

Abstract—In this paper we examine techniques for
increasing the effective bandwidth of the microprocessor off-
chip interconnect. We focus on mechanisms that are orthogonal
to other techniques currently being studied (3-D fabrication,
optical interconnect, etc.) Using a range of full-system
simulations we study the distribution of values being
transferred to and from memory, and find that (as expected)
high entropy data such as floating point numbers have limited
compressibility, but that other data types offer more potential
for compression. By using a simple heuristic to classify the
contents of a cache line and providing different compression
schemes for each classification, we show it is possible to provide
overall compression at a cache line granularity comparable to
that obtained by using a much more complex Lempel-Ziv-
Welch algorithm.

I. INTRODUCTION
Microprocessors have long had to deal with the problem

of memory bandwidth constraints. Burger, Goodman, and
Kagi [1] and [2] discussed the impact of bandwidth limits on
future microprocessor designs, and emphasized the
importance of increasing the effective pin bandwidth. As we
now move into an era of multicore processors, the pressure
on the I/O pin bandwidth is going to further intensify,
making this an even bigger concern.

The bandwidth problem can be addressed in two
orthogonal ways: by increasing the bandwidth available, and
by decreasing the amount of bandwidth that is required.
Bandwidth reduction techniques consist primarily of the
extensive use of on-chip memories (mainly caches) to avoid
having to go off-chip, while the bandwidth available can be
increased by boosting the number of transactions per unit
time (i.e. increasing the bus frequency), and/or by expanding
the amount of data transferred per transaction (creating a
wider interconnect).

Although microprocessor pin counts have steadily
climbed over the past 15 years, this increase in pins has not
translated into wider off-chip data interconnects.
Microprocessors have increased memory bandwidth
primarily via a dramatic increase in bus frequencies. For
example, in 1993 Intel released the Pentium 75, which
featured a 64-bit data bus running at 50MHz in a 296 pin
PPGA package. Recently Intel released the Core 2 Extreme
QX9650, which has a 64-bit data bus running at 1333MHz,
packaged in the LGA775. The QX9650 has over 2.6 times
the number of pins and a burst speed over 26 times that of
the Pentium 75 [3][4], but the data bus is the same width.

Bus speed will not continue to increase indefinitely,

however. Microprocessor core clock frequencies grew
dramatically during the decade of the 1990’s, but since 2000
(when 1GHz microprocessors first became commercially
available) clock rates have climbed much less quickly. There
is reason to believe that a similar slowdown of bus
frequency acceleration will occur as bus speeds climb above
1GHz, although researchers are currently studying
approaches (such as 1 TB/s differential signal paired I/O [5]
and optical interconnects [6]) that may allow the increase in
off-chip frequencies to climb a while longer.

The most common technique for reducing the amount of
bandwidth needed is to place part of the memory hierarchy
on-chip, reducing the number of off-chip references
necessary. However, it is also possible to use data
compression techniques to reduce the pressure on the off-
chip interconnect by increasing the effective bandwidth –
that is, by increasing the amount of useful information (the
information content) sent over each I/O pin on each
transaction, thus requiring fewer transactions.

It is this potential to increase the effective bandwidth that
we will focus on in this paper. Section II describes related
work that has been done in this area, while Section III
discusses our simulation configuration and initial data
analysis (which lead to a cache line classification heuristic).
In Section IV we detail the compression algorithms analyzed
and propose a compression technique for cache lines, and
our results appear in Section V. Our conclusions and
possible future work are provided in Section VI.

II. RELATED WORK
Over the years, researchers have looked at a variety of

ways to more effectively utilize I/O pins. Compressing the
number of address lines was examined in [7], and in [8],
[12], and [13] the compressibility of data in various
benchmarks was analyzed. However, the previous studies
primarily focused on either the compression ratio or lookup-
table hit rates; this can be misleading, since a higher
compression ratio does not directly translate into a higher
effective bandwidth if more transactions or larger
uncompressed transactions are required to achieve the
improved compression ratio. This previous work also did
not analyze full system traces, but focused on a series of
application level benchmarks.

