
HySIM: Towards a Scalable, Accurate and Fast Simulator
for Manycore Processors

Kramer Straube
∗

kkstraube@ucdavis.edu
Huan Zhang

∗

ecezhang@ucdavis.edu
Christopher Nitta

†

cjnitta@ucdavis.edu

Matthew Farrens
†

farrens@cs.ucdavis.edu
Venkatesh Akella

∗

akella@ucdavis.edu

ABSTRACT
Simulation is the primary means to explore the design space
of computer architecture. As the number of cores on a die
increases, and the use of heterogeneous cores and on-chip
networks leads to more and more complex systems, fast and
cycle accurate simulation presents a formidable challenge.
In this paper we propose the rationale for and design of a
hybrid simulator called HySIM that takes RAMP Gold and
moves the timing model of the memory subsystem to the
host. This has four important advantages - first, it makes it
possible to use multiple FPGAs in order to scale to a large
number of cores, including heterogeneous cores and proces-
sors with hardware accelerators; second, it enables the mod-
eling of detailed cache-coherence protocols by interfacing the
simulator to a memory model such as Ruby; third, it pro-
vides a cycle-accurate model for the on-chip network that
is flexible enough to support different topologies, routing
schemes, and router micro-architectures; and fourth, it frees
up resources on the FPGA to increase the number of physi-
cal cores or to incorporate an on-chip L1 cache. We present
preliminary results to validate HySIM and describe ongoing
effort to improve its performance.

1. INTRODUCTION
There is a general consensus that core level parallelism of-

fers a straightforward way to improve performance as tech-
nology continues to scale. This trend started with processors
used in servers, but now even processors used in notebooks
and emerging embedded systems like tablets and smart-
phones use multicore processors. For example, the Snap-
dragon 800 processor used today in phones from Google,
Samsung and others has 4 cores, with each core running
at 2.3GHz. Tilera, meanwhile, has recently announced a
72-core TILE-Gx72 processor for use in high-performance
computing. It is quite conceivable that in the near ‘future
systems will have well over a hundred cores on a die.

A key challenge that confronts designers is a fast and ac-
curate way to simulate such chips, so that the design space
can be explored thoroughly to find the optimal configura-

∗Department of Electrical & Computer Engineering
University of California, Davis
†Department of Computer Science
University of California, Davis

CARL ’13 Davis, CA USA

tion for the number of cores, caches, coherence protocols,
the network topology etc. Pure software simulation can be
used, but the more accurate the simulation is the slower it
is going to run (on the order of hundreds of thousands of
instructions per second), which means it can take months to
do a cycle-level accurate simulationg of a reasonable appli-
cation. Starting with Quickturn’s RPM in 1989 (which was
used to emulate the Pentium microarchitecture in 1991) and
Virtual Machine Works1, FPGAs have been used to acceler-
ate simulation, though primarily for ASIC verification. With
the advent of the BEE (Berkeley Emulation Engine) [4] and
its successor RAMP, FPGAs have become an important tool
in the computer architect’s toolkit. Over the past few years
there have been numerous efforts [5, 12, 11, 1, 7] to strike the
right balance between accuracy and simulator performance
in FPGA-based processor simulation frameworks.

The main idea in many of these efforts is time-multiplexing,
which involves mapping the simulated cores to actual physi-
cal cores implemented on an FPGA. However, scaling these
approaches to be able to simulate hundreds of cores with
an acceptable simulation time will require the use of mul-
tiple FPGAs, as well as ensuring the resources on a given
FPGA are utilized wisely. This involves making some trade-
offs - for example, in the RAMP Gold [14] approach the
interconnection network is fixed, and the timing of the net-
work and the cache-coherency protocols is not modeled ac-
curately. Furthermore, it is difficult (if not impossible) to
extend the RAMP Gold approach to work across multiple
FPGAs, because the memory timing model is implemented
on the FPGA. If multiple FPGAs are going to be used, there
must be a way for these timing models to communicate with
each other, which is difficult when the models are distributed
and designed to only deal with on-chip behavior.

