
  

  

Abstract—In this paper we examine techniques for 
increasing the effective bandwidth of the microprocessor off-
chip interconnect. We focus on mechanisms that are orthogonal 
to other techniques currently being studied (3-D fabrication, 
optical interconnect, etc.) Using a range of full-system 
simulations we study the distribution of values being 
transferred to and from memory, and find that (as expected) 
high entropy data such as floating point numbers have limited 
compressibility, but that other data types offer more potential 
for compression. By using a simple heuristic to classify the 
contents of a cache line and providing different compression 
schemes for each classification, we show it is possible to provide 
overall compression at a cache line granularity comparable to 
that obtained by using a much more complex Lempel-Ziv-
Welch algorithm. 

I. INTRODUCTION 
Microprocessors have long had to deal with the problem 

of memory bandwidth constraints. Burger, Goodman, and 
Kagi [1] and [2] discussed the impact of bandwidth limits on 
future microprocessor designs, and emphasized the 
importance of increasing the effective pin bandwidth. As we 
now move into an era of multicore processors, the pressure 
on the I/O pin bandwidth is going to further intensify, 
making this an even bigger concern. 

The bandwidth problem can be addressed in two 
orthogonal ways: by increasing the bandwidth available, and 
by decreasing the amount of bandwidth that is required. 
Bandwidth reduction techniques consist primarily of the 
extensive use of on-chip memories (mainly caches) to avoid 
having to go off-chip, while the bandwidth available can be 
increased by boosting the number of transactions per unit 
time (i.e. increasing the bus frequency), and/or by expanding 
the amount of data transferred per transaction (creating a 
wider interconnect).  

Although microprocessor pin counts have steadily 
climbed over the past 15 years, this increase in pins has not 
translated into wider off-chip data interconnects. 
Microprocessors have increased memory bandwidth 
primarily via a dramatic increase in bus frequencies. For 
example, in 1993 Intel released the Pentium 75, which 
featured a 64-bit data bus running at 50MHz in a 296 pin 
PPGA package. Recently Intel released the Core 2 Extreme 
QX9650, which has a 64-bit data bus running at 1333MHz, 
packaged in the LGA775. The QX9650 has over 2.6 times 
the number of pins and a burst speed over 26 times that of 
the Pentium 75 [3][4], but the data bus is the same width. 

Bus speed will not continue to increase indefinitely, 

however. Microprocessor core clock frequencies grew 
dramatically during the decade of the 1990’s, but since 2000 
(when 1GHz microprocessors first became commercially 
available) clock rates have climbed much less quickly. There 
is reason to believe that a similar slowdown of bus 
frequency acceleration will occur as bus speeds climb above 
1GHz, although researchers are currently studying 
approaches (such as 1 TB/s differential signal paired I/O [5] 
and optical interconnects [6]) that may allow the increase in 
off-chip frequencies to climb a while longer. 

The most common technique for reducing the amount of 
bandwidth needed is to place part of the memory hierarchy 
on-chip, reducing the number of off-chip references 
necessary. However, it is also possible to use data 
compression techniques to reduce the pressure on the off-
chip interconnect by increasing the effective bandwidth – 
that is, by increasing the amount of useful information (the 
information content) sent over each I/O pin on each 
transaction, thus requiring fewer transactions.  

It is this potential to increase the effective bandwidth that 
we will focus on in this paper. Section II describes related 
work that has been done in this area, while Section III 
discusses our simulation configuration and initial data 
analysis (which lead to a cache line classification heuristic). 
In Section IV we detail the compression algorithms analyzed 
and propose a compression technique for cache lines, and 
our results appear in Section V. Our conclusions and 
possible future work are provided in Section VI. 

