
Y-THREADS: SUPPORTING CONCURRENCY IN
WIRELESS SENSOR NETWORKS

Christopher Nitta1, Raju Pandey1, and Yann Ramin1

1Department of Computer Science

University of California, Davis
Davis, CA 95616

{nitta, pandey, ramin}@cs.ucdavis.edu

Abstract. Resource constrained systems often are programmed using an event-
based model. Many applications do not lend themselves well to an event-based
approach, but preemptive multithreading pre-allocates resources that cannot be
used even while not in use by the owning thread. In this paper, we propose a
hybrid approach called Y-Threads. Y-Threads provide separate small stacks for
blocking portions of applications, while allowing for shared stacks for non-
blocking computations. We have implemented Y-Threads on Mica and Telos
wireless sensor network platforms. The results show that Y-Threads provide a
preemptive multithreaded programming model with resource utilization closer
to an event-based approach. In addition, relatively large memory buffers can be
allocated for temporary use with less overhead than conventional dynamic
memory allocation methods.

Keywords: Stack sharing, Multi-threading, Concurrency

1 Introduction

Wireless Sensor Network (WSN) systems are inherently concurrent. Support for
concurrency is needed in all layers of the WSN software stack. At the operating
system level, hardware interrupts, low level I/O and sensor events are asynchronous.
At the middleware level, specific services (such as time synchronization [1][2] and
code distribution[3][4][5]) are highly concurrent in nature, and exist independently
from other activities. For instance, most code distribution protocols have several
concurrent activities: one may actively maintain a code distribution tree by
periodically collecting neighbor information, while the other may cache and distribute
code along the distribution tree. At the application level, programs may define both
node-level (e.g., collect data) and group level activities (e.g., aggregate data), each
occurring concurrently.

Concurrency exists not only at many different levels, but also in many different
forms: rapid responses to specific events are easily represented using events and event
handlers; concurrency among middleware services are better expressed using long
running threads (LRT); concurrency and group concurrent activities are better defined
using a combination of threads and atomic computations; and higher level system

software abstractions (such as virtual machines and middleware) can be implemented
easier using a threading mechanism. We have examined these concurrency models
and believe there is a disconnect between the two main models.

WSN Operating Systems work with limited resources, RAM being the primary
limitation. The limited RAM drives many embedded system designers to use an
event-based programming model as in TinyOS[6] and SOS[7]. Though [8] shows that
event-based and thread-based approaches can be interchanged, many applications do
not lend themselves well to an event-based approach, especially those where true
CPU concurrency is needed[9][10]. Often embedded system tasks run a cycle of work
and waiting. Blocking is done at the highest level, computation is executed to
completion and waiting occurs again. Preemptive multithreading pre-allocates RAM
that cannot be used even while not in use by the owning thread. What is needed is a
concurrency model that balances the programming needs through a preemptive
threading model and at the same time meets the resource constraints of sensing
devices.

We introduce a hybrid approach called Y-Threads. Y-Threads are preemptive
multithreads with small thread stacks. The majority of work in Y-Threads is done by
non-blocking routines that execute on a separate common stack. By separating the
execution stacks of control and computational behavior, Y-Threads can support
preemptive threading model with better memory utilization than preemptive
multithreading alone.

We have implemented Y-Threads on several WSN platforms. Experimental results
show that a Y-Thread version of a time synchronization application only increased
energy consumption by 0.12% over the original purely multithreaded version. In
addition the worst-case RAM requirement for the Y-Thread implementation was
reduced by 16.5%. Experiments also show that Y-Thread implementations of a flash
modification routine are more processing efficient than versions that dynamically
allocate memory.

The rest of this paper is structured as follows. Section 2 discusses the motivation,
programming model, and implementation of Y-Threads. Experimental test
applications and results are described in Section 3. Section 4 discusses the existing
concurrency models more in depth. Section 5 discusses the possibilities of future
work on Y-Threads. We conclude in Section 6.

2 Y-Threads

Y-Threads are preemptive threads and are well suited to capture the reactive nature of
many WSN programs. It is based on the insight that many WSN applications block,
waiting for specific events to occur, that has motivated the development of Y-
Threads. As events occur, they react by performing atomic computations, changing
their state, and returning to the wait mode. Behavior of many such applications can be
captured in terms of two sets of behavior: the first is a control behavior that is state-
based and that guides the application through different state transitions as different
events occur. The second are the different computational behaviors that occur during
various state transitions.