In this paper we propose HySIM, which can be viewed as
a redesign (or an extension) of RAMP Gold. The key idea in
HySIM is to pose the problem of designing a simulator as a
hardware/software codesign of a full-system software simu-
lator (such as GEM5). The goal is to find the right partition
between hardware (that runs on the FPGA) and the rest of
the infrastructure. In our initial work reported in this paper
we propose a partition at the Ruby level (using the GEM5
terminology), meaning everything from the memory timing
model on up is in software on the host. There are several ad-
vantages to such a partitioning. First, it frees up FPGA re-
sources which can be used to implement more physical cores

1Logic Emulation and Prototyping, Mike Butts, RAMP at
Stanford, August 2010

2013 Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 1



and/or elements of the memory hierarchy. Second, by mov-
ing the memory timing model to software, we automatically
get the ability to model complex coherence protocols. Third,
this approach allows us to use multiple FPGAs - since the
memory timing model is a centralized structure, handling
that in software means no shared information is kept local-
ized within any FPGAs. We are limited by the bandwidth
between the host and the FPGA using this approach; how-
ever, with the advent of high bandwidth interconnects such
as Infiniband and PCI express, this is not likely to be an in-
surmountable problem. In addition, the ability to spread the
simulation across multiple FPGAs means that we can not
only simulate more cores, but we can also now simulate het-
erogeneous processors [6, 8] and processors with hardware
accelerators like the Snapdragon. Finally, partitioning in
this manner allows us to do detailed and cycle-accurate sim-
ulation studies of interconnection networks, including rout-
ing protocols, router microarchitectures, and topologies.

In this paper we describe our current efforts in design-
ing and validating HySIM. This is a work in progress, so
we will present only preliminary results of the viability of
the approach. The rest of the paper is organized as follows.
We start with a survey of related work highlighting the key
advantages and disadvantages of the various approaches to
accelerating processor simulation. We then present the chal-
lenges we faced when trying to get RAMP Gold up and run-
ning in our labaratory. Next we describe our approach in
more detail, including results from initial experiments, and
conclude with ongoing work.

2. RELATED WORK
Several simulators exist for multiprocessor target systems.

They fall into two main classes: software-based and FPGA-
based.

2.1 Software-based Simulators
Software-based simulators use a host computer to per-

form all of the simulation steps of the multiprocessor system
model. They are capable of being highly accurate, but be-
cause they must emulate all the hardware in software, the
amount of work that the host processor needs to complete
is enormous.

GEM5 [2], which is based on a combination of GEMS [9]
from the University of Wisconsin, Madison and M5 [3] from
the University of Michigan, performs cycle-accurate simula-
tions of multi-core systems. The models are implemented
to allow both precision and flexibility. One major drawback
with GEM5 is that the complexity of the models significantly
affects the simulation time and memory requirements. As a
result, GEM5 only supports up to 64 cores, and the simula-
tions of certain benchmarks can take on the order of months.
It is widely accepted that GEM5 is a very accurate simula-
tor, but it is too slow for many practical uses. Due to these
limitations, the design scope of the proposed system is sig-
nificantly limited.

Graphite [10] from MIT sought to address the slow simu-
lation time of GEM5 by using multiple cores to increase the
computation power available to model the system. To ac-
complish this, the modeling of the cores in the system is ac-
complished by using separate processing threads running on
the host system. Graphite intentionally gives up the ability
to do cycle-accurate simulation in order to allow this multi-
threaded approach to succeed. However, cycle-accurate sim-

ulation is necessary for proper modeling of certain shared
resources, such as the on-chip network and shared memory
systems. Thus, the types of investigations Graphite can be
used for is limited.

ZSim [13] from MIT and Stanford seeks to take advantage
of the multi-threaded approach to doing software-based sim-
ulation by using various techniques to ameliorate the accu-
racy penalties.ZSim generates traces of the memory hierar-
chy and of the basic blocks for each thread, in what it calls
the bound phase. This phase properly communicates be-
tween the threads to maintain cache coherence in the mem-
ory model. After the bound phase, ZSim uses these traces
in parallel among different domains to get parallelized sim-
ulation in the weave phase. While this implementation is
more accurate than Graphite, it still suffers from significant
accuracy penalties by not being strictly cycle-accurate. For
example, if all of the threads need to access a single location
(as is done for a barrier synchronization), then the trace-
based approach will not properly indicate the queuing delay
of the burst of requests.