Storing data in compressed form in main memory has
been investigated by [9][10], while a unified compressed
memory hierarchy has been analyzed in [11][12]. The

Techniques for Increasing Effective Data Bandwidth
Christopher Nitta, Matthew Farrens

University of California, Davis
[cjnitta, mkfarrens]@.ucdavis.edu

authors of these studies argue that a compressed memory
hierarchy can improve program performance, but it is
unclear if the added complexity of maintaining a
compressed memory system and the handling of corner
cases will be justified by the overall performance gains.
Storing compressed data in the cache increases the effective
size of the cache, but as we will show an increased cache
size does not translate into as large a reduction in required
bandwidth as interconnect data compression alone.

A wide range of compression algorithms have been
evaluated in the previous work, ranging from the relatively
simple and straightforward (Frequent Value Caching) to the
more complex (Lempel-Ziv). There are also several versions
of the Lempel-Ziv (LZ) compression algorithms to choose
from - LZ77, Lempel-Ziv-Welch (LZW), and LZSS (a
parallel version of LZ77.) LZ77 tends to perform poorly on
small block sizes, such as single cache lines, while LZW is
faster but typically does not achieve the quality of
compression of LZ77 when larger block sizes are used.
LZSS was analyzed in [11] for their unified compressed
memory hierarchy.

Certain values appear frequently in program data. Both
[14] and [15] attempt to exploit this data value commonality
by the use of a Value Cache (VC), a structure which holds
frequently occurring patterns. VC algorithms typically use a
single bit to encode a hit or a miss in the value cache, and
then transmit either the corresponding index into the cache
(in the case of a hit) or the entire value (in the case of a
miss). Both static and dynamically loaded value caches have
been studied, and these structures can store part or all of the
desired transmitted value. A VC is relatively easy to
implement when compared to more complex compression
schemes, and appears to work well for small data blocks.
One downside of a VC is that the data structures on both
ends of the interconnect must remain synchronized, but this
should not be a problem for small table sizes.

Run Length Encoding (RLE) encodes runs of identical
values into a (value, run length) pair. This compression
technique is efficient on data with long runs of identical data
values, which many uncompressed images contain. A Move
To Front (MTF) transformation is often used prior to Zero
Length Encoding ZLE (a special case of RLE) in the hopes
of capturing more runs of zeros. However, RLE and ZLE
algorithms tend to do poorly on data that has high entropy
(such as floating point values).

Many techniques have been proposed for compressing
floating point numbers. Floating point value prediction was
investigated in [17] and achieved compression ratios
between 1.2 and 4.2. This algorithm predicts what the next
floating point value will be and then sends the distance
between the predicted and actual values, with leading zeros
compressed. Prediction is also used in [18] and [19], but the
distance is transformed into an integer which is then
encoded into entropy codes and raw bits.

With the exception of [10] (which evaluated an existing

system but focused on compressed memory and not
interconnect data) we are unaware of any previous work that
has performed its analysis on full-system simulations as we
have done.

III. SIMULATION CONFIGURATION AND DATA ANALYSIS
In order to properly evaluate a data compression scheme

for a real system, all the information going across the data
lines (including data generated by the operating system)
must be included. Therefore, we used a full-system
simulator to gather our data. The data generated by the
simulator included the base address of each reference,
whether it was a read or a write, the data in the cache line
associated with that address, and the method by which the
microprocessor accessed the cache line. The four methods of
access tracked by the simulator were instruction read, page
table access, general load/store, and floating point
load/store.

A. Full-System Configuration and Simulations
The simulator we chose to use was a modified version of

bochs 2.3.5, which simulates an x86-based system. The
simulated system was configured to have 512MB of RAM, a
2GB HDD (ext3), 512MB HDD (swap), and a CD-ROM.
We modified the simulator to include a 16 way set
associative write back L2 cache with 64 byte cache lines.
Cache sizes of 1, 2, 4, and 8MB were run for all simulations.
The simulated system was booted using Knoppix 5.1.1, a
GNU/Linux bootable live CD image.

