
ECS 40 Program #4 (50 pts, 2.5 hours) Spring 2016

Due: Wednesday, April 27th, 11:59 PM Executable name: airline..out Handin to cs40a p4

Filenames: authors.csv, main.cpp, utilities.cpp, utilities.h, plane.cpp, plane.h, flight.cpp, flight.h, passenger.h,

passenger.cpp, flights.h, flights.cpp, and Makefile.

New concepts: comma separated value files, binary files, vector, maintaining a sorted list, static consts, static functions,

friend.

In this program you will have two new classes, and replace the reservations files with two pairs of files. You can find

passengers.dat, flights.csv, my airline.out, and PrintDatFile.out in ~ssdavis/40/p4. You may use my code from p3 as your

starting point if you wish. It will be in ~ssdavis/40/p3/SeansSrc on Thursday morning.

Specifications

1. Flights class

1.1. The Flights class will contain a dynamically allocated array of Flight* class objects named flights, an int named

capacity that stores how large the array is, and an int named size that keeps track of how many flights there are

currently stored in the array.

1.2. The constructor shall create the array with a capacity of 2 Flight*.

1.3. A function named insert(Flight*), should be used to insert a Flight object pointer into its proper position in the

array that is sorted by the flightNum of each Flight. If insert() tries to insert into a full array, then the array should be

resized to twice its current capacity.

1.4. addPassenger(), and readFlights() in main.cpp should now be methods of the Flights class.

1.5. Part of writeFlights() and all of freeFlights() will be combined to form the Flights destructor. The destructor will

write the number of flights to flights2.csv, then delete each Flight*, and then delete the whole array of Flight*. The

destructor of Flight will append information about the given Flight to flights2.csv.

1.6. There is now a menu item to add a flight specified by the user. All entries by the user are guaranteed to be correct,

so there is no need for range checking of any kind. Each class should ask for, and store its own information. You

will have to add a default constructor to Plane() for this to work.

1.7. There is now a menu item to remove a flight specified by the user. Though the size will be reduced, the array is

never shrunk in capacity. All entries by the user are guaranteed to be correct, so there is no need for range checking

of any kind.

2. Passenger class.

2.1. The Passenger class has the following data members: short flightNum, short row, char seat, and char name[30].

They must be declared in that order for the passengers.dat file to be read correctly

2.2. Each Passenger will be stored in a binary file, passengers.dat, described below.

2.3. Each element of the Plane::passengers array will now contain an int instead of a char*. The int will be the position

of the passenger in passengers.dat. Use -1 to indicate that there is no passenger in a given seat.

2.4. There may not be more than one Passenger object existing at any given time in the program! You will rely on

searching the passengers.dat for information about a given Passenger.

2.5. The Plane::addPassenger must add the new passenger to the end of the passengers.dat file. This will preserve the

validity of the indices in the Plane::passengers arrays.

2.6. There is now a menu item to remove a passenger. All entries by the user are guaranteed to be correct, so there is

no need for range checking of any kind.

2.7. When a passenger is removed through removal of the passenger or their flight, its flight number in

passengers2.dat should be changed to -1. When writing passengers3.dat, removed passengers should not be written

to the file.

3. I have changed the data files for the program. There is no longer a reservations.txt, nor reservations2.txt. There is now

a flights.csv file, a flights2.csv, a passengers.dat file, a passengers2.dat file, and a passengers3.dat.

3.1. flights.csv has, as its standard suffix indicates, comma separated values. Much the same as with reservations.txt,

the first line contains the number of flights. Each subsequent line of the file contains all of the information for a

flight in the following order: 1) flight number; 2) origin; 3) destination; 4) rows; and 5) width. Instead of using

strtok() to dissect the later lines of the file, you should use getline().

3.2. passengers.dat is a binary file of Passenger objects. Note that this binary file can only be accurately read by an

Intel-like CPU based computer. All of the Passenger’s that have reserved seats are in passengers.dat, but they are in

random order. When using sftp to transfer passengers.dat to your home, make sure that it is transferred using binary

mode. All interactions with passengers.dat and passengers2.dat should be done from Plane methods.

3.3. passengers2.dat is a binary file that is initially a perfect copy of passengers.dat. You will create, and update this

file as your program runs.

