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Abstract. Resource constrained systems often are programmed using an event-
based model. Many applications do not lend themselves well to an event-based 
approach, but preemptive multithreading pre-allocates resources that cannot be 
used even while not in use by the owning thread. In this paper, we propose a 
hybrid approach called Y-Threads. Y-Threads provide separate small stacks for 
blocking portions of applications, while allowing for shared stacks for non-
blocking computations. We have implemented Y-Threads on Mica and Telos 
wireless sensor network platforms. The results show that Y-Threads provide a 
preemptive multithreaded programming model with resource utilization closer 
to an event-based approach. In addition, relatively large memory buffers can be 
allocated for temporary use with less overhead than conventional dynamic 
memory allocation methods.  
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1 Introduction 

Wireless Sensor Network (WSN) systems are inherently concurrent. Support for 
concurrency is needed in all layers of the WSN software stack. At the operating 
system level, hardware interrupts, low level I/O and sensor events are asynchronous. 
At the middleware level, specific services (such as time synchronization [1][2] and 
code distribution[3][4][5]) are highly concurrent in nature, and exist independently 
from other activities. For instance, most code distribution protocols have several 
concurrent activities: one may actively maintain a code distribution tree by 
periodically collecting neighbor information, while the other may cache and distribute 
code along the distribution tree. At the application level, programs may define both 
node-level (e.g., collect data) and group level activities (e.g., aggregate data), each 
occurring concurrently.  

Concurrency exists not only at many different levels, but also in many different 
forms: rapid responses to specific events are easily represented using events and event 
handlers; concurrency among middleware services are better expressed using long 
running threads (LRT); concurrency and group concurrent activities are better defined 
using a combination of threads and atomic computations; and higher level system 



software abstractions (such as virtual machines and middleware) can be  implemented 
easier using a threading mechanism. We have examined these concurrency models 
and believe there is a disconnect between the two main models. 

WSN Operating Systems work with limited resources, RAM being the primary 
limitation. The limited RAM drives many embedded system designers to use an 
event-based programming model as in TinyOS[6] and SOS[7]. Though [8] shows that 
event-based and thread-based approaches can be interchanged, many applications do 
not lend themselves well to an event-based approach, especially those where true 
CPU concurrency is needed[9][10]. Often embedded system tasks run a cycle of work 
and waiting. Blocking is done at the highest level, computation is executed to 
completion and waiting occurs again. Preemptive multithreading pre-allocates RAM 
that cannot be used even while not in use by the owning thread. What is needed is a 
concurrency model that balances the programming needs through a preemptive 
threading model and at the same time meets the resource constraints of sensing 
devices.  

We introduce a hybrid approach called Y-Threads. Y-Threads are preemptive 
multithreads with small thread stacks. The majority of work in Y-Threads is done by 
non-blocking routines that execute on a separate common stack. By separating the 
execution stacks of control and computational behavior, Y-Threads can support 
preemptive threading model with better memory utilization than preemptive 
multithreading alone.  

We have implemented Y-Threads on several WSN platforms. Experimental results 
show that a Y-Thread version of a time synchronization application only increased 
energy consumption by 0.12% over the original purely multithreaded version. In 
addition the worst-case RAM requirement for the Y-Thread implementation was 
reduced by 16.5%. Experiments also show that Y-Thread implementations of a flash 
modification routine are more processing efficient than versions that dynamically 
allocate memory. 

The rest of this paper is structured as follows. Section 2 discusses the motivation, 
programming model, and implementation of Y-Threads. Experimental test 
applications and results are described in Section 3. Section 4 discusses the existing 
concurrency models more in depth. Section 5 discusses the possibilities of future 
work on Y-Threads. We conclude in Section 6. 

2 Y-Threads 

Y-Threads are preemptive threads and are well suited to capture the reactive nature of 
many WSN programs. It is based on the insight that many WSN applications block, 
waiting for specific events to occur, that has motivated the development of Y-
Threads. As events occur, they react by performing atomic computations, changing 
their state, and returning to the wait mode. Behavior of many such applications can be 
captured in terms of two sets of behavior: the first is a control behavior that is state-
based and that guides the application through different state transitions as different 
events occur. The second are the different computational behaviors that occur during 
various state transitions. 