II. RELATED WORK 
Over the years, researchers have looked at a variety of 

ways to more effectively utilize I/O pins. Compressing the 
number of address lines was examined in [7], and in [8], 
[12], and [13] the compressibility of data in various 
benchmarks was analyzed. However, the previous studies 
primarily focused on either the compression ratio or lookup-
table hit rates; this can be misleading, since a higher 
compression ratio does not directly translate into a higher 
effective bandwidth if more transactions or larger 
uncompressed transactions are required to achieve the 
improved compression ratio. This previous work also did 
not analyze full system traces, but focused on a series of 
application level benchmarks. 

Storing data in compressed form in main memory has 
been investigated by [9][10], while a unified compressed 
memory hierarchy has been analyzed in [11][12]. The 
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authors of these studies argue that a compressed memory 
hierarchy can improve program performance, but it is 
unclear if the added complexity of maintaining a 
compressed memory system and the handling of corner 
cases will be justified by the overall performance gains. 
Storing compressed data in the cache increases the effective 
size of the cache, but as we will show an increased cache 
size does not translate into as large a reduction in required 
bandwidth as interconnect data compression alone. 

A wide range of compression algorithms have been 
evaluated in the previous work, ranging from the relatively 
simple and straightforward (Frequent Value Caching) to the 
more complex (Lempel-Ziv). There are also several versions 
of the Lempel-Ziv (LZ) compression algorithms to choose 
from - LZ77, Lempel-Ziv-Welch (LZW), and LZSS (a 
parallel version of LZ77.) LZ77 tends to perform poorly on 
small block sizes, such as single cache lines, while LZW is 
faster but typically does not achieve the quality of 
compression of LZ77 when larger block sizes are used. 
LZSS was analyzed in [11] for their unified compressed 
memory hierarchy. 

Certain values appear frequently in program data. Both 
[14] and [15] attempt to exploit this data value commonality 
by the use of a Value Cache (VC), a structure which holds 
frequently occurring patterns. VC algorithms typically use a 
single bit to encode a hit or a miss in the value cache, and 
then transmit either the corresponding index into the cache 
(in the case of a hit) or the entire value (in the case of a 
miss). Both static and dynamically loaded value caches have 
been studied, and these structures can store part or all of the 
desired transmitted value. A VC is relatively easy to 
implement when compared to more complex compression 
schemes, and appears to work well for small data blocks. 
One downside of a VC is that the data structures on both 
ends of the interconnect must remain synchronized, but this 
should not be a problem for small table sizes. 

Run Length Encoding (RLE) encodes runs of identical 
values into a (value, run length) pair. This compression 
technique is efficient on data with long runs of identical data 
values, which many uncompressed images contain. A Move 
To Front (MTF) transformation is often used prior to Zero 
Length Encoding ZLE (a special case of RLE) in the hopes 
of capturing more runs of zeros. However, RLE and ZLE 
algorithms tend to do poorly on data that has high entropy 
(such as floating point values). 

Many techniques have been proposed for compressing 
floating point numbers. Floating point value prediction was 
investigated in [17] and achieved compression ratios 
between 1.2 and 4.2. This algorithm predicts what the next 
floating point value will be and then sends the distance 
between the predicted and actual values, with leading zeros 
compressed. Prediction is also used in [18] and [19], but the 
distance is transformed into an integer which is then 
encoded into entropy codes and raw bits.  

With the exception of [10] (which evaluated an existing 

system but focused on compressed memory and not 
interconnect data) we are unaware of any previous work that 
has performed its analysis on full-system simulations as we 
have done. 

III. SIMULATION CONFIGURATION AND DATA ANALYSIS 
In order to properly evaluate a data compression scheme 

for a real system, all the information going across the data 
lines (including data generated by the operating system) 
must be included. Therefore, we used a full-system 
simulator to gather our data. The data generated by the 
simulator included the base address of each reference, 
whether it was a read or a write, the data in the cache line 
associated with that address, and the method by which the 
microprocessor accessed the cache line. The four methods of 
access tracked by the simulator were instruction read, page 
table access, general load/store, and floating point 
load/store. 