For instance, consider the time synchronization code sample shown in Figure 1.
The control behavior is defined in the while loop: the application blocks while
waiting for events (such as message arrival). Upon occurrences of these events, it
performs specific actions (such as processMsg), and then goes back to wait for other
events to occur.

We observe that the size of stack required to execute the control behavior is fairly
small. By separating the execution stacks of control and computational behavior, we
can support preemptive threading model and save on memory space. Y-threads
implement this idea by providing support for both control and computational
behaviors.

void timesync_ReceiveTask(){
 TimeSyncMsg msg;
 while(1) {
 recv_radio_msg(&msg);
 leds_greenToggle();
 if((state & STATE_PROCESSING) == 0){
 mess.arrivalTime = hal_sys_time_getTime32();
 processMsg(&msg);
} } }

void processMsg(TimeSyncMsg *msg){
 …
}

Figure 1. Time Synchronization code sample

2.1 Y-Threads programming model

Y-Threads provide the capabilities of preemptive multithreading with good utilization
of limited RAM. Y-Threads are preemptive threads with small pre-allocated stacks.
Y-Threads have the same semantics as general threads, but the majority of work is
done by Run to Completion Routines (RCR) that execute on a separate common
stack. Task stack sharing and a scheduling method for correct system operation are
discussed in [11]. The difference in Y-Threads is that RCRs execute as the invoking
thread and maintains the invoking threads priority, whereas [11] discusses run to
completion flyweight tasks. The Y-Thread interface provides two primary functions,
one to create the Y-Threads, and one to invoke the RCRs. Figure 2 shows the Y-
Thread and RCR APIs. The APIs are discussed in further detail in Section 2.2.

typedef void (*oss_task_function_t)(void);
typedef void *oss_rcr_data_t;
typedef void (*oss_rcr_function_t)(oss_rcr_data_t);
oss_taskp_t oss_ythread_create(oss_task_function_t
task_func, uint16_t sz);
void oss_rcr_call(oss_rcr_function_t func,
oss_rcr_data_t data);

Figure 2. Y-Thread and RCR API

Figure 3 shows the memory map of two different threads each invoking an RCR.
Task 1 has higher priority than Task 2 and waits until the semaphore is signaled. The
arrow in each portion of Figure 3 signifies the current execution stack. In a of the
figure Task1 is blocked, and Task2 is running. Task 2 invokes an RCR in b, which
executes on a separate stack and then returns in c. Task1 is of higher priority, and is
unblocked in d and invokes its RCR in e. The RCR returns and Task1 continues to
execute on its stack in f. Notice the sharing of the common stack space for both
RCRs. The stack sharing provides programming semantics of a much larger virtual
stack for each task. The source in Figure 4 is an example that corresponds to the
memory map in Figure 3.

Run To
Complete

Stack
Free

Space
Task 2
Calls
RCR

Task 1

Task 2

Task 2
Non-

blocking

Task 1

Task 2

Task 2
RCR

Returns

Run To
Complete

Stack
Free

Space

Task 1

Task 2

Task 1
Calls
RCR

Task 1
Non-

blocking

Task 1

Task 2

Task 1
RCR

Returns

Run To
Complete

Stack
Free

Space

Task 1

Task 2

Task 1
Unblocks

Run To
Complete

Stack
Free

Space

Task 1

Task 2

a b c d e f

Figure 3. Y-Threads Memory Usage

void Task1(){
 while(1){
 wait_sem(&sem1);
 oss_rcr_call(Task1Process,NULL);
} }

void Task2(){
 while(1){
 oss_sleep(100);
 oss_rcr_call(Task2Proccess,NULL);
 signal_sem(&sem1);
} }

void Task1Process(oss_rcr_data_t *data){
 ...//Do something
}

void Task2Process(oss_rcr_data_t *data){
 ...//Do something else
}

Figure 4. Y-Thread Code Example

Y-Threads are similar to preemptive multithreads that spawn run to completion
threads without the overhead of creating a run to completion thread. It may be
possible to implement Y-Threads such that an RCR can be preempted by threads of
higher priority since threads that are on the RCR stack cannot block. Currently Y-

Threads have not been implemented in this manner and such an implementation
should rename RCR to Non-Blocking Routine (NBR).

