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Abstract—With the advent of large scale chip multiprocessors, there is growing interest in the design and analysis of on-chip networks.
Full-system simulation is the most accurate way to perform such an analysis, but unfortunately it is very slow and thus limits design
space exploration. To overcome this problem researchers frequently use trace-based simulation to study different network topologies
and properties, which can be done much faster. Unfortunately, unless the traces that are used include information about dependencies
between packets, trace-based simulations can lead one to draw incorrect conclusions about network performance metrics such as
average packet latency and overall execution time.
The primary contributions of this work are to demonstrate the importance of including dependency information in traces, and to present
PDG GEN, an inference-based technique for identifying and including dependencies in traces. This technique uses traces obtained
from multiple full-system simulations of an application of interest to infer dependency information between packets and augment traces
with this information. On the SPLASH-2 benchmark suite, PDG GEN is 2.3 times more accurate at predicting overall execution time
and almost 4000 times more accurate at predicting average packet latency than traditional trace-based methods.
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1 INTRODUCTION

F ROM servers to mobile phones [1], future chips will
contain dozens, if not hundreds or even thousands,

of processors, memories, and/or hardware accelerators
connected by on-chip networks. The on-chip network
is a critical component of the chip, as it constitutes a
significant fraction of the area and power consumed.
As a result, a “one-size-fits-all” approach to designing
one is inadequate, and a thorough exploration of the
design space is required. For example, the buffer sizes,
number of virtual channels, topology of the network,
arbitration and flow control schemes, and amount of
heterogeniety can all be optimized for a given appli-
cation or market segment. The most accurate way to
evaluate potential on-chip network designs is through
the use of full system simulation, using a real operat-
ing system running real applications. To compare two
different network designs, for example, a set of full
system simulations should be run for each configuration.
Doing so will give the best measure of how the designs
compare. Unfortunately, full system simulation is very
slow. The execution time can grow quadratically with
increased node counts, preventing designers from doing
full system simulations with a large number of nodes.
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For example, FFT benchmark from SPLASH-2 on 64
cores takes months to complete!

One commonly used method for circumventing this
problem is to use a full system simulator to extract a
record of network activity (a trace) and feed it into a trace
based network simulator to evaluate various network
configurations. Trace based simulations run much faster
than full system simulations, and are widely used [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11]. Unfortunately, these
traces only include information about the order of and
time between packet transmissions. In real systems there
are dependencies between packets as well - some out-
going packets cannot be generated until incoming data
has been received, for example. These dependencies are
analogous to data dependencies in pipelined processors,
and will be referred to as reception dependencies.

While a trace from a given full system simulation
will implicitly include the reception dependencies for
that particular network configuration, the whole purpose
of network simulation is to be able to vary network
parameters and evaluate the results. The absence of
explicit information about reception dependencies means
that packets are often injected into the network by the
simulator at a higher rate than would occur in a real
system, because the simulator does not know it needs
to wait for certain events to occur. The ramification
of this unrealistically high packet injection rate is that
measured latencies can climb dramatically for the net-
work being analyzed, since many messages are spending
an artificially large amount of time sitting in network
buffers. Simulating a trace taken from a slower network
on a higher performing network is also a problem,
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TABLE 1
Example Trace

Packet # Time Sent Source Destination
1 20 A C
2 22 B C
3 24 C D
4 26 D A

because it may not show the simulated network’s true
potential since packets are injected at a lower rate than
they would be in a real system. Thus, drawing any
meaningful conclusion about system parameters such as
overall speedup or ideal buffer size based on trace sim-
ulation results is exceedingly difficult, if not impossible.
Unfortunately, many studies that use dependency-free
traces do include results relating to network speedup [3],
[4], [6], normalized execution time [2], [5], or network
latency [2], [7], [8], [9], [10].

The rest of this paper is organized as follows: Section 2
provides a motivating example that shows why includ-
ing dependency information in traces is so important,
and Section 3 introduces our proposed solution. We dis-
cuss related works from the literature in Section 4. Sec-
tion 5 provides a detailed description of our PDG GEN
algorithm, and the accuracy of PDG GEN, as well as
the feasibility of using it in conjunction with common
simulation tools, is evaluated in Section 6.

2 MOTIVATION

2.1 Simple Example
To better understand the potential pitfalls of simulat-

ing networks using traces that do not include depen-
dencies, consider the example trace shown in Table 1,
obtained from a full system simulation which used a
network with a single cycle latency. Executing this trace
on a network simulator which also has a latency of
one cycle (see Space-Time Diagram in Figure1(a)) will
indicate that the program completes at time 27 (one cycle
after packet 4 is sent). If the simulated network has a four
cycle latency, then the program will complete at time 30
(four cycles after packet 4 is sent). As expected, there is
a difference in completion time, and there will also be a
change in average latency. This is shown graphically in
Figure1(b).

But what if node C was actually gathering information
from nodes A and B, calculating a sum, and then sending
the result off to node D? And what if the sum generated
by D was then sent back to node A? In this case there
would be dependencies within the trace – packet 3 can-
not be sent until both packets 1 and 2 arrive, for example,
and packet 4 cannot be sent until it receives packet 3.
There will also be some amount of “computation” time
(in this case, to perform the addition) that must elapse
between the reception of the last dependent packet and
the transmission of the next one. Thus, in this example,
if the computation time is 1 cycle then packet 3 can be
sent 1 cycle after both packet 1 and 2 have been received,
and packet 4 can be sent 1 cycle after receiving packet

3.
A full system trace generated using a single cycle

latency network will contain none of this information. In
this trace packet 1 will arrive at node C at time 21, packet
2 at time 23, a single cycle will be spent performing the
addition, at time 24 node C will transmit its value, and
at time 27 the simulation will complete (see Figure1(c)).
However, if the latency used by the full system simulator
is changed to four, packet 3 will not be sent until time
27 (since packet 2 is received at time 26), which delays
the reception of packet 3 until time 31. This in turn
delays the transmission of packet 4 until time 32, and
the completion time climbs to 36 (see Figure1(d)). The
fact that there are dependencies in the trace that are not
explicitly identified means the trace based simulation
will report a completion time that is artificially low,
because it is injecting packets into the network at too
high of a rate. This simple example highlights the im-
portance of including reception dependencies in traced
based network simulation.