To generate our data we started the simulator, booted into
Linux, and then executed a variety of programs meant to
represent typical user behavior. During an entire session
(from bootup until simulation termination) the memory
activity at the L2/memory interface was gathered and written
to a file for later analysis.

There were four different sessions:
1) To simulate a casual user working on a document

while listening to music, the OpenOffice session
consisted of opening and converting to postscript a
100 page OpenOffice document while an mp3 was
being decoded in the background. Upon successful
conversion of the document, the postscript file was
opened using the Konqueror browser.

2) The SPEC2000 session consisted of running all the
integer and floating-point benchmarks, with the
exception of eon, perlbmk, galgel, facerec, lucas, and
fma3d. (The four floating-point benchmarks that
were not run were due to problems with Fortan 90,
while eon and perlbmk were not run due to problems
with compilation on the simulated system.) The “test”
inputs were used during the runs.

3) During the Linux kernel build session the Debian
kernel was built for the i386 target. The build
configuration was done prior to running the session
and remained consistent for all runs.

4) Since the system bootup occurred during all sessions,
one session consisted solely of booting the machine,
so that any bias towards an uninitialized system could
be removed in later analysis.

Each session was run using one of four different cache
configurations, so there were a total of 16 data files created
(each approximately 30GB after being compressed).

B. Initial Data Analysis
Because the simulator output included information

regarding the way the data was accessed (instruction read,
floating point load, etc.) we knew the type of data within
each line, and we made use of this information when doing
our data analysis. We discovered that many cache lines
contained values that represented small positive or negative
32-bit integers. We also found that the values 0x3E, 0x3F,
and 0x40 occurred often in the 62:56 bits of the 64-bit
aligned floating point data. This was not surprising,
considering that these values represent small positive and
negative exponents. We were unable to find any pattern or
correlation in the mantissa - all possible byte values
appeared with an almost perfectly uniform distribution.

Knowing how a data value is referenced, and the fact that
each type exhibits different characteristics, one can create
type-specific compression mechanisms. While we had
access to this information because the simulator provided it,
in a real system the data itself does not contain any indicator
of its type. Thus, it was not clear how knowing the type
information was going to be useful for anything other than
calculating the limits of compressibility. However, after
extensive analysis we identified a relatively simple
technique for classifying cache lines that works quite well.

C. Heuristic Classification
To maximize compression, the heuristic developed

classifies an entire cache line as being one of Integer,
Floating point, Pointer, or Other, even though there may be
a mix of types within a line. A line is classified as a
particular type if 50% or more of the values in the cache line
are identified as being of that type, and the value
identification is done as follows: A value is considered to be
an Integer if the most significant byte (MSB) of a 32-bit
quantity is either 0x00 or 0xFF. Float values are identified
as those where the MSB of a 64-bit quad word is 0x3E,
0x3F, 0x40, 0xBE, 0xBF, or 0xC0 (these patterns indicate a
floating point value with a small positive or negative
exponent). A Pointer is assumed if the most significant 16-
bits of a 32-bit word match any other most significant 16-
bits within the cache line. (Values of 0x0000 and 0xFFFF
were ignored in order to avoid conflicts with the integer
classification). Any cache line that is not identified as
containing at least half of one of these types is classified as
being Other. (As we were writing this paper we discovered
that [13] had previously proposed a different approach to
classification that bears many similarities to ours.)
 Since a cache line is 64 bytes wide, it can hold 16 32-bit

quantities, 8 64-bit quantities, or some combination of both.
We assume that all 16 possible integer MSBs, all 8 possible
floating point MSBs, and all 8 possible pointer MSB pairs
will be evaluated in parallel, although this would not be
necessary if it was not in a time-critical path.