For instance, consider the time synchronization code sample shown in Figure 1. 
The control behavior is defined in the while loop:  the application blocks while 
waiting for events (such as message arrival). Upon occurrences of these events, it 
performs specific actions (such as processMsg), and then goes back to wait for other 
events to occur.  

We observe that the size of stack required to execute the control behavior is fairly 
small. By separating the execution stacks of control and computational behavior, we 
can support preemptive threading model and save on memory space. Y-threads 
implement this idea by providing support for both control and computational 
behaviors. 

void timesync_ReceiveTask(){ 
  TimeSyncMsg msg; 
  while(1) { 
    recv_radio_msg(&msg); 
    leds_greenToggle(); 
    if((state & STATE_PROCESSING) == 0 ){ 
      mess.arrivalTime = hal_sys_time_getTime32(); 
      processMsg(&msg); 
} } } 
 
void processMsg(TimeSyncMsg *msg){ 
  … 
} 

Figure 1. Time Synchronization code sample 

2.1 Y-Threads programming model 

Y-Threads provide the capabilities of preemptive multithreading with good utilization 
of limited RAM. Y-Threads are preemptive threads with small pre-allocated stacks. 
Y-Threads have the same semantics as general threads, but the majority of work is 
done by Run to Completion Routines (RCR) that execute on a separate common 
stack. Task stack sharing and a scheduling method for correct system operation are 
discussed in [11]. The difference in Y-Threads is that RCRs execute as the invoking 
thread and maintains the invoking threads priority, whereas [11] discusses run to 
completion flyweight tasks. The Y-Thread interface provides two primary functions, 
one to create the Y-Threads, and one to invoke the RCRs. Figure 2 shows the Y-
Thread and RCR APIs. The APIs are discussed in further detail in Section 2.2. 

typedef void (*oss_task_function_t)(void); 
typedef void *oss_rcr_data_t; 
typedef void (*oss_rcr_function_t)(oss_rcr_data_t); 
oss_taskp_t oss_ythread_create(oss_task_function_t 
task_func, uint16_t sz); 
void oss_rcr_call(oss_rcr_function_t func, 
oss_rcr_data_t data); 

Figure 2. Y-Thread and RCR API 



Figure 3 shows the memory map of two different threads each invoking an RCR. 
Task 1 has higher priority than Task 2 and waits until the semaphore is signaled. The 
arrow in each portion of Figure 3 signifies the current execution stack. In a of the 
figure Task1 is blocked, and Task2 is running. Task 2 invokes an RCR in b, which 
executes on a separate stack and then returns in c. Task1 is of higher priority, and is 
unblocked in d and invokes its RCR in e. The RCR returns and Task1 continues to 
execute on its stack in f. Notice the sharing of the common stack space for both 
RCRs. The stack sharing provides programming semantics of a much larger virtual 
stack for each task. The source in Figure 4 is an example that corresponds to the 
memory map in Figure 3. 
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Figure 3. Y-Threads Memory Usage 

void Task1(){ 
  while(1){ 
    wait_sem(&sem1); 
    oss_rcr_call(Task1Process,NULL); 
} } 
 
void Task2(){ 
  while(1){ 
    oss_sleep(100); 
    oss_rcr_call(Task2Proccess,NULL); 
    signal_sem(&sem1); 
} } 
 
void Task1Process(oss_rcr_data_t *data){ 
  ...//Do something 
} 
 
void Task2Process(oss_rcr_data_t *data){ 
  ...//Do something else 
} 

Figure 4. Y-Thread Code Example 

Y-Threads are similar to preemptive multithreads that spawn run to completion 
threads without the overhead of creating a run to completion thread. It may be 
possible to implement Y-Threads such that an RCR can be preempted by threads of 
higher priority since threads that are on the RCR stack cannot block. Currently Y-



Threads have not been implemented in this manner and such an implementation 
should rename RCR to Non-Blocking Routine (NBR). 

Parameters can be passed to RCRs and results can be returned, since it is just a 
matter of copying data to and from the correct contexts. Since the invoking thread 
transfers execution control to the RCR during invocation, all data on the controlling 
thread’s stack can be accessed by the RCR. The RCR signature is dependent upon the 
implementation of Y-Threads. The initial implementation of Y-Threads uses a single 
function to invoke the RCR. RCRs can invoke subroutines as long as none of the 
subroutines attempt to block execution. If an RCR invokes another RCR, it has the 
same semantics as invoking a subroutine since the invoking RCR is already executing 
on the RCR stack. 