2.2 Real World Example
The results of the intuitive example from the previous

subsection can be corroborated by comparing full system
simulation results (which is the true indicator of per-
formance) with the output of a trace based simulation,
where the trace is generated on one network topology,
and then used in a network simulation of a different
topology. The full system simulator Simics 3.0 [12] and
the memory and on-chip network timing model GEMS
2.1.1 [13] were used to perform this experiment.

We configured Simics to model a 16 core processor
using a fully connected single cycle network, and ran
a 1 million complex data point FFT benchmark from
the SPLASH-2 parallel benchmark suite [14] and created
a trace of network activity. This trace was used by
Garnet [15] (the network simulator inside GEMS) in
network-only standalone mode connected single cycle
latency network. In this simulation each packet was
injected into the network at the timestamp specified in
the trace, and as expected the results of this simulation
matched the results obtained from Simics. The same
trace was then used to re-run the network-only sim-
ulation on three different topologies: a torus, a mesh,
and a fattree. Additionally, the actual FFT full system
simulation was re-run on a torus, mesh, and fattree. A
comparison of the trace results and full system simula-
tion results are presented in 2.

As Figure 2(a) shows, the total execution time reported
by the trace based simulations change very little for dif-
ferent topologies because each packet is always injected
into the network at a fixed time. Figure 2(b) shows that
average network latency was not severely affected until
the trace was run on a network with a low enough
bandwidth that congestion began to occur. These results
indicate that a trace by itself represents the packet injec-
tion distribution for the specific network configuration
on which the trace was collected - however, when it is
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(a) Base Example, Latency=1 (b) Extended Latency Example, Latency=4

(c) Base Example including Dependencies (d) Extended Latency Example including Dependen-
cies

Fig. 1. Example space-time diagram (without dependencies (a), (b), and with dependencies (c) and (d))

(a) Execution Time (b) Average Network Latency

Fig. 2. 1M point FFT execution time (a) and average network latency (b) for Simics full system simulation and trace
based network simulation

used on a different network configuration, it no longer
represents the actual packet injection distribution for the
application and hence can yield erroneous results.

3 PROPOSED SOLUTION

Augmenting a trace with information about the packet
dependencies inherent in the application would make
the packet injection times closer to what would actually
happen if the application was re-run on each new net-
work configuration, and would lead to simulation results
that are more meaningful and reliable. An obvious ap-
proach is to modify the existing simulator to explicitly
extract the dependencies when generating the trace;
unfortunately, this approach is unrealistic because de-
pendency tracking in a shared memory system requires
maintining dependency lists for each memory location.
Furthermore, the dependency list for an operation result
is the union of the operands’ dependency lists. While it
is clear that explicit dependency information cannot be
extracted, it can be inferred from a series of full system
simulations of an application of interest, and then adding
this information to the trace. Using a different network
configuration for each full system run exposes informa-
tion about the dependency relationships between dif-
ferent packets, which can be extracted by comparing
the different traces. Using this approach we are able to
create a Packet Dependency Graph (PDG), which is essen-

tially a trace augmented with dependency information.
This PDG can be used by a traditional cycle-accurate
network simulator with only minor code changes, and
allows researchers to utilize fast, reconfigurable network
simulators in their research while retaining much of the
fidelity of full system simulators.

The algorithm that produces a PDG from a set of
input traces will be referred to as the PDG GEN algo-
rithm, and it has been validated against the SPLASH-
2 parallel benchmark suite running on the Simics full
system simulator using the GEMS memory and on-chip
network timing model. PDG GEN achieves an average
error rate of 19.9% in end-to-end execution time and an
average error rate of 1.91% in average packet latency,
compared to full system simulations. This is a substantial
improvement over traditional timestamp traces, which
have average error rates of 45.4% and 7550% in execution
time and average packet latency, respectively.

4 RELATED WORK

The relevant related work can be classified into three
broad categories - software based functional/timing sim-
ulation, FPGA based emulation of either the functional
or the timing model (or both), and high-level workload
modeling using statistical techniques. BookSim 2.0 [16]
is one of the first and most basic network-on-chip sim-
ulators. It does not use traces from real applications,
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but instead uses synthetic traffic to predict the average
latency of a network. Garnet [15] is the successor to
BookSim, and it incorporates detailed timing and power
models. In its stand-alone configuration it also uses traces
without any dependency information, so it suffers from
the pitfalls described previously.

Simics [12] is a commercial tool that allows full-system
functional simulation. However, as the benchmarking
data in [17] shows, it is very slow and does not scale
beyond approximately 16 cores due to prohibitively
long simulation times. Furthermore, it does not have
any support for modeling on-chip networks and lacks
a timing model for the underlying architecture of the
network. GEMS [13] provides a timing model and net-
work model on top of Simics, making it one of the most
widely used simulators in the architecture community
today. However, since it runs on top of Simics, it is
(obviously) even slower and less scalable, and unsuitable
for fast design space exploration. Graphite [18] is a
recent effort from MIT to take advantage of multiple
machines to accelerate functional simulation of as many
as 1024 cores. However, Graphite does not maintain
strict ordering of events in the system, and as a result
it is unsuitable for evaluating on-chip networks (a point
the authors themselves mention in their paper). Hest-
ness et. al [19] recognize the necessity for dependency
information within traces, and propose a technique that
uses a trace of memory references from a single full
system simulation to generate a trace of cache coherency
traffic which includes the direct dependencies between
coherence messages. While their technique shares many
similarities with the contributions of this work, it is more
limited in scope than the proposed PDG GEN algorithm
because it does not have the ability to infer complex
dependencies between memory references, which neces-
sitates multiple full system runs.

In parallel with these developments, in the design
automation community (where fast design space ex-
ploration and application-specific customization of net-
works is important) researchers are exploring the possi-
bilities of high-level network traffic models [20]. Mar-
culescu [21] was the first to propose a mathematical
characterization of node to node traffic for the MPEG-2
application. Soteriou et. al [22] generalized this to a com-
prehensive network traffic model based on hop-count,
burstiness and packet injection distributions. Kim et.
al [23] take a somewhat different approach by proposing
a closed-loop network simulation using synthetic traffic
patterns representing a certain pre-determined amount
of work. Wei et. al [24] propose dynamically mapping
realistic multi-threaded applications to a cycle-accurate
NOC simulator in order to gather detailed information
about network performance.