Parameters can be passed to RCRs and results can be returned, since it is just a
matter of copying data to and from the correct contexts. Since the invoking thread
transfers execution control to the RCR during invocation, all data on the controlling
thread’s stack can be accessed by the RCR. The RCR signature is dependent upon the
implementation of Y-Threads. The initial implementation of Y-Threads uses a single
function to invoke the RCR. RCRs can invoke subroutines as long as none of the
subroutines attempt to block execution. If an RCR invokes another RCR, it has the
same semantics as invoking a subroutine since the invoking RCR is already executing
on the RCR stack.

Y-Thread behavior can be emulated on any RTOS that has both preemptive threads
and light weight or run to completion threads with extra overhead. Y-Threads are
similar to OSEK[12] Extended tasks that spawn Basic tasks, in those systems that
execute Basic tasks on a common stack. The exception is that they do not execute as
Extended tasks and do not inherit their priority.

Y-Threads have better memory utilization than just pure preemptive multithreading
since large amounts of memory can be automatically allocated and freed on the RCR
stack. Preemptive multithreads must pre-allocate enough memory for the worst case
stack utilization; therefore there is memory that is unused in each thread, but is also
unusable by other threads. Y-Threads do not need to pre-allocate large amounts of
memory for potential future use unlike purely preemptive multithreading. Y-Threads
can also automatically allocate large amounts of memory on the RCR stack with less
overhead than dynamic memory allocation. Y-Threads provide the advantages of
preemptive multithreading without the disadvantage of high memory overhead.

2.2 Y-Thread Implementation

Y-Threads were first implemented on OS*1 for the AVR ATMega128 using an
invocation to a helper function oss_rcr_call. The signature of the RCRs is a single
void pointer parameter with a void return type. The RCR data types and oss_rcr_call
prototype can be seen in Figure 2. Light Weight Threads (LWT) are implemented in
OS* using an RCR wrapper. The calling convention of the ATMega128 under GCC
passes most function parameters in registers making overhead of the oss_rcr_call
helper function very low. The advantage of compiler support or oss_rcr_call in-lining
is not likely to be as great for the ATMega128 as it may be for other architectures
where parameters are primarily passed on the stack. Switching the control to the RCR
stack was relatively straight forward in the ATMega128 since GCC uses registers and
the frame pointer to access local variables and parameters.

OS knowledge is necessary for any Y-Thread implementation. OS knowledge is
necessary since it must be known if the RCR stack is in use or not. Furthermore, if
RCRs are implemented as “Non-Blocking Routines” as discussed in Section 2.1, the
current top of the NBR stack must be stored during a context switch from a thread in

1 OS* is a light-weight synthesizable operating system for the Mica, Telos and Stargate families

of sensor nodes currently under development by the SENSES group at UC Davis.

the NBR. Figure 5 illustrates a higher priority thread preempting an NBR. In part a of
the figure Task2 of lower priority is executing a NBR. Task1 is unblocked by an ISR
in part b and context switch from Task2’s NBR to Task1 occurs. Task1 invokes an
NBR in part c which executes on the common stack under Task2’s ready NBR. Task
1’s NBR would overwrite Task 2’s NBR if the NBR stack top is not stored during the
context switch. Due to the nature of the OS* scheduler, our current Y-Thread
implementation does not need to store the top of the RCR stack.

Task 2
NBR

Task 1

Task 2

ISR
Unblocks
Task 1

Task 1
Calls NBR

Task 2
NBR

Task 1
NBR

Task 1

Task 2

Task 2
NBR

Task 1

Task 2

Task 1
NBR

Returns
and

Blocks

Task 2
NBR

Task 1

Task 2

a b c d

Figure 5. NBR Preemption by higher priority thread

We also implemented Y-Threads for the TI MSP430. The RCR API is identical to
that of the ATMega128 implementation. Unlike the ATMega128, the implementation
of Y-Threads for MSP430 was complicated by GCC’s use of the frame pointer. The
difficulty arose in implementing a version of Y-Threads that operated properly under
all optimization levels of GCC. One possible solution is to have implementations for
different compiler options; this is similar to libraries that are developed for both
banked and non-banked memory models.

3 Applications and Performance Evaluation

Since Y-Threads are preemptive multithreads with small stacks, any application that
can be implemented using preemptive multithreads can also be implemented using Y-
Threads. The applications evaluated in this paper show the advantage of a preemptive
multithreading programming model, and the need for relatively large temporary
memory allocations. All applications evaluated were compiled for the AVR
ATMega128. All test data was either collected from AVRORA2 or backed out of
object dumps of the applications.