Y-Thread behavior can be emulated on any RTOS that has both preemptive threads 
and light weight or run to completion threads with extra overhead. Y-Threads are 
similar to OSEK[12] Extended tasks that spawn Basic tasks, in those systems that 
execute Basic tasks on a common stack. The exception is that they do not execute as 
Extended tasks and do not inherit their priority.  

Y-Threads have better memory utilization than just pure preemptive multithreading 
since large amounts of memory can be automatically allocated and freed on the RCR 
stack. Preemptive multithreads must pre-allocate enough memory for the worst case 
stack utilization; therefore there is memory that is unused in each thread, but is also 
unusable by other threads. Y-Threads do not need to pre-allocate large amounts of 
memory for potential future use unlike purely preemptive multithreading. Y-Threads 
can also automatically allocate large amounts of memory on the RCR stack with less 
overhead than dynamic memory allocation. Y-Threads provide the advantages of 
preemptive multithreading without the disadvantage of high memory overhead. 

2.2 Y-Thread Implementation 

Y-Threads were first implemented on OS*1 for the AVR ATMega128 using an 
invocation to a helper function oss_rcr_call. The signature of the RCRs is a single 
void pointer parameter with a void return type. The RCR data types and oss_rcr_call 
prototype can be seen in Figure 2. Light Weight Threads (LWT) are implemented in 
OS* using an RCR wrapper. The calling convention of the ATMega128 under GCC 
passes most function parameters in registers making overhead of the oss_rcr_call 
helper function very low. The advantage of compiler support or oss_rcr_call in-lining 
is not likely to be as great for the ATMega128 as it may be for other architectures 
where parameters are primarily passed on the stack. Switching the control to the RCR 
stack was relatively straight forward in the ATMega128 since GCC uses registers and 
the frame pointer to access local variables and parameters.  

OS knowledge is necessary for any Y-Thread implementation. OS knowledge is 
necessary since it must be known if the RCR stack is in use or not. Furthermore, if 
RCRs are implemented as “Non-Blocking Routines” as discussed in Section 2.1, the 
current top of the NBR stack must be stored during a context switch from a thread in 

                                                           
1 OS* is a light-weight synthesizable operating system for the Mica, Telos and Stargate families 

of sensor nodes currently under development by the SENSES group at UC Davis. 



the NBR. Figure 5 illustrates a higher priority thread preempting an NBR. In part a of 
the figure Task2 of lower priority is executing a NBR. Task1 is unblocked by an ISR 
in part b and context switch from Task2’s NBR to Task1 occurs. Task1 invokes an 
NBR in part c which executes on the common stack under Task2’s ready NBR. Task 
1’s NBR would overwrite Task 2’s NBR if the NBR stack top is not stored during the 
context switch. Due to the nature of the OS* scheduler, our current Y-Thread 
implementation does not need to store the top of the RCR stack. 
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Figure 5. NBR Preemption by higher priority thread 

We also implemented Y-Threads for the TI MSP430. The RCR API is identical to 
that of the ATMega128 implementation. Unlike the ATMega128, the implementation 
of Y-Threads for MSP430 was complicated by GCC’s use of the frame pointer. The 
difficulty arose in implementing a version of Y-Threads that operated properly under 
all optimization levels of GCC. One possible solution is to have implementations for 
different compiler options; this is similar to libraries that are developed for both 
banked and non-banked memory models. 

3 Applications and Performance Evaluation 

Since Y-Threads are preemptive multithreads with small stacks, any application that 
can be implemented using preemptive multithreads can also be implemented using Y-
Threads. The applications evaluated in this paper show the advantage of a preemptive 
multithreading programming model, and the need for relatively large temporary 
memory allocations. All applications evaluated were compiled for the AVR 
ATMega128. All test data was either collected from AVRORA2 or backed out of 
object dumps of the applications. 