Gratz and Keckler [25] provide a detailed analysis of
why existing approaches to simulation are not appropri-
ate, and make a case for realistic workload characteriza-
tion that includes the temporal and spatial imbalances
in network traffic distribution. Their work supports the

central argument in this paper, which is that failing to
properly model packet injection rate leads to substan-
tial inaccuracies. The solution advocated by Gratz and
Keckler is to provide synthetic traffic models enhanced
by the network traffic characteristics, while we propose
the creation of traces from full-system simulation that
are augmented with a model for packet injection that is
application specific.

5 PDG GEN IMPLEMENTATION
The PDG GEN algorithm uses a two-step approach,

which consists of a sampling step followed by the use
of an inference heuristic to infer the PDG from the sam-
ples generated in the first step. Before describing these
steps, we present the formal model of the computing
environment assumed by PDG GEN. Pseudocode for
the algorithms described in this section can be found
in [26].
5.1 Formal Model
5.1.1 Traces

A trace is defined as a time-ordered list of events. An
event Ei is a 4-tuple < Ti, Li, Ri, Pi >, where i is the
entry number in the list, Ti is the time stamp of the global
clock, Li is the local node, Ri is the remote node, and
Pi is the unique packet ID. If Li is the sender of the
packet and Ri is the receiver of the packet, then Ei is a
transmit event. Each transmit event results in one or more
receive events. For example, the transmit event, Ei =<
Ti, Li, Ri, Pi > results in a receive event at node Ej =<
Tj , Ri, Li, Pi >, where Tj is the clock cycle at which the
packet is received by node Ri. Note that Tj − Ti is the
network latency for the packet Pi.

It is assumed that if an application is run with network
configuration A, and then with network configuration B,
the two resulting traces will have the same set of packets
being sent and recieved, albeit at different times.1. More
formally, for each event Ea =< Ta, La, Ra, Pa > in
trace A, there will be a corresponding event Eb =<
Tb, Lb, Rb, Pb > in trace B in which La = Lb, Ra = Rb,
and Pa = Pb, but Ta may be different than Tb. This
assumption also implies that the mapping of the appli-
cation to network nodes is fixed, and that in both run
A and run B each node was performing the same set of
tasks.
5.1.2 Computation Model

Each node n in the on-chip network is modeled as
a single computational element, which generates packet
transmit events and consumes packet receive events. A
node transmits the same packets in the same order each
time an application is run. Each time a node transmits a
packet, it is modeled as the result of some computation
that has a set of input values. Inputs could be values
previously calculated at the node, or be values received
from other nodes. Each transmit event is therefore mod-
eled as having a computation time and a set of 0 or more

1. In practice this assumption does not hold and is addressed in
Section 5.4.2
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receive dependencies, which are receive events that must
occur at a node before the computation for the transmit
can begin.

Node n will transmit packet p once the following
3 requirements have been satisfied: 1) n has already
transmitted the packet that it is supposed to transmit
before p, 2) each packet in p’s set of receive dependencies
has been received by n, and 3) p’s computation time has
elapsed since both 1) and 2) have been satisfied.
5.2 Sample Trace Generation

The PDG GEN algorithm takes as input a set of traces
of the form described in Section 5.1.1. The traces are
generated by running an application of interest multiple
times, each time using a different network configura-
tion. Each trace will therefore capture the behavior of
the same application under a different set of network
conditions.

The first trace (referred to as the base trace is generated
by running the application of interest on a Fully Con-
nected Network (FCN) with single cycle link latencies.
This configuration was chosen because it represents an
“ideal” network and will expose computational delays
and hence the real dependencies that may otherwise
be hidden due to queuing, routing and other non-
deterministic mechanisms. Using information from the
base trace, the nodes are partitioned into m sets with
pairs of nodes that are communicating the most placed
in different sets.

An additional m traces are then generated by run-
ning the application of interest on FCNs in which the
outgoing links of the nodes in one of the m partitions
have a large latency, p, while the remaining links have
single cycle latency. If there are n nodes, then each
partition will contain n

m nodes. The lopsided latencies in
the partitioned network configurations serve to expose
information about dependencies between packets - some
packets will be delayed while waiting for dependencies
from slow nodes, while others with no dependencies on
packets from slow nodes will not be delayed.
5.3 PDG GEN Algorithm

The PDG GEN algorithm has two tasks: to infer a
dependency set and to calculate a computation time for
each packet. In general, for a given transmit event Ei,
any event at that node that has occurred before Ei could
be in its dependency set. This is a problem, since there
are usually millions of packets in a trace. To deal with
this, two simplifying assumptions are made. The first
is that transmit events at a given node are ordered (as
described in Section 5.1.2). This allows each transmit
event Ei at a node to always be dependent on exactly
one previous transmit event at that node, namely the
immediately preceding one. While this assumption may
not accurately model all real situations, it is important
because it simplifies the PDG GEN algorithm and also
allows for simple and efficient implementation of the
code necessary to support PDGs in a network simula-
tor. It should also be noted that traditional trace-based

simulations also make this assumption.
The second simplification is to only consider a win-

dow of previous receive events, instead of the entire
history. We evaluated two windowing techniques - one
that uses a fixed window size w in which only the w
receive events immediately preceding a transmit event
are considered for its dependency set, and another that
uses a dynamic window in which a transmit event only
considers packets received during the window of time
since the k previous transmits at that node (for example,
if k=1, a transmit can only depend on packets that have
arrived since the previous transmit event at the same
node, if k=2 a transmit can only depend on packets that
have arrived since the second most recent transmit event,
etc.).

The PDG GEN algorithm uses the base trace and m
additional sample traces (as described in Section 5.2) to
generate a receive dependency set (Si) and a compu-
tation time (Di) for each packet. PDG GEN follows 3
steps:
STEP 1: For each transmit event Ei in each of the traces,
add all the receive events within the window (k or w) to
Ei’s set of potential receive dependencies, Si.
STEP 2: Remove all receive events from Si that violate
causality, i.e. arrive after the transmit event Ei, in any of
the m traces.
STEP 3: Find the computation time (Di) associated with
the transmit event Ei.