IV. EVALUATION OF COMPRESSION TECHNIQUES
In order to evaluate the compressibility of the cache lines

we used a variety of compression techniques for each full
system simulation data set, including ones that are unlikely
to be implementable with a reasonable amount of hardware.
The compression techniques were analyzed using data sets
obtained from the simulations. The evaluated techniques
included LZW, LZ77, Delta Encoding (DE), a Sorted Delta
Encoding (SDE), Value Caching (VC), and our proposed
algorithm (described later in this section). The LZ77
algorithm was chosen because of previous related work,
while the LZW was chosen for ease of implementation and
improved performance on small block sizes.

The LZW implementation uses a 9-bit fixed length code
for dictionary entries. The 9-bit code length was chosen
since it could accommodate all single byte values as well as
the 64 byte cache line. Due to the relatively small size of an
individual cache line, our LZ77 sliding window
implementation works on a nibble level instead of a byte
level. In the DE algorithm each value is considered to be
either 32 or 64 bits wide, and this size is kept constant for an
entire analysis run. The arithmetic difference between
consecutive values is calculated and is encoded into a {size,
value} pair, where the size specifies the number of equal
size segments required to represent the delta value. A full
range of segment size granularity (1 bit up to width/4) was
evaluated. The smaller the segment granularity the tighter
the delta can be fit (there are fewer possible leading zeros in
the delta), but this tighter fit comes with a tradeoff of higher
static overhead for the size. The SDE algorithm is similar to
the DE except the delta values are sorted prior to encoding.
This algorithm has higher static overhead due to the fact that
the ordering of the values must also be transmitted, but
benefits from the fact that smaller average delta values
require fewer bits and typically provide better overall
results. The VC algorithm simulated treats each value as a
32-bit quantity. The entire 32-bit value is stored in the VC
and cache sizes of 16, 64, 256, and 1024 entries were
analyzed. (The 1024 entry VC would be unreasonably large,
but it was included for completeness sake.)

The algorithm we are proposing, the Type-Specific
Compression (TSC) algorithm, classifies cache lines using
the heuristic discussed above and then uses a tailored
compression algorithm for each of the four classifications.
We will now explain this algorithm in more detail.

A. Type-Specific Compression
Value caches are much easier to implement than the more

complex compression schemes, which makes them very

attractive. In TSC, we use several value caches, which
employ a least frequently used replacement scheme. Each
time an entry is found in the value cache, its frequency
counter is incremented. This will bias the cache towards
retaining commonly occurring patterns. However, to prevent
a value from becoming permanently lodged in the cache, the
frequency counters for each cache entry are also
decremented at fixed regular intervals. This ensures that a
given line must be referenced with some minimum
frequency or it will become a candidate for eviction.

TSC uses value caches of different sizes and
configurations, depending on the type of data that is being
compressed. The Pointer classification uses a 16 entry 32-bit
wide cache, which can provide a best case compression of
6.4:1 with a worse case growth of 3.13%. The Other
classification similarly uses a 16 entry cache, but the entries
are 16-bits wide, providing a best case compression of 3.2:1
per value with a worse case growth of 6.25%. (The 16-bit
entry size was implemented for the Other category based on
the observation that x86 instructions are variable length.)

Floating point data is highly entropic; as discussed earlier,
this is especially true of the mantissa. The floating point
exponent, however, appears to have somewhat lower
entropy and therefore is slightly more compressible. This led
us to use a value cache for the cache lines tagged as Float
that has 16 entries that are each 14-bits wide. The 11-bit
exponent and the three most significant bits of the mantissa
are cached, giving a best case compression of 1.16:1 and a
worse case growth of 1.5%. (A more conservative approach
to dealing with this type was chosen due to the uncertainty
that a value in a cache line marked as Float is actually a
floating point value. The large required tables and the
possibility of poor prediction due to interference from
concurrent applications led us to abandon methods
previously described in Section II.)

Integer cache lines use a hybrid approach - zeros and
negative ones are removed prior to the value caching step.
(This substitution is described in more detail in the next
subsection.) A 16 entry 32-bit value cache was implemented
for Integer cache lines, which in the best case will result in a
6.4:1 compression ratio. It should be noted that our
relatively small value tables (188 bytes total) will require
little additional overhead and should be easy to synchronize.