3.1 Run to Completion Routine vs. Subroutine and Light Weight Thread 
Invocation 

The overhead associated with invoking an RCR compared to a normal subroutine is 
an important metric to evaluate. LWTs are run to completion threads on OS* and 
therefore are a possible alternative to RCRs for the execution of non-blocking code. A 

                                                           
2 AVRORA is an AVR simulator developed by UCLA Compilers Group and available at 

http://compilers.cs.ucla.edu/avrora/ 



test program was written to evaluate the overhead associated with RCR, subroutine 
and LWT invocations. Figure 6 shows the overhead in instruction cycles for invoking 
each type of routine. LWTs must be posted to the scheduler prior to the thread switch; 
therefore the LWT thread switch is shown with and without the scheduler posting 
overhead. As expected the invocation overhead of the RCR is higher than the normal 
subroutine, but it is less than half as much as the LWT. The overhead of the RCR 
(177 instructions) is closer to that of a subroutine (94 instructions) than that of the 
LWT (462 instructions). 
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Figure 6. RCR, Subroutine, and LWT Invocation Times 

3.2 Dynamic Allocation vs. Y-Thread Automatic Allocation 

Limited resource systems often need to allocate relatively large memory buffers for 
temporary use. Modifying flash is one such application that is necessary in many 
embedded systems. The nature of flash requires that entire pages, sometimes as large 
as 512B in size, be erased before reprogramming can occur. These resource 
constrained systems typically have between 1KB and 10KB of RAM, and therefore a 
flash page is relatively large compared to the entire system memory. Figure 7 
illustrates the copy, erase, modify, write back cycle of modifying a flash page. 

There are two methods to allocate relatively large amounts of memory for 
temporary use in a preemptive multithreading environment. Memory can be 
dynamically allocated through a function invocation such as malloc and then freed 
when not needed through an invocation of free. The other method is to automatically 
allocate the memory on the stack by invoking a function.  

Dynamic memory allocation has the advantage that the allocation size is bound at 
run-time unlike automatic allocation that is bound at compile-time. The overhead of 
automatic allocation is constant and is typically lower than dynamic allocation. In a 
preemptive multithreading environment the drawback to automatic allocation is that 
the memory must be pre-allocated during the context allocation. The pre-allocated 
memory is unusable by other threads even when it is not in use by the thread. The 
advantage of Y-Threads is that they can automatically allocate memory in an RCR 



with less overhead than dynamic memory allocation. Further when a thread is not in 
an RCR the memory is available for other threads to use. 
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Figure 7. Flash Page Modification 

A flash modification application was implemented using four different methods. All 
test applications were implemented on OS* for the AVR ATMega128 and analyzed 
using AVRORA. The first method uses a small thread that dynamically allocates 
memory for the modification buffer via malloc. When the buffer is no longer needed 
it is freed. The second method utilizes a global buffer for the modification. The final 
two test applications utilize RCRs that automatically allocate the modification buffer 
on the stack. One of the methods uses the oss_rcr_call while the other inlines the 
oss_rcr_call to emulate compiler support for Y-Threads.  

The flash modification function execution time is dependent upon the 
fragmentation of the heap for the malloc version. All other versions of the function 
were independent of heap fragmentation. Figure 8 shows the execution time of each 
of the function versions normalized to the RCR version. The malloc version is slightly 
slower than the RCR version in the best case and climbs to over 8% higher at only 16 
fragments. The RCR inlined version and the global buffer version were 0.7% and 
1.7% faster than the RCR version respectively. If Y-Threads were to be supported by 
the compiler or inlined through optimizations the RCR version would be 
approximately 1% slower than the global buffer version. 

0.98

1

1.02

1.04

1.06

1.08

1.1

0 2 4 6 8 10 12 14 16

Heap Fragments

F
un

ct
io

n 
In

vo
ca

tio
nT

im
e 

(N
or

m
al

iz
ed

)

malloc
global
RCR
RCR Inline

 

Figure 8. Flash Modification Time vs. Heap Fragmentation 



The malloc version while slightly slower than the RCR version in the best case 
performs worse as memory becomes fragmented. The non-determinism of the malloc 
version makes it undesirable for any application that has real-time requirements. Also 
the RCR version does not statically allocate memory that cannot be used like the 
global buffer version does. 