The initial computation delay for each event is com-
puted using the base trace. Let Ei =< Ti, Li, Ri, Pi > be
a transmit event at node Li. Recall that this event will
occur at cycle Ti, after all the packets in its reception
dependency set have arrived. Let Tj be the clock cycle
at which the last member of the reception dependency
set arrives. The initial computation delay Dj is then
calculated as Ti − Tj . The following two properties are
then used:

Property 1: If node N transmits a packet Pi at time Ti

and if the initial computation delay as computed above
is Di, then any packet received by node N at time Tj >
Ti −Di cannot be a reception dependency for Pi.

Property 2: If node N transmits packet Pi at time
Ti, and Pi’s computation time is Di, then any packet
received by n at time Tj < Ti − Di cannot be Pi’s last
reception dependency.

These properties are used to prune the set of possible
dependencies. The last reception dependency for each
packet is found in each of the m traces, and if it violates
Property 1 in any trace, it is removed from the set Si.
If any of the elements in Si violate Property 2, it means
that the estimated computation time Di was too small,
so the corresponding reception dependency is removed
from Si. This process continues until no pruning occurs
for an entire iteration of all the traces.
5.3.1 PDG GEN Example

Table 2 shows transmission times (P13) and reception
times (P6, P7, P8, P9) for a node in three different traces.
STEP 1 of the algorithm will result in adding packets P6,
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TABLE 2
Trace Fragment - TX denotes transmit event and RX

denotes a receive event. For simplicity only the time is
shown, the rest of the details of the packet are omitted

TX RX RX RX RX
Sample # P13 P6 P7 P8 P9

1 1000 900 950 980 990
2 1050 1020 1000 1030 1100
3 1100 1045 1050 1075 1095

P7, P8, and P9 as potential reception dependencies for
packet P13. In STEP 2 of the algorithm any events that
violate causality will be removed - in this example, P9

will be removed from the reception dependency set since
it arrives after the transmission of P13 in trace sample 2.

In STEP 3, the computation time is estimated first,
which in this case is 20 (P8 is the last in the set to be
received before transmission of P13 in the first trace).
Next, Properties 1 and 2 are used to iteratively prune the
set of initial dependencies generated in STEP 1. At this
point Property 1 holds - however, trace sample 3 violates
Property 2, because the computation time exhibited in
trace sample 3 is 25 (P8 is received 25 before transmission
of P13). Therefore, P8 is removed from the reception
dependency set. The third step repeats by calculating
the new computation time, now estimated to be 50 (P7 is
received at 950). Property 1 does not hold now, since P6

is received only 30 before the transmission of P13 in trace
sample 2. P6 is removed from the dependency set, and
all Properties hold for the third step for all traces. Thus
the PDG GEN algorithm will indicate P13 is dependent
upon only P7, with a computation time of 50.

5.4 Adapting PDG GEN to Real Traces
In a modern multicore processor, communication be-

tween cores working on a parallel task occurs through
reads and writes to memory locations within a shared
memory space. This means that on-chip network traffic
actually consists of cache coherence protocol messages
associated with cache line requests generated by cores
performing memory operations. A major implication of
this is that no unique packet ID exists to allow for
correlation of a packet across the different traces.
5.4.1 Packet Matching

This complication can be addressed by storing ad-
ditional metadata about each packet in the trace, such
as the cache coherence message type and the memory
location that the message pertains to. By combining
this information with the source and destination of the
packet, it is usually possible to find a packet that matches
in each of the traces. The situation where it is not
possible to find a match is discussed in the following
section.
5.4.2 Different Length Traces

Another challenge to dealing with real traces is the
fact that the number of packets in each trace may differ.
Consider a situation in which core A writes to a memory
location (X) two times, and core B writes to that same

memory location (X) once. In one trace, the writes may
occur in the order A →X, A→X, B→X, while in another
trace the order might be A→X, B→X, A→X. In the first
case traffic will be generated by the first write by A (but
not the second, since X will be in A’s cache) and by
the write by B. In the second case, however, network
traffic will be generated for all three memory operations
because the write by B will invalidate the cache line in
A containing X, and it will no longer be present when A
writes a second time. Unfortunately, no perfect solution
to this problem exists. If only packets present in all traces
are used, then the total number of packets in the final
PDG will be lower than in any of the input traces. This
is an undesirable result because it means that a smaller
volume of traffic will be injected into the network when
the PDG is used. For this reason, every packet from the
base trace is ensured to be present in the final PDG, so
that the overall traffic volume in the PDG matches that
of the base trace.

Including unmatched packets from the base trace
brings up the issue of how the PDG GEN algorithm
should handle these packets. There are two separate
sub-problems: how to handle an unmatched packet’s
dependency set and computation time, and how to han-
dle adding it to other packet’s dependency sets. When
dealing with real traces, it is not unusual for one of
the m sample traces to have significantly different traffic
than the rest, causing very few packets to match across
every single trace. The PDG GEN algorithm therefore
allows a packet to generate and prune a dependency
set if it matched in a majority of the traces. Similarly,
a packet will only be added to other dependency sets
if it matched in a majority of the traces. A much more
detailed description of this problem and how it is dealt
with is available in [26].

5.4.3 Very Large Traces
Benchmarks found in common parallel benchmark

suites such as SPLASH-2 [14] or PARSEC [27] typically
have regions of interest that involve the execution of
many billions of instructions. Even benchmarks with
modest amounts of communication can generate net-
work traces consisting of hundreds of millions of pack-
ets. For example, each trace from an FFT benchmark
with a problem size of 16 million complex data points
contains more than 300 million packets, which results in
a trace file size of about 28 GB. Running the PDG GEN
algorithm with a base trace and four sample traces
(m = 4), at least 28GB ∗ 5 = 140GB of RAM would
be required to keep all of the packet information from
all of the traces resident in memory. To mitigate this
large memory footprint, the PDG GEN algorithm can be
modified to stream through each trace with a selectable
packet window size, W (not to be confused with w or
k, the static or dynamic windows of consideration for
potential receive dependencies for each packet).