3.1 Run to Completion Routine vs. Subroutine and Light Weight Thread
Invocation

The overhead associated with invoking an RCR compared to a normal subroutine is
an important metric to evaluate. LWTs are run to completion threads on OS* and
therefore are a possible alternative to RCRs for the execution of non-blocking code. A

2 AVRORA is an AVR simulator developed by UCLA Compilers Group and available at

http://compilers.cs.ucla.edu/avrora/

test program was written to evaluate the overhead associated with RCR, subroutine
and LWT invocations. Figure 6 shows the overhead in instruction cycles for invoking
each type of routine. LWTs must be posted to the scheduler prior to the thread switch;
therefore the LWT thread switch is shown with and without the scheduler posting
overhead. As expected the invocation overhead of the RCR is higher than the normal
subroutine, but it is less than half as much as the LWT. The overhead of the RCR
(177 instructions) is closer to that of a subroutine (94 instructions) than that of the
LWT (462 instructions).

0

50

100

150

200

250

300

350

400

450

500

RCR Subroutine LWT LWT w/ Posting

Routine Type

In
st

ru
ct

io
n

 C
yc

le
s

Return

Invocation

Figure 6. RCR, Subroutine, and LWT Invocation Times

3.2 Dynamic Allocation vs. Y-Thread Automatic Allocation

Limited resource systems often need to allocate relatively large memory buffers for
temporary use. Modifying flash is one such application that is necessary in many
embedded systems. The nature of flash requires that entire pages, sometimes as large
as 512B in size, be erased before reprogramming can occur. These resource
constrained systems typically have between 1KB and 10KB of RAM, and therefore a
flash page is relatively large compared to the entire system memory. Figure 7
illustrates the copy, erase, modify, write back cycle of modifying a flash page.

There are two methods to allocate relatively large amounts of memory for
temporary use in a preemptive multithreading environment. Memory can be
dynamically allocated through a function invocation such as malloc and then freed
when not needed through an invocation of free. The other method is to automatically
allocate the memory on the stack by invoking a function.

Dynamic memory allocation has the advantage that the allocation size is bound at
run-time unlike automatic allocation that is bound at compile-time. The overhead of
automatic allocation is constant and is typically lower than dynamic allocation. In a
preemptive multithreading environment the drawback to automatic allocation is that
the memory must be pre-allocated during the context allocation. The pre-allocated
memory is unusable by other threads even when it is not in use by the thread. The
advantage of Y-Threads is that they can automatically allocate memory in an RCR

with less overhead than dynamic memory allocation. Further when a thread is not in
an RCR the memory is available for other threads to use.

Flash
Copy
Flash

Page to
RAM

RAM
Buffer

Unused
RAM

Flash
Page

Flash
Erase
Flash
Page

RAM
Buffer

Unused
RAM

Flash
Page

Flash
Modify
RAM
Buffer

RAM
Buffer

Unused
RAM

Flash
Page

Flash
Copy

Back to
Flash

RAM
Buffer

Unused
RAM

Flash
Page

Flash

RAM
Buffer

Unused
RAM

Flash
Page

a b c d e

Figure 7. Flash Page Modification

A flash modification application was implemented using four different methods. All
test applications were implemented on OS* for the AVR ATMega128 and analyzed
using AVRORA. The first method uses a small thread that dynamically allocates
memory for the modification buffer via malloc. When the buffer is no longer needed
it is freed. The second method utilizes a global buffer for the modification. The final
two test applications utilize RCRs that automatically allocate the modification buffer
on the stack. One of the methods uses the oss_rcr_call while the other inlines the
oss_rcr_call to emulate compiler support for Y-Threads.

The flash modification function execution time is dependent upon the
fragmentation of the heap for the malloc version. All other versions of the function
were independent of heap fragmentation. Figure 8 shows the execution time of each
of the function versions normalized to the RCR version. The malloc version is slightly
slower than the RCR version in the best case and climbs to over 8% higher at only 16
fragments. The RCR inlined version and the global buffer version were 0.7% and
1.7% faster than the RCR version respectively. If Y-Threads were to be supported by
the compiler or inlined through optimizations the RCR version would be
approximately 1% slower than the global buffer version.