B. Zero and Negative One Substitution
Our initial data analysis revealed that two 32-bit values

(0x00000000 and 0xFFFFFFFF) occurred with a high
frequency in lines classified as Integer. We exploit this
information by replacing the all zero pattern with the 2-bit
pattern 0b00 and the all one pattern with 0b01. We call this
technique Zero and Negative One Substitution (ZNOS). All
values other than zero and negative one are prepended with
a 1 before being placed in the value cache, which stores full
32-bit values. The worse case for Integer cache lines using
TSC is an increase of 2-bits per 32-bit value (a 6.25%

growth), with a best case compression of 16:1.

V. RESULTS
The bandwidth required by the Office, SPEC, and Kernel

Build sessions with the system bootup information removed
is shown in Figure 1. The Single LZW column is the
amount of compression achieved by the LZW algorithm
using no data classification information, while the Heuristic
and Access columns show the best possible compression for
a given L2 cache size assuming the data type is known
(Access) or predicted (Heuristic). Within each column,
different combinations of algorithms may have been used –
the best performing algorithm for each data type is selected,
including those algorithms we believe may not be
reasonably implementable.

The best performing compression algorithm differs by
each classification when using the Heuristic classification.
The best performing Integer algorithm is the ZNOS with
VC, while the Other data is best compressed by using LZW.
The 64-bit and 32-bit SDE algorithms perform the best for
Float and Pointer cache lines, respectively.

The Single LZW slightly outperforms the Access
classification for all cache sizes (although it is very slight
and difficult to see) because the LZW algorithm was the best
one for all of the Access classifications at all cache sizes –
thus, the slightly better performance overall of the Single
LZW is due to the fact that it does not require the extra two
bits per cache line that have to be added in order to indicate
the classification of the line.

0.0E+00

2.0E+10

4.0E+10

6.0E+10

8.0E+10

1.0E+11

1.2E+11

1.4E+11

1 2 4 8

Uncompressed
Single LZW
Heuristic
Access
TSC
bzip2

Figure 1. Total Required Bandwidth (Bytes) vs. L2
Cache Size (MB), All Sessions Combined

The TSC column represents the Type-Specific

compression technique described in the previous section. It
is worth noting that the TSC method slightly outperforms
the Single LZW compression method in all cases. It is also
worth noting that all the compression methods require much
less bandwidth than an uncompressed cache that is double
the size, and they all have bandwidth requirements that are
comparable to caches four times the size. (However, it is
still unclear if this reduction in bandwidth will translate into

an overall comparative performance gain.)
To create the bzip2 entry we ran bzip2 on the original

data file. This provides an idea of the amount of
compression available overall, and was added in order to
gain perspective on the effectiveness of the compression
algorithms analyzed. The bzip2 value should be near the
theoretical limit of compression for the data. (It is the large
block size, 900k default, which makes the bzip2 value
unobtainable in practice).

Note that Heuristic (using our heuristic to classify the
data) outperforms Access (knowing how the data was
accessed) for all L2 cache sizes - this somewhat counter-
intuitive result is due to the fact that the heuristic classifies
the cache lines based on the actual values themselves, rather
than on how the microprocessor accessed the data. A
detailed breakdown of the traffic reduction (higher is better)
for both Access and Heuristic is shown in Figure 2.

Heuristic

Access

0.0E+00

1.0E+10

2.0E+10

3.0E+10

4.0E+10

5.0E+10

6.0E+10

7.0E+10

1 2 4 8

Other
Pointer
Float H
Integer
Page Table
Instruction
Float A
Data

Figure 2. Heuristic and Access Traffic Savings (Bytes) vs.
Cache Size (MB)

1

1.2

1.4

1.6

1.8

2

2.2

0 1 2 3 4 5 6 7 8 9

Bootup
Office
SPEC
Kernel
Composite All

Figure 3. Simulation Compression Ratio Using TSC
Algorithm vs. Cache Size (MB)