Since every packet from the base trace ends up in the
output PDG, the base trace can be read through in a
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linear fashion, and the only packets that must be retained
in memory are those that are still within the window of
consideration for upcoming transmits from each node.
The PDG algorithm can be modified to run one packet
at a time, because all the necessary information will come
from packets that have been encountered and matched
earlier in the base trace.2

This assumption allows the introduction of a packet
window W , which is the maximum number of packets
“ahead of” and “behind” the current position in the
base trace that must be kept track of for each of the
other traces. Each time a new packet is encountered in
the base trace 3 actions occur: 1) if W packets from the
base trace are already being stored, the oldest one one
is discarded, 2) if 2W packets from each the other traces
are already being stored, discard each oldest one, and 3)
read forward in each of the other traces to find a new
packet.

This allows an upper bound of 2W ∗m+W packets that
must be stored at any time while running the PDG GEN
algorithm. Using a window size of W does introduce
a trade-off between memory footprint and matching
accuracy, because if W is too small, packets from the base
trace may not find their match in some of the sample
traces simply because they are outside the window of
consideration. Similarly, if the base trace is shorter than
any of the sample traces and if W is small enough,
some packets at the end of those traces will never be
considered because the packet window never reaches
them.
5.5 Traffic Specific Modifications

While the PDG GEN algorithm as described thus
far only uses timing information in its analysis, it is
possible to include other traffic-specific information into
the process. For example, in the case of our Simics +
GEMS simulation setup described earlier in Section 2.2,
the traffic is made up of coherence messages for a
MOESI directory based cache coherence protocol. Much
of the traffic consists of request and response mes-
sages sent between cache controllers and directories that
have straigtforward dependency relationships, which are
easily discernable by using information about the the
message’s source, destination, coherence message type,
and cache line in question. This knowledge enabled us
to create a modified version of PDG GEN specific to
the MOESI directory coherence protocol. It uses coher-
ence message types and memory locations to infer all
protocol-specific dependencies, and only performs the
PDG GEN algorithm on initial requests. These modifici-
ations were straightforward to implement, and it would
be possible to create a modified version of PDG GEN
for any other type of traffic.

2. Each packet that is encountered in the base trace could theoreti-
cally match to a packet that is transmitted at any time in each of the
other traces - realistically, however, the ordering of packet transmits
in each trace should be fairly similar, meaning that a matching packet
should usually be located at roughly the same fraction of the way
through each trace.

6 EVALUATION
Two separate testing environments were employed to

evaluate the PDG GEN algorithm. The first approach
was to generate a reference PDG and compare it to
a PDG inferred by the PDG GEN algorithm, which is
described in Section 6.1. The second approach was a
real-world validation, in which traces captured from
benchmarks running in a full system simulator were
used by PDG GEN to create a PDG for the benchmark.
This approach is described in Section 6.2 To see a more
detailed evalution, refer to [26].
6.1 Reference PDG Evaluation

In order to evaluate the PDG GEN algorithm’s perfor-
mance in terms of metrics like the number of dependen-
cies found or missed, there must be some known refer-
ence PDG to compare to the inferred PDG created by the
algorithm. This cannot be done using real applications,
because no reference PDG exists for these applications.
Not only that, a PDG reflects a simplified computational
model of what is actually happening as a parallelized
application is running, so it is unclear what a correct
reference PDG for an application would even be.

Our solution was to generate reference PDGs using
synthetic traffic patterns, and run the reference PDGs
on a network simulator to create traces that can be
used as inputs to PDG GEN. The resulting inferred PDG
was then compared to the original reference PDG to
determine how closely it matches.
6.1.1 Simulation Environment

There are two major components to the simulation
environment: a traffic generation tool that creates ref-
erence PDGs from synthetic traffic patterns, and a cycle-
accurate on-chip network simulator that reads a PDG
and injects packets into the network based upon its
reception dependencies and computation times.

The traffic generator can create any of the following
well known traffic patterns: uniform random (rand),
nearest neighbor (nn), tornado (tor), transpose (trans),
bit inverse (inv), hotspot (hot), and negative exponential
distribution (NED) [28]. It also supports three additional
traffic patterns - Ball, Central and Tree for further stress
testing. The Ball pattern simulates a selectable number
of tokens that are randomly sent to the next node based
on NED, modeling passing a beach ball in a crowd.
The Central pattern simulates a central or hotspot node
that receives requests and responds to the source node,
designed to model a central memory controller or a
master node. The Tree pattern models a barrier synchro-
nization, whose performance is critical in many parallel
applications.

There are also two other traffic generator parameters
of note. One is the average packet injection rate, where a
rate of 0.1 indicates each node transmits a packet on av-
erage once every 10 cycles. The other is the dependency
rate, which is the probability that a packet transmitted
by node n is dependent on each previously generated
packet received by n. This probability compounds as
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Fig. 3. Space-Time Diagram to Illustrate Quasi-
dependencies

each previously generated packet is considered - a de-
pendency rate of 0.5 means that a packet has a 50%
chance of being dependent on the most recent receive,
and a 25% chance of being dependent on the second
most recent, etc.

The output of the traffic generator is a known PDG–a
list of packets which each have a source, a destination,
a unique Packet ID, a computation time and a list of
reception dependencies. We modified the traffic injection
code for the popular cycle-accurate network simulator
BookSim 2.0 [16] so that it could inject the packets in the
PDG at the appropriate time based upon when depen-
dencies are met and when computation times finish for
each packet (see [26] for details). However, any network
simulator can be similarly modified with relatively small
effort.