3.4. passengers3.dat is a binary file of Passenger objects, with the Passenger’s sorted in the same way they were for

programs #1 and #3—by flight number, row, and lastly seat. You will write this file when your program terminates.

You can use PrintDatFile.out to see if your passengers3.dat is correct.

4. The term “const” must be used WHEREVER possible in the prototypes of functions. Note that const is not needed for

any value passed by value.

5. No #defines are allowed except those used for header guards. All constants, other than 0 and 1, should be declared as

static const “variables,” or identifiers in an enum. Those constants used in classes, should be declared within their

respective classes. An enum statement at the top of main.cpp should be used to assign the values for the constants

used in the switch statement in main(). There is no longer a need to #define TRUE since C++ has the built-in constant

true.

6. Code must be submitted by exactly one member of each team. Double submissions, or errors in the authors.csv format

will result in the team losing five points. Your handin command line will be:

handin cs40a p4 authors.csv main.cpp plane.h plane.cpp flight.h flight.cpp flights.h flights.cpp passenger.h

passenger.cpp utilities.h utilities.cpp Makefile

Suggestions:

Because there are fairly dramatic changes in the program, you should try to address as small a chunk as possible at a

time. Compile whenever possible, and test run whenever possible. The best way to minimize the size of chunks to be

newly tested is to work from reading to writing to changing. Each time you modify a function make sure it compiles

before moving on to another. Write the comments as you go. They are there to help you understand the code. Here is a

possible order that should compile, and run without error (albeit incompletely) after each major step.

Create the Flights class, and change the flights array to a Flights class object in existing functions.

1. Write Flights class including a default constructor that initializes the flights capacity to 2 Flight*.

2. Modify main() to use a Flights object, and move all functions that took a Flight array to the Flights class..

2.1. Modify each function call in main(), except getChoice() to use a Flights object to call a Flights method. There is

no need to pass numFlights to the functions since Flights has the size variable.

2.2. Move all the functions called from main(), except getChoice() to the Flights class. writeFlights() and freeFlights()

should be combined to form the destructor. The destructor need only store the size in flights2.csv, and then close the

file. addFlights() and readFlights() will call the Flights::insert() method.

2.3. Write Flights::insert() that must resize the array as needed, and maintain the order of the array based on the

flightNums by shifting larger flightNums away from the zeroth index to make room for a new, smaller Flight*.

Modify Flight class methods to handle flights.csv

3. Since the Plane class will usually be dealing with passengers2.dat, comment out all lines that mention plane in all of the

Flight methods.

4. Modify Flight::readFlight() to account for the new format. For now, ignore() the rows and width at the end of each

line. Set the number of flights properly in Flight::readFlights(). You should now be able to use the addPassenger

menu item to look at the Flight info.

5. Move the Flight::writeFlight() to the Flight destructor, and account for the new format. The destructor should open

flights2.csv to append the information (with dummy rows and width for now), and then close the file. One trick for

testing would be to rename flights2.csv to flights.csv (after saving the original flights.csv), and see if it looks correct

with addPassenger.

Modify Plane class methods to handle flights.csv information and a passenger array of int**.

6. To allow smaller steps in the compilation testing use /* and */ to comment out all of the content of the Plane methods

except getRow(), and showGrid().

7. Modify the Plane class to have passengers array of int**.

8. In Flight::readFlight(), uncomment the call to the Plane constructor, and eliminate the ignore(). Pass both the

flightNum and inf to the Plane constructor. Modify the Plane constructor to account for the format of flights.csv.

Delete from the constructor the loop that reads information about passengers. Modify the loops in the constructor that

create the passengers array so that they only create the passengers array of ints, and initialize the elements to -1.

9. Modify Plane::showGrid() so that it relies on -1 instead of NULL for an empty seat.

10. Uncomment and modify ~Plane() so that it only removes the passengers array as it is now constituted.

11. In ~Flight() uncomment the statement that deletes the Plane.

Create Passenger class, and modify functions to handle passengers.dat, passengers2.dat, and passengers3.dat

12. Passengers class. Write the data section EXACTLY as specified. There need be no functions yet. Since only the

Plane class will interact with the passenger.dat file, and thus the Passenger class objects, it is reasonable to make the

Plane class a friend of the Passenger class. You will need to #include “plane.h” at the top of passenger.h to do this.