0.98

1

1.02

1.04

1.06

1.08

1.1

0 2 4 6 8 10 12 14 16

Heap Fragments

F
un

ct
io

n
In

vo
ca

tio
nT

im
e

(N
or

m
al

iz
ed

)

malloc
global
RCR
RCR Inline

Figure 8. Flash Modification Time vs. Heap Fragmentation

The malloc version while slightly slower than the RCR version in the best case
performs worse as memory becomes fragmented. The non-determinism of the malloc
version makes it undesirable for any application that has real-time requirements. Also
the RCR version does not statically allocate memory that cannot be used like the
global buffer version does.

3.3 Time Synchronization

Time synchronization is a common service that is often required in WSNs. The time
synchronization code illustrated in Figure 1 was evaluated for performance. The
processMsg subroutine was replaced with an RCR version for evaluation. Figure 9
shows the code for the RCR version of the application from Figure 1. Notice that
very few changes were required. The processMsg subroutine has floating point math
that is relatively RAM intensive for the 8-bit AVR ATMega128 CPU. The simulation
of the time synchronization routine was run on AVRORA for ten seconds.

void timesync_ReceiveTask(){
 TimeSyncMsg msg;
 while(1) {
 recv_radio_msg(&msg);
 leds_greenToggle();
 if((state & STATE_PROCESSING) == 0){
 mess.arrivalTime = hal_sys_time_getTime32();
 oss_rcr_call(processMsg, & msg);
} } }

void processMsg(oss_rcr_data_t *data){
 TimeSyncMsg *msg = (TimeSyncMsg *)data;
 ...}

Figure 9. RCR Time Synchronization Code Sample

The energy consumption and the number of active CPU cycles were compared for
the original and the RCR versions of the time synchronization algorithm. Figure 10
shows the results of the tests. The RCR version was active for 0.12% more instruction
cycles than the non-RCR version, and consumed 0.02% more energy. The overhead
of running the RCR version is insignificant in terms of energy usage.

RAM utilization was also compared for the both the RCR and original versions.
Figure 11 illustrates the worst-case, thread stack, interrupt and RCR stack memory
usage for both the original and RCR versions. The worst-case memory was calculated
as the total memory required for maximum function invocations plus the maximum
ISR requirements. The worst-case memory usage originally started at 278 bytes and
was reduced to 232 bytes in the RCR version. Since the processMsg call was switched
to an RCR call, the thread stack requirements were reduced from 142 to 58 bytes. The
transition of processMsg to an RCR call alone should actually increase the total
required RAM, but when interrupts are considered the worst-cast RAM utilization is
actually reduced in the RCR version. In the original version LWTs execute on the
scheduling stack, whereas the RCR version LWTs utilize the RCR stack. Sharing of

the RCR stack is the main reason for the reduction in worst-case RAM utilization
from that of the original version. As the number of Y-Threads increases, the worst-
case RAM savings of RCR versions should increase because more RAM should be
shared on the RCR stack.

1.205

1.21

1.215

1.22

1.225

1.23

1.235

Original RCR

Jo
u

le
s,

 1
00

 M
ill

io
n

 C
yc

le
s

Energy
Active Time

Figure 10. Time Synchronization Energy and Active Time

0

50

100

150

200

250

300

Original RCR

B
yt

es

Worst Case
Dedicated Stack
Interrupt/LWT
RCR Stack

Figure 11. Time Synchronization Memory Usage

3.4 “Delta” Based Code Distribution

The distribution of a new code image to an embedded system is difficult and often
requires a significant amount of system resources. The method discussed in [13] of
transmitting only deltas for system updates has much promise and could benefit from
the use of Y-Threads. In order to minimize data transmission, deltas or differences
between the new and existing image are transmitted.

The update application receives deltas and modifies flash pages. As discussed in
[14], implementing state machines is often easier using preemptive multithreading
than event based programming. The reception of delta packets can easily be done in a

preemptive thread. Since the size of the deltas are relatively small compared to the
size of a flash page, the delta packets can be stored on the thread stack.

A large buffer is required to construct the new flash pages from the deltas and the
existing image. As discussed previously, the nature of flash requires that the entire
page be erased prior to reprogramming. Prior to the implementation of Y-Threads, a
statically allocated global buffer was used to implement the delta update application.
A RCR can be used to construct the updated flash pages from the deltas and the
existing image. The large buffer can be allocated on the RCR stack as discussed in the
previous section. The delta update RCR constructs the new flash page in RAM, erases
the page to be updated, and then reprograms the page.