The compression ratios for each simulation and the

composite of the Office, SPEC, and Kernel Build using the
TSC algorithm are illustrated in Figure 3. These ratios were
calculated by dividing the uncompressed data size by the
compressed data size, and they range from 1.388 to 2.083.
Note that for all simulations (with the exception of the SPEC

simulation) the compression ratio increased as the L2 cache
size grew. This is because more lines are being classified
Integer and fewer marked Other. Unfortunately, as the cache
size increases for the SPEC simulations there is a shift from
lines marked Integer to lines marked Float - this is shown in
Figure 4. It appears that increasing the L2 cache size does
not affect how long the SPEC data resides in the cache,
since the SPEC simulations were designed to isolate the
CPU capability and the SPEC data may already be capable
of residing in the cache for the duration. However,
increasing the cache size may be allowing lines marked
Integer that were brought in by the Operating System to
remain in cache longer, thereby reducing the number of
times they have to go across the bus.

0%

10%

20%

30%

40%

50%

60%

1 2 4 8

Integer
Float
Pointer
Other

Figure 4. SPEC Heuristic Classification Occurrence by
Cache Size

Figure 5 shows the compression ratio of individual

heuristic classifications by cache size, using the TSC
algorithm on the composite simulations. As expected, the
Integer classification is the most compressible, with a
compression ratio averaging 3.062. The average
compression ratio of the Float is 1.094, which is within
5.5% of the theoretical maximum for the algorithm chosen.
The Pointer classification average compression ratio is
1.854, with a 57% hit rate in the 16-entry table.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8

Integer
Float
Pointer
Other

Figure 5. Classification Compression Ratio of TSC

Algorithm by Cache Size

The compression ratios of the evaluated algorithms can be
seen in Figure 6. The compression ratios are based upon the
composite of the Office, SPEC, and Kernel Build data and
are categorized using the heuristic classification. Only the
best granularity for the DE and SDE algorithms are
displayed for sake of brevity. (This is also true of the VC
algorithms - only the best table size is shown). What is
immediately noticeable is the impact on the compression
ratio of the ZNOS algorithm on Integer cache lines. The
SDE algorithms outperform the other algorithms on the
Float cache lines, achieving a 1.143 and 1.155 compression
ratio for the 32-bit and 64-bit versions, respectively. It
should be noted that these ratios approach the theoretical
maximum of the TSC algorithm, but do not exceed it.

0

0.5

1

1.5

2

2.5

3

3.5

Integer Float Pointer Other

32-bit DE
32-bit SDE
64-bit DE
64-bit SDE
LZ77
LZW
VC
TSC

Figure 6. Compression Ratios of Individual Algorithms
by Heuristic Classification

VI. CONCLUSIONS AND FUTURE WORK
In this paper a simple heuristic for classifying cache lines

and a Type-Specific Compression (TSC) algorithm are
presented. This approach, requiring fewer than 200 extra
bytes of storage, was evaluated using a series of extensive
full-system simulations. Our results indicate TSC is able to
significantly increase the effective pin bandwidth by
reducing off-chip traffic by 44% on average, to a level lower
than that required by a cache four times the size that does
not use compression. We also show that TSC outperforms a
more complex LZW algorithm by 2% on average, and our
Heuristic method outperforms the Access method on
average by 10%.

It is important to note that our compression technique is
orthogonal to techniques aimed at increasing the actual
bandwidth; furthermore our technique may reach its fullest
potential when combined with an optical or differential
signaling interconnect since serialized data transfers do not
waste potential bandwidth (due to the fact that any transfer
size is always a multiple of the 1-bit bus width.)

The small percentage of cache lines being classified as
Pointer encourages us to further investigate other possible
classification heuristics that may have the potential for
providing higher effective bandwidth. A full timing and

power analysis of the evaluated compression algorithms also
needs to be done in order to determine the overall impact on
performance and power consumption.

REFERENCES
[1] D. Burger, J. Goodman, A. Kägi, “Limited Bandwidth to Affect

Processor Design,” Micro, IEEE vol. 17, pp. 55–62, 1997.
[2] D. Burger, J. Goodman, A. Kägi, “Memory Bandwidth Limitations of

Future Microprocessors,” Proceedings of the 23rd annual International
Symposium on Computer Architecture, 1996.