6.1.2 Sensitivity Analysis

In each of the following sections, the inferred PDG
is compared to the reference PDG to determine how
many dependencies were found, as well as the number
of additional quasi-dependencies that were added. Quasi-
dependencies are defined as packets that are classified as
dependencies in the inferred PDG, but are not explicitly
stated as dependencies in the reference PDG. Figure 3
illustrates the two types of quasi-dependencies. In this
figure packet 7 is actually dependent only on packet 6,
but the PDG GEN algorithm will also identify packets
2 and 5 as dependencies as well since the partitioning
is unlikely to be able to make either packet violate
causality. For example, a trace generated with Node A
using slow outbound links will also slow delivery of
packet 4 and hence delay packet 6, and slowing Node B
in a partitioning will further exacerbate the problem. For-
tunately, regardless of topology, quasi-dependent packet
2 is highly unlikely to ever be the last dependency
met since it is transmitted before packet 4, which the
true dependency (packet 6) is itself dependent upon.
However, quasi-dependencies of the form of packet 5
are of greater concern, since it is possible that for some
topology packet 5 will be received after packet 6 (the
true dependency). Fortunately, Property 1 and Property
2 (Section 5.3) used in the PDG GEN algorithm are
more likely to prune packet 5 from the set of reception
dependencies than packet 2, thus reducing the potential

impact on predicted execution time.
6.1.3 Number of Partitions, m

As described in Section 5.2, m is the number of parti-
tions into which the nodes should be placed, as well as
the number of additional simulations to run and acquire
traces from. Figure 4(a) shows the number of true and
quasi-dependencies (normalized to the reference PDG)
found for values of m varying from 0 (only base FCN
trace) to 64 (base FCN trace plus 64 sample traces each
with a slow node). Figure 4(b) shows the average percent
error in packet computation time for varying values of
m. The reference PDG that was used consisted of 64
node NED traffic with a dependency rate of 0.5 and an
injection rate of 0.01. PDG GEN was run with a window
size of k=1, which was able to identify most of the
dependencies in the base trace (m=0). Figure 4(b) does
show that when m = 0 the computation time error is
fairly high, but increasing m beyond 2 yields almost no
gain in either dependency identification or computation
time accuracy.

These results indicate that the main reason to use a
larger value of m is to reduce the number of quasi-
dependencies in the inferred PDG. As later analysis in
Section 6.1.6 shows, even with a large number of quasi-
dependencies present, the inferred PDG and reference
PDG still tend to perform similarly during actual net-
work simulations. Furthermore, when full system simu-
lations are being used to generate traces, increasing m
means increasing the number of computationally expen-
sive full system simulations that are required to generate
the PDG. Therefore, m should be picked according to the
details of the situation at hand - how long the initial
full system simulations take (and how many can be
performed in parallel), how sensitive the network sim-
ulator’s performance is to tracking extra dependencies,
and how many times the PDG will be re-used.
6.1.4 Partitioned Link Latency, p

Section 5.2 also describes p, which is the latency of
all the outgoing links from the nodes in one “slow”
partition. Each sample simulation has a different par-
tition selected as the slow partition. Figures 5 and 6
show the accuracy of PDG GEN for varying values of p.
Figures 5(a) and 5(b) show the number of dependencies
found for NED and Tree traffic patterns, respectively,
while Figures 6(a) and 6(b) show the average percent
error in the computation time that PDG GEN calculated
for each packet. PDG GEN was run with m=4 and k=1,
and both NED and Tree consist of 64 node traffic with
an injection rate of 0.01 and a dependency rate of 0.5.

For NED, the initial increase of p from 1 to 2 yields
large improvements, because when p = 1 the sample
traces are identical to the base trace. Increasing p beyond
2 yields small improvements in the number of true de-
pendencies found initially, at the cost of small increases
in the number of quasi-dependencies found. However,
further increases in p slowly but steadily increases the
number of quasi-dependencies found. This is because



IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 11, NOVEMBER 2012 9

(a) Dependencies Found (b) Computation Time Error

Fig. 4. Normalized number of dependencies found (a) and average percent error in computation time (b) for NED
traffic pattern for varying values of m.

(a) Dependencies Found for NED (b) Dependencies Found for Tree

Fig. 5. Normalized number of dependencies found for NED (a) and Tree (b) traffic patterns for varying values of p.

(a) Computation Time Error for NED (b) Computation Time Error for Tree

Fig. 6. Average percent error in computation time for NED (a) and Tree (b) traffic patterns for varying values of p.

some packets will start out with a larger set of initial
receive dependencies when p increases, and any of these
packets that cannot be pruned will increase the number
of quasi-dependencies found. Note that as the number
of quasi-dependencies become very large, the error in
computation time begins to grow significantly as well.

The other traffic patterns studied exhibit behavior sim-
ilar to NED as p is increased, with one notable exception.
For Tree, increasing p steadily increases the number of
true dependencies found, while simultaneously decreas-
ing both quasi-dependencies and computation time er-
rors. This result highlights one of the challenges faced by
PDG GEN; different traffic patterns may require differ-
ent parameters, but it is not clear how to determine the
correct values for these parameters without a reference
PDG to compare against.

6.1.5 Window Sizes, w and k

As Section 5.3 describes, w is a static window size con-
taining the number of receive events at a node preceding
a transmit event that will be considered as possible
dependencies for the transmit, while k is a dynamic
window size containing the number of previous transmit
events to go back when considering potential receive
dependencies for a transmit. PDG GEN can use either a
static or dynamic window (w or k).

Figure 7(a) shows the performance of PDG GEN on
64 node NED traffic for varying values of w. The results
demonstrate that as the window size grows the number
of true dependencies detected increases, but the number
of quasi-dependencies climbs even faster. In Figure 7(b),
varying values of k are used, and the results show that
using a dynamic window of k=1 tends to perform well
due to its adaptive nature.
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(a) Static (b) Dynamic

(c) Static, Pruned (d) Dynamic, Pruned

Fig. 7. Effect of window size on accuracy for NED
traffic pattern with Static (a) and Dynamic (b) window
sizes. (c) and (d) show the effect of pruning all receive
dependencies appearing in dependency sets of previous
transmits

The reason the number of quasi-dependencies in-
creases so quickly in Figure 7(b) is that as the window
size increases, each receive is initially present in more
and more transmit’s receive dependency sets. For exam-
ple, for k=1, each receive begins in one transmit’s depen-
dency set. For k=2, each receive begins in two transmit’s
dependency sets, and so on. Due to the computational
model’s constraint that transmits must occur in order,
if a transmit is dependent on a receive event, then
any subsequent transmits from the same node can have
that receive pruned from their dependency set without
affecting the PDG’s behavior in a simulation. If a large
window size is used, then pruning this way can decrease
the number of dependencies in the PDG, which can
speed up simulation times. Figures 7(c) and 7(d) show
the effect of pruning all receive dependencies appearing
in dependency sets of previous transmits. The number
of quasi-dependencies are greatly reduced without ef-
fecting the number of true dependencies, because most
of the packets in the reference PDG have at most one
packet that depends on them.