4 Concurrency Model Discussion

The two main concurrency models are event-based microthreads, and preemptive
multithreads. Event-based microthreads have very low overhead both in processing
and memory utilization. Preemptive multithreaded systems allow for per thread state
maintenance and thread blocking. The preemptive multithreaded programming model
makes application development easier when true CPU concurrency is necessary.

Event-based microthreads and preemptive multithreading are not the only
concurrency models that exist. Lazy threads and protothreads are two other pseudo-
concurrency models. Both lazy threads and protothreads allow for blocking and are
implemented using co-routine like mechanisms. Protothreads have been used
successfully in Contiki[14][15]. All of the concurrency models must also deal with
interrupts; therefore we discuss various implementation techniques for interrupt
handlers.

4.1 Event-Based Microthreads

Event-based programming does not require a separate stack per execution context.
Event handlers are typically implemented purely as function invocations making
events efficient both in execution and memory utilization. Event-based systems often
can be implemented in a high level language making the system easier to implement
and more portable. Figure 12 shows the single stack utilization of event based
threads.

Task 1

ISR

Task 2

Free Space

Task 1

Free Space

ISR
Dispatches

Task 2

a b

Figure 12. Event-Based threading stack

The disadvantage of the event-based concurrency model is that events or
“microthreads” must be run to completion; events are not allowed to block. The ease

of system development can come at the cost of complicated application development
for systems that require true CPU concurrency. A further disadvantage of
microthreads is that state maintenance across event handler calls must be done via
global variables [16]. The use of global variables to maintain state may limit the
modularity that can be achieved especially if written in a language such as C.

4.2 Preemptive Multithreading

Preemptive threads require RAM for each execution context. Preemptive threads
allow for blocking, and per thread state maintenance. State maintenance with true
CPU concurrency is often easier to implement in a multithreaded environment. Often
WSN applications need to implement communication protocols with similar timeouts
and system states. The increased modularity and ease of application programmability
comes at a cost.

Task 1

Task 1 Free
Space

Unused
Context
Space

Task 2
Dispatched

Task 1

Task 1 Free
Space

Task 2

Task 2 Free
Space

a b

Figure 13. Preemptive multithreading memory

Preemptive threads require assembly at the systems level for the context switch,
complicating systems development. The context switch also has higher overhead than
a function invocation. Preemptive threads must pre-allocate enough RAM to execute
the deepest sequence of function invocations, and therefore hold an unused resource
most of the time. Pre-allocation of memory is illustrated in Figure 13. The pre-
allocation of memory is the main drawback that has driven the use of event-based
programming model in many embedded systems.

4.3 Lazy Threads

Lazy threads are a threading model that allows for parallel function invocations. The
need for fast thread forking has driven the development of lazy threads. Lazy threads
implementations attempt to allocate child threads on the parents stack in a
“stacklet”[17]. If blocking of the child is necessary an entirely separate context must
be allocated for the child and the child thread must be transferred. Unfortunately lazy
threads are non-preemptive and therefore require cooperative multithreading.
Implementations of lazy threads require compiler support to properly allow for
continuations. No pointers to stack data are allowed since there is a possibility of
context relocation, further limiting the flexibility of lazy threads.

4.4 Protothreads

Protothreads are pseudo threads that use a coroutine technique to implement blocking
threads. Protothreads all execute on a single stack and are implemented entirely in C.
The advantage of Protothreads is that they best utilize limited resources while
providing a somewhat preemptive multithreading programming model. Figure 14
shows the coroutine thread intertwining on a single stack. There are a few limitations
of Protothreads; a major limitation is that automatic variables are not saved across
blocking waits. The automatic variable limitation is not intuitive, and therefore can
lead to programming mistakes. Blocking waits may only occur in the Protothread
function and cannot occur in subroutines called by the Protothread. The blocking wait
subroutine limitation is not as severe as automatic variable limitation especially when
considering that blocking is often done at the highest level.

