1) + B(p, q, 0, 1) -- C(p,q) <= 1

In the example:

If M is an n by m matrix, then we have at most nm Y variables;
2m2 B variables; m2/2 C variables; and O(nm2) inequalities in
worst-case.

Finally, we have the objective function:

Where P is the set of site-pairs that could be made to be
incompatible.

Empirically, these ILPs solve very quickly (CPLEX 9) in fractions
of seconds, or seconds
even for m = n = 100 and percentage of missing values up to 30%.
Data was generated with recombination and homoplasy by the
program MS and modifications of MS.
Details are in COCOON 2007, Gusfield, Frid, Brown

Moreover, the ILP solution imputes the missing data with
 2% - 5% error rate and improves as nm increases.

C(p, q)S
(p,q) in P

Minimize

Extensions from Problem M1

 > Problem R1. Site-Removal Problem for
complete data: Remove the minimum number of
sites from the data, so that no incompatibilities
remain. This is a common approach to
incompatible data. NP-hard problem.

> Problem S1. Site-Removal Problem with missing
data: Impute values for the missing entries to
minimize the solution to the resulting Site-
Removal Problem.

ILP for S1 - a simple
extension to the ILP for M1

• For each site i, let D(i) be a variable set to 1 if
and only if site i is removed.

• For each site-pair p,q in P, add the inequality
D(p) + D(q) -- C(p,q) => 0

 to the M1 formulation. If sites p,q are
 incompatible (depending on how the missing

values are set), then one of them must be
removed.

 Change the objective function to
 Minimize Sum D(i)

i

Extension to non-binary
characters

 We detail the case of three and four
allowed states per character. The
approach to the case of four states

 generalizes to any fixed number of

 allowed states per character, but the
efficiency is expected to degrade rapidly
with increasing number of states.

What is a Perfect Phylogeny
for non-binary characters?

• Input consists of n sequences M with m sites (characters) each,
where each site can take one of k values (states).

• In a Perfect Phylogeny T for M, each node of T is labeled with
an m-length, k-ary sequence.

• T has n leaves, one for each sequence in M, labeled by that
sequence.

• For each character-state pair (C,s), the nodes of T that are
labeled with state s for character C, form a connected subtree of
T. It follows that the subtrees for any C are node-disjoint

Example: A perfect phylogeny
for input M

32 1

3 1 1

3 2 3

23 2

12 3

A B C

1

2

3

4

5

M

n = 5
m = 3
k = 3

(3,2,1)
(2,3,2)

(3,2,3)

(1,2,3)
(1,1,3)

(1,2,3)

(3,2,3)

32 1

3 1 1

3 2 3

23 2

12 3

A B C

1

2

3

4

5

M

n = 5
m = 3
k = 3

(3,2,1)
(2,3,2)

(3,2,3)

(1,2,3)
(1,1,3)

(1,2,3)

(3,2,3)

The tree for
State 2 of
Character B

Three problems

• TR1: Given a ternary (1,2,3) matrix M, Remove
the fewest sites (characters) of M so that the
resulting matrix has a 3-state perfect phylogeny.

• TS1: Given a ternary matrix M with some ?s,
Set each ? to 1,2, or 3 to minimize the solution
to Problem TR1.

• Existence Problem: Is there a way to set the ?s
so there is a 3-state perfect phylogeny?

Dress-Steel solution for 3-
state Perfect phylogeny given

complete data (1991)

• Recode each site M(i) of M as three binary
sites M’(i,1), M’(i,2), M’(i,3) each indicating
the taxa that have state 1, 2, or 3.

• Theorem (DS) There is a 3-state perfect
phylogeny for M, if and only if there is a 2-
state perfect phylogeny for some subset of M’
consisting of exactly two of the columns

 M’(i,1), M’(i,2), M’(i,3), for each column i of M.

Example

1

2

3

4

M’

3 2 1

3 1 1

3 2 3

2 3 2

1 2 3

A B C

1

2

3

4

5

M

100010001

100001001

100010100

010100010

001010100

5

A,1 A,2 A,3 B,1 B,2 B,3 C,1 C,2 C,3

Compatible subset

ILP for the DS solution

 S(i,1), S(i,2), S(i,3) are binary variables
indicating which columns of M' associated
with column i in M will be selected. Then we
need inequalities

 S(i,1) + S(i,2) + S(i,3) = 2
 S(i,x) + C(i,x; j,y) + S(j,y) <= 2 etc. for x,y =

{1,2,3}, and
 C(i,x;j,y) is the variable (essentially from the

M1 ILP) that is forced to 1 if columns (i,x) and
(j,y) in M' are incompatible.