2.2 FPGA-based Simulators
FPGA-based simulators use an FPGA to emulate one or

more of the cores of the design, and these emulated cores
are time-multiplexed in order to provide the desired num-
ber of cores. FPGA-based simulators are able to emulate
the cores much faster than software-based simulators can,
without loss in accuracy. However, one challenge for FPGA-
based simulators is how to properly model the network. In
addition, any modifications to the simulator to create new
configurations or alter certain aspects of the simulator re-
quire significant implementation time to complete.

RAMP Gold [14] from UC Berkeley accomplishes fast and
accurate simulation by time-multiplexing a single SPARC
core, and can support a maximum number of 64 simulated
cores at a time. It avoids the network modeling issue by
using a bus based shared memory model. RAMP Gold can
achieve a high simulation speed and provide cycle-accurate
results, but limiting the network to a shared bus is overly
restrictive. Real bus-based parallel systems do not scale past
approximately 10 cores because of increased bus contention,
and many-core machines will require a more complex on-chip
network that supports a cache choerency protocol. Also,
the on-chip timing model used in RAMP Gold to model the
delays due to memory accesses is simplistic, and does not
account for additional delays that will be incurred due to
cache invalidates or on-chip network congestion.

HAsim [12] from MIT and Intel is another approach to
FPGA-based simulation which uses a detailed model of the
processing cores. HAsim also time-multiplexes a single em-
ulated core to support up to 16 modeled cores at a time.
To model the network, HAsim uses queues that cycle back
to the time-multiplexed core. This is an improvement over
RAMP Gold, but cannot truly model all possible networks
and thus limits the expressiveness of the network model. Un-
fortunately, when using an inaccurate model, the data traffic
of the core is also inaccurate, which can lead to significant
execution time inaccuracies. HAsim can properly model net-
works close to a mesh, but more complicated networks (such
as fat trees) cannot be modeled.

3. PREREQUISITE WORK
HySIM is based on the RAMP Gold simulator architec-

2013 Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 1



ture, so the first step to creating HySIM was to get the
RAMP Gold simulator running. We did not expect this to
take much time or be very difficult - unfortunately, we were
sadly mistaken. Getting RAMP Gold running proved to
be an enormous task, requiring multiple code fixes before
RAMP Gold would function properly. Many of these issues
could be traced back to the non-standard Akaros operating
system that is used in RAMP Gold.

For example, the latest version of Akaros no longer sup-
ports the RAMP Gold architecture. This is not immedi-
ately obvious, because the RAMP Gold website points to
the Akaros website without any mention of a specific ver-
sion requirement. Using some date and version investiga-
tion, we finally tracked down the correct version of Akaros.
Unfortunately, this version does not benefit from any im-
provements or refinements to Akaros, because Akaros sup-
port for SPARC (which is the processor that RAMP Gold
emulates) was dropped in favor of RISC-V on May 9, 2011.
This means that many of the improvements and bug fixes
are not included in the version required for RAMP Gold.

Once the correct operating system was obtained, the is-
sue of getting meaningful benchmarks running on the system
still remained. As we attempted to run different benchmarks
on the system, we discovered that Akaros lacked proper
Pthread library support. The Pthread library is a key re-
source for running many multi-threaded applications. Basic
Pthread support in Akaros exists, but it was incomplete for
the SPARC target system. This resulted in even simple test
programs failing with related Pthread errors. One of the
main errors was related to the thread scheduler not properly
detecting when all of the cores were idle before returning to
the shell. We modified the __smp_idle() function to peri-
odically check whether there were threads running on other
cores before returning to the management shell, and only
returned to the shell when all cores were idle for a specified
duration. This is a clear workaround instead of a perma-
nent fix, but due to the complicated nature of the operating
system thread scheduler, we could not provide a permanent
fix.

Another key issue with Akaros was a bug in the filesystem
code. This bug caused a memory access exception during
execution, but not during FPGA simulation. We eventually
tracked this problem down to a bug (an uninitialized vari-
able k_i_info->init_size) in the file system code. This
bug does not occur in the functional simulator because the
memory is initialized to zero in the simulator, but does on
the FPGA hardware, where the memory contains random
values that may not be properly initialized. By properly
initializing the k_i_info->init_size variable, the system
successfully accessed memory.