A. Full-System Configuration and Simulations 
The simulator we chose to use was a modified version of 

bochs 2.3.5, which simulates an x86-based system. The 
simulated system was configured to have 512MB of RAM, a 
2GB HDD (ext3), 512MB HDD (swap), and a CD-ROM. 
We modified the simulator to include a 16 way set 
associative write back L2 cache with 64 byte cache lines. 
Cache sizes of 1, 2, 4, and 8MB were run for all simulations. 
The simulated system was booted using Knoppix 5.1.1, a 
GNU/Linux bootable live CD image. 

To generate our data we started the simulator, booted into 
Linux, and then executed a variety of programs meant to 
represent typical user behavior. During an entire session 
(from bootup until simulation termination) the memory 
activity at the L2/memory interface was gathered and written 
to a file for later analysis. 

There were four different sessions: 
1) To simulate a casual user working on a document 

while listening to music, the OpenOffice session 
consisted of opening and converting to postscript a 
100 page OpenOffice document while an mp3 was 
being decoded in the background. Upon successful 
conversion of the document, the postscript file was 
opened using the Konqueror browser. 

2) The SPEC2000 session consisted of running all the 
integer and floating-point benchmarks, with the 
exception of eon, perlbmk, galgel, facerec, lucas, and 
fma3d. (The four floating-point benchmarks that 
were not run were due to problems with Fortan 90, 
while eon and perlbmk were not run due to problems 
with compilation on the simulated system.) The “test” 
inputs were used during the runs. 

3) During the Linux kernel build session the Debian 
kernel was built for the i386 target. The build 
configuration was done prior to running the session 
and remained consistent for all runs. 



  

4) Since the system bootup occurred during all sessions, 
one session consisted solely of booting the machine, 
so that any bias towards an uninitialized system could 
be removed in later analysis. 

Each session was run using one of four different cache 
configurations, so there were a total of 16 data files created 
(each approximately 30GB after being compressed). 

B. Initial Data Analysis 
Because the simulator output included information 

regarding the way the data was accessed (instruction read, 
floating point load, etc.) we knew the type of data within 
each line, and we made use of this information when doing 
our data analysis. We discovered that many cache lines 
contained values that represented small positive or negative 
32-bit integers. We also found that the values 0x3E, 0x3F, 
and 0x40 occurred often in the 62:56 bits of the 64-bit 
aligned floating point data. This was not surprising, 
considering that these values represent small positive and 
negative exponents. We were unable to find any pattern or 
correlation in the mantissa - all possible byte values 
appeared with an almost perfectly uniform distribution.  

Knowing how a data value is referenced, and the fact that 
each type exhibits different characteristics, one can create 
type-specific compression mechanisms. While we had 
access to this information because the simulator provided it, 
in a real system the data itself does not contain any indicator 
of its type. Thus, it was not clear how knowing the type 
information was going to be useful for anything other than 
calculating the limits of compressibility. However, after 
extensive analysis we identified a relatively simple 
technique for classifying cache lines that works quite well. 

C. Heuristic Classification 
To maximize compression, the heuristic developed 

classifies an entire cache line as being one of Integer, 
Floating point, Pointer, or Other, even though there may be 
a mix of types within a line. A line is classified as a 
particular type if 50% or more of the values in the cache line 
are identified as being of that type, and the value 
identification is done as follows: A value is considered to be 
an Integer if the most significant byte (MSB) of a 32-bit 
quantity is either 0x00 or 0xFF. Float values are identified 
as those where the MSB of a 64-bit quad word is 0x3E, 
0x3F, 0x40, 0xBE, 0xBF, or 0xC0 (these patterns indicate a 
floating point value with a small positive or negative 
exponent). A Pointer is assumed if the most significant 16-
bits of a 32-bit word match any other most significant 16-
bits within the cache line. (Values of 0x0000 and 0xFFFF 
were ignored in order to avoid conflicts with the integer 
classification). Any cache line that is not identified as 
containing at least half of one of these types is classified as 
being Other. (As we were writing this paper we discovered 
that [13] had previously proposed a different approach to 
classification that bears many similarities to ours.) 
 Since a cache line is 64 bytes wide, it can hold 16 32-bit 

quantities, 8 64-bit quantities, or some combination of both. 
We assume that all 16 possible integer MSBs, all 8 possible 
floating point MSBs, and all 8 possible pointer MSB pairs 
will be evaluated in parallel, although this would not be 
necessary if it was not in a time-critical path. 

