
ECS 40 Program #1 (50 points, 3 hours) Spring 2016 

 

New concepts: None, this is just a review of C.  Executable name: airline.out 

File names: main.cpp, flight.h, flight.cpp, plane.h, plane.cpp, utilities.h, utilities.cpp, Makefile, authors.csv. 

Due: Wednesday, April 13th at 11:59 PM in p1 of cs40a using handin. 

 

Format of authors.csv:  author1_email,author1_last_name,author1_first_name 

    author2_email,author2_last_name,author2_first_name 

For example:   

simpson@ucdavis.edu,Simpson,Homer 

potter@ucdavis.edu,Potter,Harry 

 

This will be the first of a series of programming assignments to create an airline reservation system.  For this program, you 

will write a program to read in the information from the file reservations.txt, add passengers to specified flights, and then write a new 

file, reservations2.txt that contains all of the updated information.  The information should be stored in an array of typedef Flight 

structs (see below).  Since the number of flights is not known at the beginning, you will have to use malloc to allocate the array.   

The reservations.txt file is somewhat complex.  The first line indicates how many flights there are.  There then is a series of 

lines for each flight.  For each flight the lines will be: 1) flight number; 2) Origin city; 3) destination city; 4) number of rows, width of 

rows, and number of seats already reserved; and lines 5 on) row number, seat letter, and name of each passenger.  Each piece of 

information should be stored in a separate variable.  The rows, width, reserved, and information about the passengers will be stored in 

a typedef Plane struct (see below).  Since the length of passenger names varies so much, you will use a two-dimensional array of char 

pointers that is completely dynamically allocated. 

While your program may assume the reservations.txt file, names, and seat letters will be in a valid format, the user numerical 

entries may be invalid in any way possible.  Your program must be robust enough to handle ANY user input for numerical entries.  It 

must range check all numerical values.  Leading and/or trailing white space is not sufficient cause to declare an input invalid.  Please 

be aware that the examples of error checking on this sheet do not explore all the erroneous format possibilities.  It is up to you to 

develop your own tests.  The testing script provided later this week will NOT explore all of the possibilities that the real grading script 

will use.  Names will be no longer than 80 chars, including the ‘\0’.   

 

Specifications: 

1. main.cpp 

1.1. main() should be at a high level of abstraction.  It may only contain: a declaration of Flight* named flights, a declaration of an 

int named numFlights, function calls, one while loop, and a return statement.   

1.1.1. Though my main() contains only six semi-colons, i.e. statements, yours may contain up to eight semi-colons. 

1.2. No element of a Flight struct (e.g. origin), nor Plane struct (e.g. rows) may be mentioned in main.cpp.  Note that the design 

checker will look for each variable of the structs in your main.cpp.  So do not use such identifiers (e.g. flightNum) as local 

variables, in main.cpp. 

2. All dynamically allocated memory must be freed in functions dedicated to that task before the return statement of main() is reached. 

3. Function Locations 

3.1. Because you will be adapting this program to C++ in program #3, almost all of your functions should have either a Plane* or a 

Flight*, but not both, as one of their parameters.   

3.2. Those functions that have a Plane* as a parameter must have their prototypes in plane.h, and their implementation code in 

plane.cpp.  Only such functions may access the elements of the Plane struct. 

3.3. Those functions that deal with one flight should have a Flight* as a parameter, and must be written in flight.h, and flight.cpp.  

Only such functions may access the elements of the Flight struct.  

3.4. Those functions that deal with the entire Flight array, should be in main.cpp. 

3.5. Functions that are used by more than one .cpp file should be placed in utilities.h, and utilities.cpp.   

3.5.1. You should write one function, named getNumber() that returns an int, and reads each needed number from the user.  

This one function will ensure that your program can handle any input for numbers, and avoids duplicated code in 

multiple files.  Though atoi() would be tempting, it will not help you here. 

4. All numerical constants, other than 0 and 1, must be declared in #defines.  Note that the definition of the Flight struct must be 

changed to fulfill this requirement. 

5. The style of your program must obey the programming style specified in the style handout.  Remember the body of any function 

cannot be more than 35 lines long.   