As with the sensitivity analysis of p, the Tree traffic
pattern exhibits different behavior than NED when win-
dow size is varied. Figures 8(a) and 8(b) show the effects
of w and k on accuracy for Tree with p=10, while p=100 in
Figures 8(c) and 8(d) The figures show that to find most
of the true dependencies for Tree, one would need to use
p=10 and k=4, or p=100 and k=3. This is very different
than the rest of the traffic patterns, which perform much
better with p=10 and k=1.

(a) Static, p=10 (b) Dynamic, p=10

(c) Static, p=100 (d) Dynamic, p=100

Fig. 8. Effect of window size on accuracy for Tree traffic
pattern with with Static ((a), (c)) and Dynamic ((b), (d))
window sizes, with p=10 and p=100

Note that if there are a large number of dependen-
cies on packets that tend to arrive well before each
transmit, then a larger window size becomes necessary.
With the exception of Tree, the traffic generator creates
such dependencies with a low probability, which seems
to match our observations of real traffic patterns. For
instance, cache coherence protocol traffic in a shared
memory multiprocessor predominantly has a request-
response communication pattern, which will result in
most messages being dependant only on a single mes-
sage that was received very recently.
6.1.6 Performance Comparison

In order to evaluate the performance, the traffic gener-
ator was used to produce 64 node reference PDGs with
an injection rate of 0.01 and dependency rate of 0.5 for
each previously described traffic pattern. Based on the
results of the sensitivity analyses, parameter values of
m = 4, k = 1, and p = 10 were used by the PDG GEN
algorithm and an inferred PDG was created for each
reference PDG.

Figure 9(a) shows that PDG GEN discovers almost
all of the true dependencies for most of the traffic
patterns, but often also finds a large number of quasi-
dependencies. Figure 9(b) shows that PDG GEN is fairly
accurate in calculating computation time as well (with
the exception of nn and tor).

To compare the overall performance of an inferred and
reference PDG, both were run through different network
configurations to compare overall performance statistics
such as total execution time and average packet latency.
The performance of the inferred PDG was also compared
to that of a modified reference PDG from which all of
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(a) Dependencies Found (b) Computation Time Error

Fig. 9. Normalized number of dependencies found (a) and average percent error in computation time (b) for each
traffic pattern

the reception dependencies have been removed (referred
to as a stripped PDG).

BookSim was used to run a simulation of an 8x8
mesh with two virtual channels, for each reference and
inferred PDG. The total execution time and average
packet latency of the inferred and stripped PDGs were
then normalized to the reference PDG, and the results
are shown in Figure 10(a) and Figure 11(a). These figures
show that on average the execution times of the inferred
PDGs were within 0.55% of the reference PDGs, and
average packet latencies were within 0.27%. In contrast,
the stripped PDG varied widely from the reference PDG,
with average errors of 89.18% in execution time and
27464% in latency. The stripped PDG results show once
again that failing to accurately model packet injection
rates can lead to incredibly inaccurate conclusions about
how a traffic pattern will perform on a network.

The largest discrepancies for the inferred PDG were a
2.25% error in execution time and 1.59% error in latency,
both seen in the Tree traffic pattern. This is to be ex-
pected, as the previous sections have shown that the Tree
traffic pattern performs best with different PDG GEN
settings than the others. Figures 10(b) and 11(b) show
the same PDGs running on a 3 level FatTree network,
and the inferred PDG performed very similarly to the
mesh case, with an average execution time error of 0.32%
and average latency error of 0.30%. These results indicate
that an inferred PDG can match a reference PDG very
closely in overall network behavior, despite the presence
of quasi-dependencies and computation time error.

6.2 Simics Evaluation
After performing direct quantitative comparisons be-

tween reference and inferred PDGs, the next step was
to use the PDG GEN algorithm on traces from full sys-
tem simulations of real applications. As with the initial
motivating experiment in Section 2.2, Simics 3.0 [12] and
GEMS 2.1.1 [13] were used as the full system simulation
framework, and Garnet (the network simulator within
GEMS) was modified to record a trace of each packet
transmit and receive event that occurs during a full
system simulation.

With this modification, multiple Simics simulations of
an application of interest can be run to acquire the nec-

essary input traces for use by the PDG GEN algorithm.
However, the traces acquired in this manner are not

directly usable by PDG GEN. As described earlier, there
are no explicit packet IDs to identify packets across
the traces, and the traces are of different lengths. To
accommodate this, the matching algorithm described
in Section 5.4.1 was used to generate usable traces.
The PDG GEN algorithm was also modified to use the
windowing scheme described in Section 5.4.3 in order to
accommodate the very large traces that are generated by
running real applications.

The PDGs obtained from the setup described above
can be used by any network simulator that has been
modified to support the injection of a PDG file into
the network. We modified Garnet to support PDGs, in
order to allow a direct comparison between full-system
Simics simulations (which use the Garnet simulator) and
network-only Garnet simulations using PDGs.

6.2.1 Simics Comparison Results
In this section overall performance results are pre-

sented for the PDG GEN algorithm and each benchmark
from the SPLASH-2 parallel benchmark suite. To gener-
ate the results Simics and GEMS were configured with
16 directories using the MOESI SMP directory cache
coherency protocol, and 16 1 CPI in-order processors
each with 16KB L1 instruction and data caches and
private 4MB L2 caches (for a total of 32 distinct nodes in
the on-chip network). Pipelined out of order processors
were not modeled because we are only looking at the
messages out the back side of the memory heirarchy, and
any out of order behavior should be absorbed by the var-
ious levels of the cache. PDGs were generated for each
benchmark using m = 4 and p = 50, and then simulated
on Garnet running in standalone network mode using
two new network topologies–a mesh and a fattree, with
the network clock speed cut in half and a link pipeline
depth of 10 cycles (to simulate a resource-constrained
network). The networks had 4 virtual channels and 16
byte flits. These results were then compared to Simics
simulations of the same benchmarks on the same two
network configurations.