13. In the Passenger class, write a public static member function named copyPassengers() that copies passengers.dat to

passengers2.dat. This function should be called at the beginning of main() before readFlights(). Use diff, or

PrintDatFile.out to check that your passengers2.dat matches passengers.dat.

14. Modify the Plane constructor to read through the passengers2.dat file, one Passenger at a time. If a passenger is on the

Plane’s flight, determine the byte position of that passenger in the file, and store that position in the appropriate

passenger array element, and increment reserved. You will be using read(), and tellg().

15. Uncomment the call to Plane::addPassenger in Flight::addPassenger(), and pass the flightNum to it. Uncomment the

body of Plane::addPassenger() up to, and including, the call to showGrid(). Add “ return true;” after the showGrid().

Your program should run, and the addPassenger menu item should now show the correct grid for each flight.

16. Write a default constructor, and a “standard” constructor for the Passenger class. A “standard” constructor has a

parameter for each data member of the class.

17. Uncomment the rest of Plane::addPassenger(), and eliminate the storage of the name code as well as the return

statement you added in step 14. Modify Plane::addPassenger to append the passenger information to passengers2.dat,

and set the associated passengers array element to the byte position in the file. You will be using write(), ios::app, and

tellp(). Adding the passenger should work perfectly now. You test this by looking at the grid and passengers2.dat.

18. Modify ~Flight to call Plane::writePlane() before it deletes the plane. ~Flight should no longer write bogus rows and

columns to flights2.csv. writePlane() now takes a flightNum as well as an ofstream as its parameters. Uncomment

writePlane(). Besides writing to flights.csv, writePlane() will now open passengers2.dat and append the Plane’s

passengers to passengers3.dat based on the positions specified in the passengers array. You will be using read(),

write(), ios::app, and seekg(). Use PrintDatFile.out to check your passengers3.dat.

Add the three new menu items.

19. Add an enum at the top of main.cpp that holds a capitalized identifier for each menu item.

20. Write addFlight() in the Flights, Flight, and Plane classes, create a switch statement in main(), and add a menu item.

You need to add a default Plane constructor that does nothing.

21. Write removePassenger() methods in Flights, Flight, and Plane classes, add an item to the main(). Remember to set

the flightNum of the passenger to -1 in passengers2.dat, which will take an fstream opened with the

ios::binary | ios::in | ios::out mode, and the use of seekp() and seekg().

22. Write removeFlight() in the Flights, Flight, and Plane classes, add an item to the main() switch, and add a menu item.

You will need to go through the whole passengers array, and set the flightNum of the passengers to -1 in

passengers2.dat.

Change the #defines into consts, and move the constants into the class declarations

23. Change all of the #defines of constants into static const. Move the declarations of constants in the class files into their

declarations in their respective header files.

[ssdavis@lect1 p4]$ CreateFlights.out

Seed: 9

Enter number of flights: 5

[ssdavis@lect1 p4]$ cat flights.csv

5

815,Sacramento,Stockton,4,4

583,Reno,Sacramento,7,4

265,Reno,Los Angeles,9,2

201,Reno,San Francisco,7,2

552,Stockton,Reno,8,6

[ssdavis@lect1 p4]$

ECS Flight Reservation Menu

0. Exit.

1. Add Passenger.

2. Remove Passenger.

3. Add Flight.

4. Remove Flight.
[ssdavis@lect1

p4]$

cat BigTest.txt

1

201

Flintstone,Fred

7

B

1

201

Mays,Willie

6

B

1

201

2

583

Dobbs,Alex

3

553

Davis

San Diego

3

8

1

553

Fields,W.C.

2

H

4

265

1

553

Marx,Groucho

1

G

0

2

583

Dobbs,Alex

3

553

Davis

San Diego

3

8

1

553

Fields,W.C.