6. If you wish to write the program in C++ you may, though you must still use structs instead of classes. 

7. The output of your program must be identical to that of mine.  Your reservations2.txt must also be identical to mine.  You will find 

my executable, and reservations.txt in ~ssdavis/40/p1. 

8. Code must be submitted by exactly one member of each team.  Double submissions, or errors in the authors.csv format will result in 

the team losing five points.  Your handin command line will be:  

handin cs40a p1 authors.csv main.cpp plane.h plane.cpp flight.h flight.cpp utilities.h utilities.cpp Makefile 

 

Suggestions:  



1. Use iterative top design with function stubs. 

1.1. Write main() and the stubs for the functions it calls, and getting it to compile without warnings before writing anything else.  

For those stubs that return values, have them return values that will prevent infinite loops. 

1.2. You will continue to write one function at a time, adding stubs as needed, and compile it until there are no warnings before 

writing another function.  The following is an ordering that will allow testing after each step. 

1.2.1. Write the function to read the first line of the file, allocate the Flight array, and call a function to read a Flight. 

1.2.2. Write the function to read the Flight flight number, allocate the Plane, and call a function to read a Plane. 

1.2.3. Write the function to read a Plane’s information. 

1.2.4. Write the function to deal with the menu. 

1.2.5. Write getNumber().  You will find getchar() and the ctype.h library very useful for this function. 

1.3. Continue in the same manner to deal with the different steps involved in the add Passenger routines. 

1.4. Continue in the same manner to deal with the different steps to write reservations2.txt.  Since these steps follow the pattern of 

reading from reservations.txt so closely you may wish to just copy your reading functions, and modify them to write instead of 

read. 

1.5. Continue in the same manner to deal with the different steps to free the dynamic memory.  These steps also follow the same 

pattern as the reading from reservations.txt, but are even simpler. 

2. By initializing all of the rows * width individual positions in the passengers two-dimensional array of the Plane structs with NULL, 

you can easily create the reserved seat grid displayed by the Add Passenger routine. 

3. To remove the ‘\n’ and/or ‘\r’ read with fgets(), use strtok().  By combining both chars in strtok(), you allow your code to work in 

any operating system even though the operating systems use different end-of-line character(s). 

4. Always place the #includes of standard header files above any #include of your own header files.  This minimizes the chances that 

compiler will confuse you by reporting errors in the standard headers when they are actually errors in your header files. 

5. START EARLY!!!  

 
typedef struct 

{ 

  int flightNum;   

  char origin[20]; 

  char destination[20]; 

  Plane *plane; 

} Flight; 

typedef struct 

{ 

  int rows;  

  int width; 

  int reserved; 

  char ***passengers; // 2-dimensional 

} Plane; 

[ssdavis@lect1 p1]$ cat reservations.txt 

4 

230 

Reno 

Los Angeles 

8 2 10 

8A Gary Lam 

5A Harnit Prado 

1A Pele Chan 

8B David Shah 

2A Ryan Chock 

7B Daniel Mak 

4B Sze-Kin Barahona 

2B Danny Tran 

5B Tri Chiong 

3A Aren Chuang 

463 

Stockton 

Los Angeles 

8 2 14 

5B Arjun Riordan 

5A Catherine Gawthorpe 

3A Eric Brown 

6B Tony Iwahashi 

6A Joanne Lam 

7B Erich Helmhold 

2A Mikhail Ip 

1A Dinh-Tuong Leung 

4A David Wong 

1B Vincent Ho 

2B Angela Chang 

3B Dernie Tran 

8B Man Li Horng 

7A William Chaves 

770 

Sacramento 

San Francisco 

6 2 10 

5A Chukwuemeka Mansouri 

5B Hwai-En Eng 

3A Victor Gunel 

2A Sze-Kin Barahona 

3B Sylvia Dinh 

6A Cary Tong 

1A Thaya Hung 

6B Way Lozano 

1B Jimmy Sudame 

4A David Shah 

221 

Reno 

Davis 

7 4 8 

3C Lawrence Heinz 

7D Men-Jyn Maung 

2B Melvin Begusch 

4D Alison Alabanza 

6B Ryan Balog 

3D Michael Park 

1A Chi Ho Tung 

6C Christine Law 

[ssdavis@lect1 p1]$

 

[ssdavis@lect1 p1]$ airline.out 

 



ECS Flight Reservation Menu 

0. Exit 

1. Add Passenger. 

 

Please enter your choice: 2a 

Your number is invalid. 