3.3 Time Synchronization 

Time synchronization is a common service that is often required in WSNs. The time 
synchronization code illustrated in Figure 1 was evaluated for performance. The 
processMsg subroutine was replaced with an RCR version for evaluation. Figure 9 
shows the code for the RCR version of the application from Figure 1. Notice that 
very few changes were required. The processMsg subroutine has floating point math 
that is relatively RAM intensive for the 8-bit AVR ATMega128 CPU. The simulation 
of the time synchronization routine was run on AVRORA for ten seconds.  

void timesync_ReceiveTask(){ 
  TimeSyncMsg msg; 
  while(1) { 
    recv_radio_msg(&msg); 
    leds_greenToggle();  
    if((state & STATE_PROCESSING) == 0 ){ 
      mess.arrivalTime = hal_sys_time_getTime32(); 
      oss_rcr_call(processMsg, & msg); 
} } } 
 
void processMsg(oss_rcr_data_t *data){ 
  TimeSyncMsg *msg = (TimeSyncMsg *)data; 
   ...} 

Figure 9. RCR Time Synchronization Code Sample 

The energy consumption and the number of active CPU cycles were compared for 
the original and the RCR versions of the time synchronization algorithm. Figure 10 
shows the results of the tests. The RCR version was active for 0.12% more instruction 
cycles than the non-RCR version, and consumed 0.02% more energy. The overhead 
of running the RCR version is insignificant in terms of energy usage. 

RAM utilization was also compared for the both the RCR and original versions. 
Figure 11 illustrates the worst-case, thread stack, interrupt and RCR stack memory 
usage for both the original and RCR versions. The worst-case memory was calculated 
as the total memory required for maximum function invocations plus the maximum 
ISR requirements. The worst-case memory usage originally started at 278 bytes and 
was reduced to 232 bytes in the RCR version. Since the processMsg call was switched 
to an RCR call, the thread stack requirements were reduced from 142 to 58 bytes. The 
transition of processMsg to an RCR call alone should actually increase the total 
required RAM, but when interrupts are considered the worst-cast RAM utilization is 
actually reduced in the RCR version. In the original version LWTs execute on the 
scheduling stack, whereas the RCR version LWTs utilize the RCR stack. Sharing of 



the RCR stack is the main reason for the reduction in worst-case RAM utilization 
from that of the original version. As the number of Y-Threads increases, the worst-
case RAM savings of RCR versions should increase because more RAM should be 
shared on the RCR stack. 
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Figure 10. Time Synchronization Energy and Active Time 
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Figure 11. Time Synchronization Memory Usage 

3.4  “Delta” Based Code Distribution 

The distribution of a new code image to an embedded system is difficult and often 
requires a significant amount of system resources. The method discussed in [13] of 
transmitting only deltas for system updates has much promise and could benefit from 
the use of Y-Threads. In order to minimize data transmission, deltas or differences 
between the new and existing image are transmitted.  

The update application receives deltas and modifies flash pages. As discussed in 
[14], implementing state machines is often easier using preemptive multithreading 
than event based programming. The reception of delta packets can easily be done in a 



preemptive thread. Since the size of the deltas are relatively small compared to the 
size of a flash page, the delta packets can be stored on the thread stack.  

A large buffer is required to construct the new flash pages from the deltas and the 
existing image. As discussed previously, the nature of flash requires that the entire 
page be erased prior to reprogramming. Prior to the implementation of Y-Threads, a 
statically allocated global buffer was used to implement the delta update application. 
A RCR can be used to construct the updated flash pages from the deltas and the 
existing image. The large buffer can be allocated on the RCR stack as discussed in the 
previous section. The delta update RCR constructs the new flash page in RAM, erases 
the page to be updated, and then reprograms the page. 

4 Concurrency Model Discussion 

The two main concurrency models are event-based microthreads, and preemptive 
multithreads. Event-based microthreads have very low overhead both in processing 
and memory utilization. Preemptive multithreaded systems allow for per thread state 
maintenance and thread blocking. The preemptive multithreaded programming model 
makes application development easier when true CPU concurrency is necessary. 

Event-based microthreads and preemptive multithreading are not the only 
concurrency models that exist. Lazy threads and protothreads are two other pseudo-
concurrency models. Both lazy threads and protothreads allow for blocking and are 
implemented using co-routine like mechanisms. Protothreads have been used 
successfully in Contiki[14][15]. All of the concurrency models must also deal with 
interrupts; therefore we discuss various implementation techniques for interrupt 
handlers. 