2

H

4

265

1

553

Marx,Groucho

1

G

0

[ssdavis@lect1

p4]$

[ssdavis@lect1

p4]$ airline.out

< BigTest.txt

[ssdavis@lect1 p4]$

PrintDatFile.out

Please enter the name of file you

wish printed: passengers.dat

583 4 D Hashemzadeh,Victor

552 4 D Ahn,Aaron

583 1 B Fong,Clare

815 1 A Becker,Pao-Hsiang

552 6 F Balog,Ryan

201 3 B Li,Peter

815 4 B Li,Peter

552 4 B Law,Edward

552 1 B Mak,Daniel

201 7 A Steiner,Gail

583 4 C Brown,Jason

815 4 C Nakodary,Michael

552 3 A Vasquez,Daniel

552 1 D Kuffel,Frank

815 3 D El-Sissi,Brian

201 4 B Yuan,Edward

815 1 C Lozano,Way

201 1 B Inocencio,Carlton

265 7 A Chinn,Raj

201 3 A Parcher,Christopher

265 2 A Tran,Rex

552 2 C Aroyan,Eddie

201 5 A Wan,Amir

552 3 B Loden,Hai

265 1 A Lau,Evelyn

552 5 D Ho,Jane

265 3 B Aguirre,Aaron

552 6 D Ballelos,Ernie

583 7 C Nguyen,Jesse

583 2 C Viswanathan,Long

552 1 E Nguyen,Travis

583 5 B Martin,Rochak

552 8 B Wei,Kwasi

552 5 A Liu,Anthony

552 6 C Rood,Shuka

583 5 D Dobbs,Alex

265 2 B Morgan,Tri

552 5 E Genitiano,David

552 6 A Bleier,Wei-Chi

552 7 D Novikov,Artem

201 6 A Wang,Zhen

583 7 A Huynh,Jeffrey

201 2 B Lock,Carlos

583 3 B Shelley,Jason

201 2 A Lee,James

552 3 C Lee,Mandeep

552 3 D Nakodary,Michael

201 4 A Kong,Alexander

583 1 C Guerin,Justin

265 8 A Li,Alan

265 3 A Liu,Anthony

201 1 A Ahmadi,Juan

552 6 B Chinn,Hoang

552 7 B Molano,Laurent

201 5 B Wang,Kenneth

815 1 D Kee,Albert

265 5 B Wang,Jordan

552 5 C Uthus,Nicholas

265 4 B Martin,Rochak

552 5 B Hong,Gloria

583 1 D Genitiano,David

265 6 A Guan,Larry

265 7 B Lam,Stephanie

583 2 A Ye,Eric

552 8 D Ngo,Tae-Yoon

815 2 A Abed-Amoli,Sukhbir

815 3 B Dham,Andrew

583 5 A Alabanza,Alison

583 2 B Huynh,Zane

265 8 B Chau,Brandon

[ssdavis@lect1 p4]$

[ssdavis@lect1 p4]$

PrintDatFile.out

Please enter the name of file you

wish printed: passengers2.dat

583 4 D Hashemzadeh,Victor

552 4 D Ahn,Aaron

583 1 B Fong,Clare

815 1 A Becker,Pao-Hsiang

552 6 F Balog,Ryan

201 3 B Li,Peter

815 4 B Li,Peter

552 4 B Law,Edward

552 1 B Mak,Daniel

201 7 A Steiner,Gail

583 4 C Brown,Jason

815 4 C Nakodary,Michael

552 3 A Vasquez,Daniel

552 1 D Kuffel,Frank

815 3 D El-Sissi,Brian

201 4 B Yuan,Edward

815 1 C Lozano,Way

201 1 B Inocencio,Carlton

-1 7 A Chinn,Raj

201 3 A Parcher,Christopher

-1 2 A Tran,Rex

552 2 C Aroyan,Eddie

201 5 A Wan,Amir

552 3 B Loden,Hai

-1 1 A Lau,Evelyn

552 5 D Ho,Jane

-1 3 B Aguirre,Aaron

552 6 D Ballelos,Ernie

583 7 C Nguyen,Jesse

583 2 C Viswanathan,Long

552 1 E Nguyen,Travis

583 5 B Martin,Rochak

552 8 B Wei,Kwasi