Task 1

Task 2

Task 3

Task 2

Free Space

Task 2
Unblocks
Task 3

Task 1

Task 2

Task 3

Free Space

a b

Figure 14. Protothreads stack usage

4.5 Interrupts

Since interrupts can occur at any time, preemptive multithreads must accommodate
for them by allocating extra space for the largest interrupt service routine (ISR). This
extra overhead is also required for Y-Threads. A separate stack can be used for
interrupt processing, which reduces the overhead required per thread to that required
for context storage. The disadvantage of a separate interrupt stack is added processing
overhead for the stack switch. A combination of separate and common stack
processing for ISRs can be used to allow for good RAM usage while providing good
performance for higher frequency ISRs. Having two types of ISRs reduces the ISR
uniformity, making it a less ideal method.

Y-Threads already provide a method of processing on a common stack. This means
that all ISRs can be written to execute on the current stack, and if the ISR needs extra
space for processing it can invoke an RCR. The Y-Threading ISR programming
paradigm is uniform, and provides the flexibility for either fast or large ISRs.

5 Future Work

The main areas of future work are related to development tools. Adding Y-Thread
support to a language and the development of Y-Thread compatible libraries is a
major area of future work. As stated in [18] threading must be part of the language for

the best performance, and not just implemented in a library. This is true for Y-
Threads as well. Another area of future work is to statically profile the Y-Thread
software.

5.1 Language/Compiler Support

Language/Compiler support can improve the ease of programmability, and reduce the
overhead of invoking Y-Thread RCRs. Currently Y-Thread RCRs are implemented
using a helper function to call the RCR. The calling syntax is less than ideal since the
function pointer and the data parameter must be passed to the oss_rcr_call helper
function. Ideally the programmer would just invoke the RCR as if it were a normal
function invocation, and the compiler would generate the stack switching wrapper
necessary for the RCR call. If the language/compiler natively supported Y-Threads it
would allow for RCRs with signatures other than a single void pointer with a void
return type. Language/Compiler Support also would reduce the overhead of an RCR
invocation. The data parameters which currently need to be copied twice would be
copied directly to the RCR stack. The overhead of the oss_rcr_call function call
would also be removed. Overall the added overhead of an RCR invocation could be
reduced to checking if currently on the RCR stack, entering/exiting of an atomic state,
and switching of the stack pointer. However, as stated in the Section 2, the compiler
would need to have knowledge of the OS, which most likely would bind the
language/compiler to a single RTOS.

5.2 Y-Threads and Libraries

The initial development of Y-Threads was driven by the observation that embedded
systems often run a cycle of work and waiting. It was also observed that blocking is
often done at the highest level. However not all blocking is done in this manner. If
layers are built upon blocking calls then the dedicated Y-Thread stack may need to be
larger than if blocking were to be done at a shallower location. The feasibility of
using blocking libraries in Y-Threads must still be determined. Development of
libraries using Y-Threads that block at higher levels is one possible option. It is
possible that these libraries could be accessed using some form of message passing or
shared memory, but work in this area is necessary to determine the practicality. The
development of Y-Thread friendly libraries would be a logical extension of
language/compiler support for Y-Threads.

5.3 Static Profiling

If a compiler existed that natively supported Y-Threads it could determine RCR stack
requirements and if an RCR blocked. Determining the RCR stack requirements could
improve memory utilization allowing for more RAM to be available for the heap,
main stack and data space. If higher priority thread preemption is not allowed during
an RCR invocation and there are no recursive function invocations or function pointer

invocations within the RCR, then the memory requirements can be determined for the
RCR stack. Either an error or a warning could be generated by the compiler if it
detects that an RCR can invoke a blocking function since blocking is not allowed in
an RCR. Statically determining if an RCR can invoke a blocking function or not only
requires that no function pointer invocations exist within the RCR or its function
invocations.

The RCR stack only needs to accommodate for the worst case stack utilization for
all RCRs and any functions they invoke. If recursion exists within any of the RCRs
then it will not be possible to determine the RCR stack requirements since the
recursion depth is bound at runtime[9]. Function pointer invocations are bound at
runtime and therefore would make a compile time analysis impossible. If higher
priority thread preemption is allowed then the number of simultaneous RCR
invocations cannot be bound at compile time and therefore the RCR stack
requirements cannot be determined.

Determining if an RCR can invoke a blocking function, is a simple matter of
following all possible function invocations from the RCR. This is similar to compilers
detecting dead code.

6 Conclusions

Y-Threads can be implemented easily on systems that currently support preemptive
multithreading as is the case with OS*. The advantage of Y-Threads is that they
provide a preemptive multithreaded programming model with good memory
utilization.