IV. EVALUATION OF COMPRESSION TECHNIQUES 
In order to evaluate the compressibility of the cache lines 

we used a variety of compression techniques for each full 
system simulation data set, including ones that are unlikely 
to be implementable with a reasonable amount of hardware. 
The compression techniques were analyzed using data sets 
obtained from the simulations. The evaluated techniques 
included LZW, LZ77, Delta Encoding (DE), a Sorted Delta 
Encoding (SDE), Value Caching (VC), and our proposed 
algorithm (described later in this section). The LZ77 
algorithm was chosen because of previous related work, 
while the LZW was chosen for ease of implementation and 
improved performance on small block sizes. 

The LZW implementation uses a 9-bit fixed length code 
for dictionary entries. The 9-bit code length was chosen 
since it could accommodate all single byte values as well as 
the 64 byte cache line. Due to the relatively small size of an 
individual cache line, our LZ77 sliding window 
implementation works on a nibble level instead of a byte 
level. In the DE algorithm each value is considered to be 
either 32 or 64 bits wide, and this size is kept constant for an 
entire analysis run. The arithmetic difference between 
consecutive values is calculated and is encoded into a {size, 
value} pair, where the size specifies the number of equal 
size segments required to represent the delta value. A full 
range of segment size granularity (1 bit up to width/4) was 
evaluated. The smaller the segment granularity the tighter 
the delta can be fit (there are fewer possible leading zeros in 
the delta), but this tighter fit comes with a tradeoff of higher 
static overhead for the size. The SDE algorithm is similar to 
the DE except the delta values are sorted prior to encoding. 
This algorithm has higher static overhead due to the fact that 
the ordering of the values must also be transmitted, but 
benefits from the fact that smaller average delta values 
require fewer bits and typically provide better overall 
results. The VC algorithm simulated treats each value as a 
32-bit quantity. The entire 32-bit value is stored in the VC 
and cache sizes of 16, 64, 256, and 1024 entries were 
analyzed. (The 1024 entry VC would be unreasonably large, 
but it was included for completeness sake.)  

The algorithm we are proposing, the Type-Specific 
Compression (TSC) algorithm, classifies cache lines using 
the heuristic discussed above and then uses a tailored 
compression algorithm for each of the four classifications. 
We will now explain this algorithm in more detail. 

A. Type-Specific Compression  
Value caches are much easier to implement than the more 

complex compression schemes, which makes them very 



  

attractive. In TSC, we use several value caches, which 
employ a least frequently used replacement scheme. Each 
time an entry is found in the value cache, its frequency 
counter is incremented. This will bias the cache towards 
retaining commonly occurring patterns. However, to prevent 
a value from becoming permanently lodged in the cache, the 
frequency counters for each cache entry are also 
decremented at fixed regular intervals.  This ensures that a 
given line must be referenced with some minimum 
frequency or it will become a candidate for eviction. 

TSC uses value caches of different sizes and 
configurations, depending on the type of data that is being 
compressed. The Pointer classification uses a 16 entry 32-bit 
wide cache, which can provide a best case compression of 
6.4:1 with a worse case growth of 3.13%. The Other 
classification similarly uses a 16 entry cache, but the entries 
are 16-bits wide, providing a best case compression of 3.2:1 
per value with a worse case growth of 6.25%. (The 16-bit 
entry size was implemented for the Other category based on 
the observation that x86 instructions are variable length.)  