From the DS theorem, the ILP is feasible if and only if
there is a 3-state perfect phylogenty for M.

Handling missing values: When there is a ? in cell
(p,q) of M, we use binary variables
Y(p,q,1), Y(p,q,2), Y(p,q,3) to indicate their values in

M’, and add the equality:

Y(p,q,1) + Y(p,q,2) + Y(p,q,3) = 1
which sets the ? in cell (p,q) of M to either 1,2, or 3.

The resulting ILP is feasible if and only if the ?s in M
have been set to allow a 3-state perfect phylogeny.

That ILP solves the Existence Problem for three
states per character.

To solve problem TR1: minimize the number
 of columns of M to remove, so that there is a
 3-state solution, use variable R(i) to indicate whether
column i of M will be Retained. Then modify the DS ILP:

 S(i,1) + S(i,2) + S(i,3) <= 2 instead of =
 and add S(i,1) + S(i,2) + S(i,3) – 2R(i) => 0

 so that R(i) can be set to 1 only if two of
 the three columns M’(i,1), M’(i,2), M’(i,3) have been
 selected. Finally, use the objective function:

 Maximize Sum R(i)
 i in M

 Probem TS1
 To solve Problem TS1, if there is a ? in

cell (p,q) of M, we add the equality

 Y(p,q,1) + Y(p,q,2) + Y(p,q,3) = 1 to the
formulation for TR1.

Empirical Results: The 3-state
Existence Problem

50 by 25,
3PP exists

100 by 50
3PP exists

5% 10% 20% 35% missing values

0%

0.0098 0.3 0.6 1.16 56.0 seconds

0.03 4.0 6.9 13.9 2,492.0 seconds

Times for data where no 3-state Perfect Phylogeny exists
were similar, but smaller!

Empirical Results: Problems
TR1 and TS1(avg of 100 sets)

30 by 100,
r = 1

100 by 50
 r = 3

1% 5% 15% missing values

0%

0.065 3.3 13.0 49.7 seconds
93.7 93.8 94.12 94.4 # sites remaining

0.17 seconds
40.18 # sites remaining

r = 5 0.2558 seconds
 36.68 # of sites remaining

100 by 50

TR1 TS1

Parameter r influences the “closeness” of the data to a tree.

4-state perfect phylogeny
Problem FR1: Given quaternary sequences M, find
the fewest number of sites to remove so that the resulting
data M’ has a 4-state perfect phylogeny.

Existence Problem: Is there a 4-state perfect phylogeny for
M?
We follow the Kannan-Warnow (1991) high-level idea for
the existence problem as an ILP: Choose one of a finite
set (between two and five, depending on the choice of
ILP implementations) of possible tree types for each site
and the generic splits that define each tree type; then
require that the set of chosen splits be pairwise compatible.
The ILP for Problem FR1 is built on the ILP for the 4-state
Existence Problem.

Initial Empirical Results for 4-
states (cplex 10)

30 by 30 0.2 secs for data with a 4-state PP
r = 1 0.49 secs for data with no 4-state PP

50 by 25
r = 3 0.24 secs for data with a 4-state PP
 0.27 secs for data with no 4-state PP

Existence Problem:

Initial* Empirical Results for 4-
states (cplex 10)

Problem FR1 (avg. over 100 datasets)

50 by 25 0.23 secs.
r = 0 25 remaining sites

 this might solve faster
 as an existence problem

50 by 25 0.7 secs.
r = 1 23.02 remaining sites

 50 by 25 1.46 secs.
 r = 3 20.68 remaining sites

100 by 50 29.8 secs.
 r = 5 44 remaining sites

*These times are
smaller than in the
workshop talk, due
to subsequent
improvements in
the ILP formulation.

Beyond 4 states

The approach used in the 4-state solution generalizes to
any fixed number of states, but the times will increase
as the number of states does. We are currently
implementing five states.

Software

 Perl script to generate the ILPs (for input
to cplex or other ILP solvers) can be
found at:

wwwcsif.cs.ucdavis.edu/~gusfield

The COCOON 2007 paper on the 2-state case is there
also.