Automatic allocation of memory on the RCR stack can be done with less overhead
than dynamic allocation. The RCR call overhead is constant making it more desirable
than dynamic memory allocation for systems with real-time requirements. The RCR
call and automatic allocation overhead is slightly higher than statically allocated
global buffer implementation without the static allocation of the memory. The RCR
memory is available for use by any thread, where static global allocation of memory
can only be used by a single thread. This need for having memory available for other
threads is shown in the time synchronization application that had less than 41% of
dedicated memory for its threads.

The hybrid of the two concurrency models in Y-Threads has allowed for the best of
both models. Future work could further reduce overhead with language support.
Language support could also add the ability to detect blocking in RCRs and the RCR
stack requirements for further optimization and application correctness checking. The
use of Y-Threads in embedded systems specifically WSN could reduce the time of
application development when compared to event-based approaches. Y-Threads also
have the potential to increase the capabilities of preemptive multithreaded systems
due to better resource utilization.

Acknowledgments. This work is supported in part by NSF grants CNS-0435531,
CNS-0520269, and EIA-0224469. The authors would also like to thank Joel Koshy

and the anonymous referees for their insightful comments on an earlier draft of this
paper.

References

[1] M. Maroti, B. Kusy, G. Simon, A. Ledeczi, The Flooding Time Synchronization Protocol,
Proceedings of the second international conference on Embedded networked sensor
systems, 2004.

[2] J. Elson, Time Synchronization in Wireless Sensor Networks, PhD Dissertation, 2003.
[3] N. Reijers, K. Langendoen, Efficient code distribution in wireless sensor networks,

Proceedings of the 2nd ACM international conference on Wireless sensor networks and
applications, 2003.

[4] S. S. Kulkarni, L. Wang, MNP: Multihop Network Reprogramming Service for Sensor
Networks, 25th IEEE International Conference on Distributed Computing Systems, 2005.

[5] J. Hui, D. Culler, The Dynamic Behavior of a Data Dissemination Protocol for Network
Programming at Scale, Proceedings of the 2nd international conference on Embedded
networked sensor systems, 2004.

[6] J. Hill, R. Szewczyk, A. Woo, System Architecture Directions for Network Sensors,
Architectural Support for Programming Languages and Operating Systems, pages 93–
104, 2000.

[7] C. Han, R. Kumar, R. Shea, A Dynamic Operating System for Sensor Nodes, Proceedings
of the 3rd international conference on Mobile systems, applications, and services, 2005.

[8] H. Lauer, R. Needham, On the Duality of Operating System Structures, Proceedings of the
Second International Symposium on Operating Systems, IRIA, 1978.

[9] R. Behren, J. Condit, E. Brewer, Why Events Are a Bad Idea (for high concurrency
servers), 9th Workshop on Hot Topics in Operating Systems (HotOS IX), 2003.

[10] J. Ousterhout, Why Threads Are a Bad Idea (for most purposes), Invited talk given at
USENIX Technical Conference, 1996.

[11] T. Baker, Stack-Based Scheduling of Realtime Processes, Journal of Real-Time Systems,
3, 1991.

[12] OSEK/VDX Operating System Version 2.2.3, available at http://osek-
vdx.org/mirror/os223.pdf, 2005.

[13] J. Koshy, R. Pandey, Remote Incremental Linking for Energy-Efficient Reprogramming
of Sensor Networks, Proceedings of the Second European Workshop on Wireless Sensor
Networks, 2005.

[14] Dunkels, O. Schmidt, and T. Voigt, Using Protothreads for Sensor Node Programming,
Proceedings of the REALWSN'05 Workshop on Real-World Wireless Sensor Networks,
2005.

[15] Dunkels, B. Gronval, T. Voigt, Contiki – a Lightweight and Flexible Operating System
for Tiny Networked Sensors, Proceedings of the 29th Annual IEEE International
Conference on Local Computer Networks, 2004.

[16] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, J. R. Douceur, Cooperative Task
Management without Manual Stack Management or, Event-driven Programming is Not
the Opposite of Threaded Programming, Proceedings of the 2002 USENIX Annual
Technical Conference, 2002.

[17] S. Goldstein, K. Schauser, E. Culler, Lazy Threads: Implementing a Fast Parallel Call,
Journal of Parallel and Distributed Computing, 1996.

[18] H. Boehm, Threads Cannot Be Implemented as a Library, Proceedings of the 2005 ACM
SIGPLAN conference on Programming Language Design and Implementation, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