[3] Pentium Processor, Intel Corporation, Mt. Prospect, IL, 1997,
Available:
ftp://download.intel.com/design/pentium/datashts/24199710.PDF

[4] Intel® Core™2 Extreme Processor QX9000Δ Series and Intel®
Core™2 Quad Processor Q9000Δ Series Datasheet, Intel
Corporation, 2008, Available:
http://download.intel.com/design/processor/datashts/318726.pdf

[5] H. P. Hofstee, “Future Microprocessors and Off-Chip SOP
Interconnect,” Advanced Packaging, IEEE Transactions on, vol 27,
pp. 301-303, 2004.

[6] B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B.
Madhavan, A. F. J. Levi, D. W. Dolfi, “MAUI: Enabling Fiber-to-the-
Processor With Parallel Multiwavelength Optical Interconnects,”
Lightwave Technology, Journal of, vol 22, pp. 2043-2054, 2004.

[7] M. Farrens, A. Park, “Dynamic Base Register Caching: A Technique
for Reducing Address Bus Width,” Computer Architecture, The 18th
Annual International Symposium on, pp. 128-137, 1991.

[8] D. Citron, L. Rudolph, “Creating a Wider Bus Using Caching
Techniques,” High Performance Computer Architecture, 1995,
Proceedings. First IEEE Symposium on, pp. 90-99.

[9] M. Kjelsø, M. Gooch, S. Jones, “Design and Performance of a Main
Memory Hardware Data Compressor,” Proceedings of the 22nd
EUROMICRO Conference, 1996.

[10] B. Abali, H. Franke, X. Shen, D. Poff, T. B. Smith, “Performance of
Hardware Compressed Main Memory,” High Performance Computer
Architecture, 2001, Proceedings. Seventh International Symposium
on, pp. 73-81.

[11] E. Hallnor, S. Reinhardt, “A Unified Compressed Memory
Hierarchy,” High-Performance Computer Architecture, 2005. HPCA-
11. 11th International Symposium on, pp. 201-212.

[12] A. Alameldeen, D. Wood, “Interactions Between Compression and
Prefetching in Chip Multiprocessors,” High Performance Computer
Architecture, 2007. HPCA 2007. IEEE 13th International Symposium
on, pp. 228-239.

[13] K. Kant, R. Iyer, “Compressibility Characteristics of Address/Data
Transfers in Commercial Workloads,” Proc. of the Fifth Workshop on
Computer Architecture Evaluation Using Commercial Workloads,
pp.59-67, 2002.

[14] Y. Zhang, J. Yang, R. Grupta, “Frequent Value Locality and Value-
Centric Data Cache Design,” Architectural Support for Programming
Languages and Operating Systems, vol 34, pp. 150-159, 2000.

[15] M. Lipasti, C. Wilkerson, J. Shen, “Value Locality and Load Value
Prediction,” Architectural Support for Programming Languages and
Operating Systems, vol 30, pp. 138-147, 1996.

[16] E. Hallnor, S. Reinhardt, “A Compressed Memory Hierarchy using
and Indirect Index,” Proceedings of the 3rd workshop on Memory
performance issues: in conjunction with the 31st International
Symposium on Computer Architecture, 2004.

[17] P. Ratanaworabhan, J. Ke, M. Burtscher, “Fast Lossless Compression
of Scientific Floating-Point Data,” Data Compression Conference,
2006. DCC 2006. Proceedings, pp. 133-142.

[18] P. Lindstrom, M. Isenburg, “Fast and Efficient Compression of
Floating-Point Data,” Visualization and Computer Graphics, IEEE
Transactions on, pp.1245-1250, 2006.

[19] M. Isenburg, P. Lindstrom, J. Snoeyink, “Lossless Compression of
Predicted Floating-Point Geometry,” Computer-Aided Design and
Applications. Vol. 1, no. 1-4, pp. 495-501. 2004.