4.1 Event-Based Microthreads 

Event-based programming does not require a separate stack per execution context. 
Event handlers are typically implemented purely as function invocations making 
events efficient both in execution and memory utilization. Event-based systems often 
can be implemented in a high level language making the system easier to implement 
and more portable. Figure 12 shows the single stack utilization of event based 
threads. 
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Figure 12. Event-Based threading stack 

The disadvantage of the event-based concurrency model is that events or 
“microthreads” must be run to completion; events are not allowed to block. The ease 



of system development can come at the cost of complicated application development 
for systems that require true CPU concurrency. A further disadvantage of 
microthreads is that state maintenance across event handler calls must be done via 
global variables [16]. The use of global variables to maintain state may limit the 
modularity that can be achieved especially if written in a language such as C. 

4.2 Preemptive Multithreading 

Preemptive threads require RAM for each execution context. Preemptive threads 
allow for blocking, and per thread state maintenance. State maintenance with true 
CPU concurrency is often easier to implement in a multithreaded environment. Often 
WSN applications need to implement communication protocols with similar timeouts 
and system states. The increased modularity and ease of application programmability 
comes at a cost.  

Task 1

Task 1 Free 
Space

Unused 
Context 
Space

Task 2 
Dispatched

Task 1

Task 1 Free 
Space

Task 2

Task 2 Free 
Space

a b  

Figure 13. Preemptive multithreading memory 

Preemptive threads require assembly at the systems level for the context switch, 
complicating systems development. The context switch also has higher overhead than 
a function invocation. Preemptive threads must pre-allocate enough RAM to execute 
the deepest sequence of function invocations, and therefore hold an unused resource 
most of the time. Pre-allocation of memory is illustrated in Figure 13. The pre-
allocation of memory is the main drawback that has driven the use of event-based 
programming model in many embedded systems. 

4.3 Lazy Threads 

Lazy threads are a threading model that allows for parallel function invocations. The 
need for fast thread forking has driven the development of lazy threads. Lazy threads 
implementations attempt to allocate child threads on the parents stack in a 
“stacklet”[17]. If blocking of the child is necessary an entirely separate context must 
be allocated for the child and the child thread must be transferred. Unfortunately lazy 
threads are non-preemptive and therefore require cooperative multithreading. 
Implementations of lazy threads require compiler support to properly allow for 
continuations. No pointers to stack data are allowed since there is a possibility of 
context relocation, further limiting the flexibility of lazy threads. 



4.4 Protothreads 

Protothreads are pseudo threads that use a coroutine technique to implement blocking 
threads. Protothreads all execute on a single stack and are implemented entirely in C. 
The advantage of Protothreads is that they best utilize limited resources while 
providing a somewhat preemptive multithreading programming model. Figure 14 
shows the coroutine thread intertwining on a single stack. There are a few limitations 
of Protothreads; a major limitation is that automatic variables are not saved across 
blocking waits. The automatic variable limitation is not intuitive, and therefore can 
lead to programming mistakes. Blocking waits may only occur in the Protothread 
function and cannot occur in subroutines called by the Protothread. The blocking wait 
subroutine limitation is not as severe as automatic variable limitation especially when 
considering that blocking is often done at the highest level. 
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Figure 14. Protothreads stack usage 

4.5 Interrupts 

Since interrupts can occur at any time, preemptive multithreads must accommodate 
for them by allocating extra space for the largest interrupt service routine (ISR). This 
extra overhead is also required for Y-Threads. A separate stack can be used for 
interrupt processing, which reduces the overhead required per thread to that required 
for context storage. The disadvantage of a separate interrupt stack is added processing 
overhead for the stack switch. A combination of separate and common stack 
processing for ISRs can be used to allow for good RAM usage while providing good 
performance for higher frequency ISRs. Having two types of ISRs reduces the ISR 
uniformity, making it a less ideal method. 

Y-Threads already provide a method of processing on a common stack. This means 
that all ISRs can be written to execute on the current stack, and if the ISR needs extra 
space for processing it can invoke an RCR. The Y-Threading ISR programming 
paradigm is uniform, and provides the flexibility for either fast or large ISRs. 

5 Future Work 

The main areas of future work are related to development tools. Adding Y-Thread 
support to a language and the development of Y-Thread compatible libraries is a 
major area of future work. As stated in [18] threading must be part of the language for 



the best performance, and not just implemented in a library. This is true for Y-
Threads as well. Another area of future work is to statically profile the Y-Thread 
software. 