Please try again. 

 

Please enter your choice: 2 

2 is not an available choice. 

Please try again. 

 

Please enter your choice: 1 

Flt# Origin                         Destination 

230  Reno                           Los Angeles 

463  Stockton                       Los Angeles 

770  Sacramento                     San Francisco 

221  Reno                           Davis 

 

Flight number (0 = exit): 4632 

We do not have a flight number 4632. 

Please try again. 

 

Flight number (0 = exit): 463 

Please enter the name of the passenger: George Bush 

Row# AB 

 1   XX 

 2   XX 

 3   XX 

 4   X- 

 5   XX 

 6   XX 

 7   XX 

 8   -X 

 

X = reserved. 

 

Please enter the row of the seat you wish to reserve: 9 

There is no row #9 on this flight. 

Please try again. 

 

Please enter the row of the seat you wish to reserve: 4 

Please enter the seat letter you wish to reserve on row #4: A 

That seat is already occupied. 

Please try again. 

 

Please enter the row of the seat you wish to reserve: 4 

Please enter the seat letter you wish to reserve on row #4: B 

 

ECS Flight Reservation Menu 

0. Exit 

1. Add Passenger. 

 

Please enter your choice: 1 

Flt# Origin                         Destination 

230  Reno                           Los Angeles 

463  Stockton                       Los Angeles 

770  Sacramento                     San Francisco 

221  Reno                           Davis 

 

Flight number (0 = exit): 463 

Please enter the name of the passenger: Bill Clinton 

Row# AB 

 1   XX 

 2   XX 

 3   XX 

 4   XX 

 5   XX 

 6   XX 

 7   XX 



 8   -X 

 

X = reserved. 

 

Please enter the row of the seat you wish to reserve: 8 

Please enter the seat letter you wish to reserve on row #8: A 

 

ECS Flight Reservation Menu 

0. Exit 

1. Add Passenger. 

 

Please enter your choice: 1 

Flt# Origin                         Destination 

230  Reno                           Los Angeles 

463  Stockton                       Los Angeles 

770  Sacramento                     San Francisco 

221  Reno                           Davis 

 

Flight number (0 = exit): 463 

We are sorry but Flight #463 is full. 

 

ECS Flight Reservation Menu 

0. Exit 

1. Add Passenger. 

 

Please enter your choice: 0 

Goodbye. 

[ssdavis@lect1 p1]$ cat reservations2.txt 

4 

230 

Reno 

Los Angeles 

8 2 10 

1A Pele Chan 

2A Ryan Chock 

2B Danny Tran 

3A Aren Chuang 

4B Sze-Kin Barahona 

5A Harnit Prado 

5B Tri Chiong 

7B Daniel Mak 

8A Gary Lam 

8B David Shah 

463 

Stockton 

Los Angeles 

8 2 16 

1A Dinh-Tuong Leung 

1B Vincent Ho 

2A Mikhail Ip 

2B Angela Chang 

3A Eric Brown 

3B Dernie Tran 

4A David Wong 

4B George Bush 

5A Catherine Gawthorpe 

5B Arjun Riordan 

6A Joanne Lam 

6B Tony Iwahashi 

7A William Chaves 

7B Erich Helmhold 

8A Bill Clinton 

8B Man Li Horng 

770 

Sacramento 

San Francisco 

6 2 10 

1A Thaya Hung 

1B Jimmy Sudame 

2A Sze-Kin Barahona 

3A Victor Gunel 

3B Sylvia Dinh 

4A David Shah 

5A Chukwuemeka Mansouri 

5B Hwai-En Eng 

6A Cary Tong 

6B Way Lozano 

221 

Reno 

Davis 

7 4 8 

1A Chi Ho Tung 

2B Melvin Begusch 

3C Lawrence Heinz 

3D Michael Park 

4D Alison Alabanza 

6B Ryan Balog 

6C Christine Law 

7D Men-Jyn Maung 

[ssdavis@lect1 p1]$ 

 