Floating point data is highly entropic; as discussed earlier, 
this is especially true of the mantissa. The floating point 
exponent, however, appears to have somewhat lower 
entropy and therefore is slightly more compressible. This led 
us to use a value cache for the cache lines tagged as Float 
that has 16 entries that are each 14-bits wide. The 11-bit 
exponent and the three most significant bits of the mantissa 
are cached, giving a best case compression of 1.16:1 and a 
worse case growth of 1.5%. (A more conservative approach 
to dealing with this type was chosen due to the uncertainty 
that a value in a cache line marked as Float is actually a 
floating point value. The large required tables and the 
possibility of poor prediction due to interference from 
concurrent applications led us to abandon methods 
previously described in Section II.) 

Integer cache lines use a hybrid approach - zeros and 
negative ones are removed prior to the value caching step. 
(This substitution is described in more detail in the next 
subsection.) A 16 entry 32-bit value cache was implemented 
for Integer cache lines, which in the best case will result in a 
6.4:1 compression ratio. It should be noted that our 
relatively small value tables (188 bytes total) will require 
little additional overhead and should be easy to synchronize. 

B. Zero and Negative One Substitution 
Our initial data analysis revealed that two 32-bit values 

(0x00000000 and 0xFFFFFFFF) occurred with a high 
frequency in lines classified as Integer. We exploit this 
information by replacing the all zero pattern with the 2-bit 
pattern 0b00 and the all one pattern with 0b01. We call this 
technique Zero and Negative One Substitution (ZNOS). All 
values other than zero and negative one are prepended with 
a 1 before being placed in the value cache, which stores full 
32-bit values. The worse case for Integer cache lines using 
TSC is an increase of 2-bits per 32-bit value (a 6.25% 

growth), with a best case compression of 16:1.  

V. RESULTS 
The bandwidth required by the Office, SPEC, and Kernel 

Build sessions with the system bootup information removed 
is shown in Figure 1. The Single LZW column is the 
amount of compression achieved by the LZW algorithm 
using no data classification information, while the Heuristic 
and Access columns show the best possible compression for 
a given L2 cache size assuming the data type is known 
(Access) or predicted (Heuristic). Within each column, 
different combinations of algorithms may have been used – 
the best performing algorithm for each data type is selected, 
including those algorithms we believe may not be 
reasonably implementable. 

The best performing compression algorithm differs by 
each classification when using the Heuristic classification. 
The best performing Integer algorithm is the ZNOS with 
VC, while the Other data is best compressed by using LZW. 
The 64-bit and 32-bit SDE algorithms perform the best for 
Float and Pointer cache lines, respectively.  

The Single LZW slightly outperforms the Access 
classification for all cache sizes (although it is very slight 
and difficult to see) because the LZW algorithm was the best 
one for all of the Access classifications at all cache sizes – 
thus, the slightly better performance overall of the Single 
LZW is due to the fact that it does not require the extra two 
bits per cache line that have to be added in order to indicate 
the classification of the line. 
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Figure 1. Total Required Bandwidth (Bytes) vs. L2 
Cache Size (MB), All Sessions Combined 

 
The TSC column represents the Type-Specific 

compression technique described in the previous section. It 
is worth noting that the TSC method slightly outperforms 
the Single LZW compression method in all cases. It is also 
worth noting that all the compression methods require much 
less bandwidth than an uncompressed cache that is double 
the size, and they all have bandwidth requirements that are 
comparable to caches four times the size. (However, it is 
still unclear if this reduction in bandwidth will translate into 



  

an overall comparative performance gain.)  
To create the bzip2 entry we ran bzip2 on the original 

data file. This provides an idea of the amount of 
compression available overall, and was added in order to 
gain perspective on the effectiveness of the compression 
algorithms analyzed. The bzip2 value should be near the 
theoretical limit of compression for the data. (It is the large 
block size, 900k default, which makes the bzip2 value 
unobtainable in practice).  