5.1 Language/Compiler Support 

Language/Compiler support can improve the ease of programmability, and reduce the 
overhead of invoking Y-Thread RCRs. Currently Y-Thread RCRs are implemented 
using a helper function to call the RCR. The calling syntax is less than ideal since the 
function pointer and the data parameter must be passed to the oss_rcr_call helper 
function. Ideally the programmer would just invoke the RCR as if it were a normal 
function invocation, and the compiler would generate the stack switching wrapper 
necessary for the RCR call. If the language/compiler natively supported Y-Threads it 
would allow for RCRs with signatures other than a single void pointer with a void 
return type. Language/Compiler Support also would reduce the overhead of an RCR 
invocation. The data parameters which currently need to be copied twice would be 
copied directly to the RCR stack. The overhead of the oss_rcr_call function call 
would also be removed. Overall the added overhead of an RCR invocation could be 
reduced to checking if currently on the RCR stack, entering/exiting of an atomic state, 
and switching of the stack pointer. However, as stated in the Section 2, the compiler 
would need to have knowledge of the OS, which most likely would bind the 
language/compiler to a single RTOS. 

5.2 Y-Threads and Libraries 

The initial development of Y-Threads was driven by the observation that embedded 
systems often run a cycle of work and waiting. It was also observed that blocking is 
often done at the highest level. However not all blocking is done in this manner. If 
layers are built upon blocking calls then the dedicated Y-Thread stack may need to be 
larger than if blocking were to be done at a shallower location. The feasibility of 
using blocking libraries in Y-Threads must still be determined. Development of 
libraries using Y-Threads that block at higher levels is one possible option. It is 
possible that these libraries could be accessed using some form of message passing or 
shared memory, but work in this area is necessary to determine the practicality. The 
development of Y-Thread friendly libraries would be a logical extension of 
language/compiler support for Y-Threads. 

5.3 Static Profiling 

If a compiler existed that natively supported Y-Threads it could determine RCR stack 
requirements and if an RCR blocked. Determining the RCR stack requirements could 
improve memory utilization allowing for more RAM to be available for the heap, 
main stack and data space. If higher priority thread preemption is not allowed during 
an RCR invocation and there are no recursive function invocations or function pointer 



invocations within the RCR, then the memory requirements can be determined for the 
RCR stack. Either an error or a warning could be generated by the compiler if it 
detects that an RCR can invoke a blocking function since blocking is not allowed in 
an RCR. Statically determining if an RCR can invoke a blocking function or not only 
requires that no function pointer invocations exist within the RCR or its function 
invocations. 

The RCR stack only needs to accommodate for the worst case stack utilization for 
all RCRs and any functions they invoke. If recursion exists within any of the RCRs 
then it will not be possible to determine the RCR stack requirements since the 
recursion depth is bound at runtime[9]. Function pointer invocations are bound at 
runtime and therefore would make a compile time analysis impossible. If higher 
priority thread preemption is allowed then the number of simultaneous RCR 
invocations cannot be bound at compile time and therefore the RCR stack 
requirements cannot be determined. 

Determining if an RCR can invoke a blocking function, is a simple matter of 
following all possible function invocations from the RCR. This is similar to compilers 
detecting dead code.  

6 Conclusions 

Y-Threads can be implemented easily on systems that currently support preemptive 
multithreading as is the case with OS*. The advantage of Y-Threads is that they 
provide a preemptive multithreaded programming model with good memory 
utilization.  

Automatic allocation of memory on the RCR stack can be done with less overhead 
than dynamic allocation. The RCR call overhead is constant making it more desirable 
than dynamic memory allocation for systems with real-time requirements. The RCR 
call and automatic allocation overhead is slightly higher than statically allocated 
global buffer implementation without the static allocation of the memory. The RCR 
memory is available for use by any thread, where static global allocation of memory 
can only be used by a single thread. This need for having memory available for other 
threads is shown in the time synchronization application that had less than 41% of 
dedicated memory for its threads.  

The hybrid of the two concurrency models in Y-Threads has allowed for the best of 
both models. Future work could further reduce overhead with language support. 
Language support could also add the ability to detect blocking in RCRs and the RCR 
stack requirements for further optimization and application correctness checking. The 
use of Y-Threads in embedded systems specifically WSN could reduce the time of 
application development when compared to event-based approaches. Y-Threads also 
have the potential to increase the capabilities of preemptive multithreaded systems 
due to better resource utilization. 
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