Figure 12(a) shows the execution times and Fig-
ure 12(b) shows the average packet latencies for Simics,
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(a) 8x8 Mesh (b) 3 Level FatTree

Fig. 10. Normalized execution time for different traffic patterns for Stripped PDG, Reference PDG and Inferred PDG
on 8x8 mesh (a) and 3 level FatTree (b) networks

(a) 8x8 Mesh (b) 3 Level FatTree

Fig. 11. Normalized latency for different traffic patterns for Stripped PDG, Reference PDG and Inferred PDG on 8x8
mesh (a) and 3 level FatTree (b) networks

(a) 8x4 Mesh (b) 3 Level FatTree

Fig. 12. Normalized execution time for different SPLASH-2 benchmarks for traditional trace, Simics simulation, and
PDG on 8x4 mesh (a) and 3 level FatTree (b) networks

PDG, and traditional trace simulations for each bench-
mark (normalized to the execution time of the Simics
simulations) running on an 8x4 mesh network. The base
trace was used for the traditional trace simulations.
These results show that while the PDGs are not perfect
at predicting execution time, they are far superior to
the traditional method of using a timestamp-based trace.
Notice also that even when the PDGs significantly miss-
predict execution time, they still result in very accu-
rate packet latency estimates. Both the FFT and FMM
benchmarks on fattree show situations where using a
traditional trace leads to highly inaccurate packet latency
estimates.

Another interesting thing to note is that sometimes
the PDG will underestimate execution time due to a

significant increase in the number of packets generated
by a benchmark on one of the new networks compared
to the base trace. For example, the Cholesky benchmark
generated 33% more packets when run on the mesh
network than when run on the base FCN network. It
is quite possible that this difference in trace size is the
true reason for the PDG underestimating execution time
(Figure 12(a)), and not that it failed to infer enough
dependencies or accurately calculate computation times.
And even in these cases the PDG still did a good job of
predicting average packet latency (Figure 13(a)).

However, some PDGs did misspredict execution time
due to inaccuracies in the PDG GEN algorithm. For
example, PDG significantly underestimated LU’s execu-
tion time on fattree, despite only a 15.1% trace size dif-
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(a) 8x4 Mesh (b) 3 Level FatTree

Fig. 13. Normalized latency for different SPLASH-2 benchmarks for traditional trace, Simics simulation, and PDG on
8x4 mesh (a) and 3 level FatTree (b) networks

ference. PDG also significantly overestimated Volrend’s
execution time on fattree even though there was only a
4.7% trace size difference. This highlights an issue first
uncovered by the NED and Tree synthetic traffic patterns
in Section 6.1.4: different traffic patterns may require
different PDG GEN settings.

Overall, the PDGs had an average error of 20.8% in
execution time on the mesh network, and an average
error of 18.9% in execution time on the fattree network.
In contrast, the traditional traces had an average error
of 43.4% and 47.3% in execution time on the mesh and
fattree networks, respectively. This means that on aver-
age, the PDGs were 2.3 times more accurate at predicting
execution time. The PDGs were even better at predicting
average packet latency, with average errors of 1.66% and
2.16% on the mesh and fattree networks, respectively.
The traditional traces had an average error of 3.81% in
packet latency on the mesh network, and 15100% on
the fattree network (due to the catastrophically large
over-estimates for FFT and FMM; see Figure 13(b)). This
means that the PDGs were 2.3 times better at predicting
average packet latency on the mesh network, and 6990
times better at predicting average packet latency on the
fattree network. This shows that as a network becomes
more resource constrained, the PDGs become increas-
ingly better than traditional traces at predicting packet
latency because they throttle injection rates appropriately
and never flood the network with packets the way
traditional traces do.

6.2.2 Traffic Specific PDGs
In Section 5.5 we discussed the possibility of mod-

ifying the PDG GEN algorithm to take advantage of
traffic-specific behavior. To demonstrate the viability of
this approach, we developed a version of the PDG GEN
algorithm that works specifically with the MOESI direc-
tory cache coherence traffic used in these Simics sim-
ulations. We used the modified PDG GEN algorithm to
generate modified PDGs for each SPLASH 2 benchmark,
and ran them on the same mesh and fattree networks.
Averaged across all of the benchmarks on both of these
networks, the modified PDGs were 22% more accurate
at predicting execution time and 2% more accurate at
prediciting packet latency than the original PDGs. While

these gains are modest, the required effort to modify
the algorithm was equally modest. Overall, these results
show that the PDG GEN algorithm can be applied to
real-world benchmarks that are commonly employed by
researchers today, and afford significant accuracy gains
over traditional trace based simulation methods.

7 CONCLUSION
The goal of this work was to improve the accu-

racy of trace based cycle-accurate network simulation,
a commonly used on-chip network evaluation method.
A full system simulation environment (Simics+GEMS)
was used to demonstrate that simply recording a net-
work trace from an application fails to incorporate key
information about packet injection rates, and can lead
to inaccurate results. The PDG GEN algorithm was pre-
sented, which infers dependency information between
packets based upon a set of traces gathered from multi-
ple full system simulations of an application. Evaluations
using both synthetic and real traffic patterns show that
PDG GEN can increase the accuracy of network simu-
lations significantly compared to the standard technique
of simple trace based simulation.

While the results presented here are encouraging,
there are several avenues of future work. Different
classes of traffic patterns (for example, Tree vs. NED)
may call for different settings of the PDG GEN algo-
rithm’s parameters, or even modifications to the com-
munication model, such as removing total ordering of
transmits. Additionally, Kamil et. al [29] have shown that
parallel scientific applications often go through program
phases in which traffic patterns and volumes change
drastically. An initial high-level traffic analysis phase
could be added to PDG GEN, which identifies traffic
characteristics and program phases to determine optimal
settings. Work can also be done to apply PDG GEN to
new communication paradigms, such as on-chip mes-
sage passing traffic and traffic for emerging architectures
such as such as System-on-Chip (SoC) or General Pur-
pose Graphics Processing Units (GPGPU).
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