552 5 A Liu,Anthony

552 6 C Rood,Shuka

-1 5 D Dobbs,Alex

-1 2 B Morgan,Tri

552 5 E Genitiano,David

552 6 A Bleier,Wei-Chi

552 7 D Novikov,Artem

201 6 A Wang,Zhen

583 7 A Huynh,Jeffrey

201 2 B Lock,Carlos

583 3 B Shelley,Jason

201 2 A Lee,James

552 3 C Lee,Mandeep

552 3 D Nakodary,Michael

201 4 A Kong,Alexander

583 1 C Guerin,Justin

-1 8 A Li,Alan

-1 3 A Liu,Anthony

201 1 A Ahmadi,Juan

552 6 B Chinn,Hoang

552 7 B Molano,Laurent

201 5 B Wang,Kenneth

815 1 D Kee,Albert

-1 5 B Wang,Jordan

552 5 C Uthus,Nicholas

-1 4 B Martin,Rochak

552 5 B Hong,Gloria

583 1 D Genitiano,David

-1 6 A Guan,Larry

-1 7 B Lam,Stephanie

583 2 A Ye,Eric

552 8 D Ngo,Tae-Yoon

815 2 A Abed-Amoli,Sukhbir

815 3 B Dham,Andrew

583 5 A Alabanza,Alison

583 2 B Huynh,Zane

-1 8 B Chau,Brandon

201 7 B Flintstone,Fred

201 6 B Mays,Willie

553 2 H Fields,W.C.

553 1 G Marx,Groucho

[ssdavis@lect1 p4]$

[ssdavis@lect1 p4]$

PrintDatFile.out

Please enter the name of file you

wish printed: passengers3.dat

201 1 A Ahmadi,Juan

201 1 B Inocencio,Carlton

201 2 A Lee,James

201 2 B Lock,Carlos

201 3 A Parcher,Christopher

201 3 B Li,Peter

201 4 A Kong,Alexander

201 4 B Yuan,Edward

201 5 A Wan,Amir

201 5 B Wang,Kenneth

201 6 A Wang,Zhen

201 6 B Mays,Willie

201 7 A Steiner,Gail

201 7 B Flintstone,Fred

552 1 B Mak,Daniel

552 1 D Kuffel,Frank

552 1 E Nguyen,Travis

552 2 C Aroyan,Eddie

552 3 A Vasquez,Daniel

552 3 B Loden,Hai

552 3 C Lee,Mandeep

552 3 D Nakodary,Michael

552 4 B Law,Edward

552 4 D Ahn,Aaron

552 5 A Liu,Anthony

552 5 B Hong,Gloria

552 5 C Uthus,Nicholas

552 5 D Ho,Jane

552 5 E Genitiano,David

552 6 A Bleier,Wei-Chi

552 6 B Chinn,Hoang

552 6 C Rood,Shuka

552 6 D Ballelos,Ernie

552 6 F Balog,Ryan

552 7 B Molano,Laurent

552 7 D Novikov,Artem

552 8 B Wei,Kwasi

552 8 D Ngo,Tae-Yoon

553 1 G Marx,Groucho

553 2 H Fields,W.C.

583 1 B Fong,Clare

583 1 C Guerin,Justin

583 1 D Genitiano,David

583 2 A Ye,Eric

583 2 B Huynh,Zane

583 2 C Viswanathan,Long

583 3 B Shelley,Jason

583 4 C Brown,Jason

583 4 D Hashemzadeh,Victor

583 5 A Alabanza,Alison

583 5 B Martin,Rochak

583 7 A Huynh,Jeffrey

583 7 C Nguyen,Jesse

815 1 A Becker,Pao-Hsiang

815 1 C Lozano,Way

815 1 D Kee,Albert

815 2 A Abed-Amoli,Sukhbir

815 3 B Dham,Andrew

815 3 D El-Sissi,Brian

815 4 B Li,Peter

815 4 C Nakodary,Michael

[ssdavis@lect1 p4]$
[ssdavis@lect1 p4]$ cat

flights2.csv

5

201,Reno,San Francisco,7,2

552,Stockton,Reno,8,6

553,Davis,San Diego,3,8

583,Reno,Sacramento,7,4

815,Sacramento,Stockton,4,4

[ssdavis@lect1 p4]$