Note that Heuristic (using our heuristic to classify the 
data) outperforms Access (knowing how the data was 
accessed) for all L2 cache sizes - this somewhat counter-
intuitive result is due to the fact that the heuristic classifies 
the cache lines based on the actual values themselves, rather 
than on how the microprocessor accessed the data. A 
detailed breakdown of the traffic reduction (higher is better) 
for both Access and Heuristic is shown in Figure 2. 
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Figure 2. Heuristic and Access Traffic Savings (Bytes) vs. 
Cache Size (MB) 
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Figure 3. Simulation Compression Ratio Using TSC 
Algorithm vs. Cache Size (MB) 

 
The compression ratios for each simulation and the 

composite of the Office, SPEC, and Kernel Build using the 
TSC algorithm are illustrated in Figure 3. These ratios were 
calculated by dividing the uncompressed data size by the 
compressed data size, and they range from 1.388 to 2.083. 
Note that for all simulations (with the exception of the SPEC 

simulation) the compression ratio increased as the L2 cache 
size grew. This is because more lines are being classified 
Integer and fewer marked Other. Unfortunately, as the cache 
size increases for the SPEC simulations there is a shift from 
lines marked Integer to lines marked Float - this is shown in 
Figure 4. It appears that increasing the L2 cache size does 
not affect how long the SPEC data resides in the cache, 
since the SPEC simulations were designed to isolate the 
CPU capability and the SPEC data may already be capable 
of residing in the cache for the duration. However, 
increasing the cache size may be allowing lines marked 
Integer that were brought in by the Operating System to 
remain in cache longer, thereby reducing the number of 
times they have to go across the bus. 
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Figure 4. SPEC Heuristic Classification Occurrence by 
Cache Size 

 
Figure 5 shows the compression ratio of individual 

heuristic classifications by cache size, using the TSC 
algorithm on the composite simulations. As expected, the 
Integer classification is the most compressible, with a 
compression ratio averaging 3.062. The average 
compression ratio of the Float is 1.094, which is within 
5.5% of the theoretical maximum for the algorithm chosen. 
The Pointer classification average compression ratio is 
1.854, with a 57% hit rate in the 16-entry table.  

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8

Integer
Float
Pointer
Other
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The compression ratios of the evaluated algorithms can be 
seen in Figure 6. The compression ratios are based upon the 
composite of the Office, SPEC, and Kernel Build data and 
are categorized using the heuristic classification. Only the 
best granularity for the DE and SDE algorithms are 
displayed for sake of brevity. (This is also true of the VC 
algorithms - only the best table size is shown). What is 
immediately noticeable is the impact on the compression 
ratio of the ZNOS algorithm on Integer cache lines. The 
SDE algorithms outperform the other algorithms on the 
Float cache lines, achieving a 1.143 and 1.155 compression 
ratio for the 32-bit and 64-bit versions, respectively. It 
should be noted that these ratios approach the theoretical 
maximum of the TSC algorithm, but do not exceed it. 
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Figure 6. Compression Ratios of Individual Algorithms 
by Heuristic Classification 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper a simple heuristic for classifying cache lines 

and a Type-Specific Compression (TSC) algorithm are 
presented. This approach, requiring fewer than 200 extra 
bytes of storage, was evaluated using a series of extensive 
full-system simulations.  Our results indicate TSC is able to 
significantly increase the effective pin bandwidth by 
reducing off-chip traffic by 44% on average, to a level lower 
than that required by a cache four times the size that does 
not use compression. We also show that TSC outperforms a 
more complex LZW algorithm by 2% on average, and our 
Heuristic method outperforms the Access method on 
average by 10%. 

It is important to note that our compression technique is 
orthogonal to techniques aimed at increasing the actual 
bandwidth; furthermore our technique may reach its fullest 
potential when combined with an optical or differential 
signaling interconnect since serialized data transfers do not 
waste potential bandwidth (due to the fact that any transfer 
size is always a multiple of the 1-bit bus width.) 

The small percentage of cache lines being classified as 
Pointer encourages us to further investigate other possible 
classification heuristics that may have the potential for 
providing higher effective bandwidth. A full timing and 

power analysis of the evaluated compression algorithms also 
needs to be done in order to determine the overall impact on 
performance and power consumption. 
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