Eventually, however, we were able to run several PARSEC
benchmarks on the RAMP Gold infrastructure, so we are
now able to move on to the creation of HySIM.

4. DESIGN
The goal of HySIM is to place only the processor on the

FGPA, and have all other functions handled by the host. To
accomplish this, we started with RAMP Gold and replaced
the timing model with an identical timing model on the host
machine. By partitioning at the timing model boundary, the
new system has the potential to be more scalable and more
accurate. The improved scalability comes from the freed
FPGA resources that can now be allocated toward increas-

ing the core states that are stored on board. The increased
accuracy is accomplished by a more detailed timing model
that can be realized on the host (which would be difficult
or impossible to implement on the FPGA). These advan-
tages are offset by the fact that there will be an increase in
simulation time, due to the need to communicate between
the FPGA and host on each timing model transaction. The
structure of HySIM is shown in Figure 1.

We intend to follow a 4-step plan to create and validate
HySIM. First, a modification to the link controller that cre-
ates an additional communication channel between the host
and FPGA must be verified. After this is done, a simple
loopback implementation that transfers the timing model
data must be tested. The third step is to modify the host
software to emulate the timing model that is implemented on
the FPGA in RAMP Gold. The software timing model can
be directly compared to the FPGA version of RAMP Gold
for several benchmarks as validation that the timing model
has been properly implemented on the host. Finally, the
simple timing model will be replaced with the Ruby mem-
ory simulator to provide accurate cache coherency timing
and support for on-chip network models. Thus far we have
completed steps 1 and 2, and have made significant progress
on the simple timing model implementation (step 3).

The HySIM interface reuses portions of the application
server implementation from RAMP Gold. The specific packet
structure uses a dedicated RAMP Gold header, and within
the ethernet data payload there is a sub-header (to deter-
mine the type of packet) and a payload length. The timing
model packets use a new sub-header which contains the data
sent from the core to the timing model. On the host side in
the loopback simulator, the data from the incoming packet
is immediately put into an outgoing packet and sent back.
The main issue with this implementation was adapting the
ethernet interface control code to include the timing model
interface. Due to the significant difference between the pre-
existing interface and the timing model interface require-
ments, the modification of the control code was a significant
challenge. The final interface ethernet data format is shown
in Figure 2.

The application server was originally written to send a re-
quest and wait for a reply, since this approach allows the host
and FPGA to remain in lock step; thus, it also required sig-
nificant modification in order to allow it to interact with the
new headers and properly interleave the timing model pack-
ets with the other packets necessary for proper simulation.
One other notable design change was to add some appserver
code and FPGA logic to prevent system call polling during
a multi-cycle instruction. If these would occur at the same
time, the simulator would enter a bad state and would not
function properly. The additional logic sends a temporarily
delay reply based on whether the current instruction needs
to be replayed, which prevents the bad state that we found
through testing.

5. RESULTS
The resource utilization of HySIM versus RAMP Gold are

shown in Table 1. The table shows that removing the timing
model from RAMP Gold and putting it on the host frees up
significant FPGA resources. The on-chip timing model was
the limiting factor for RAMP Gold scaling, due to its high
BRAM usage. By freeing up that space, the BRAM utiliza-
tion drops from 90% to 25%. This should allow HySIM to

2013 Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 1



Gigabit Ethernet

To Host 

Timing 

Model

F
ro

m
 H

o
s
t 
T

im
in

g
 M

o
d

e
l

D
D

R
2

 M
e

m
o

ry
 C

o
n

tr
o

lle
r

MMU
2x16 2-way 

private 

DTLB (x64)

64-entry 

MSHR

16KB 

unified 

host D$

Simple ALU

IDIV/IMUL

Integer ALU

DP

FPU

SP-DP 

Conv

FP-

INT 

Conv

Pipelined FPU

Target Register File Access

Decode
Microcode 

ROM

Fetch

Exception/Write Back

8 direct-mapped 

private host I$ (x64)

2x16 2-way 

private ITLB 

(x64)

IO Devices 

(x64)

Architecture 

Register File 

(x64)

Architecture 

State

(x64)

Frontend 

Application 

Server
TX RX

Frontend 

Link

Figure 1: HySIM Structure

Functional 

to Timing

Timing to 

Functional

TID 

(28b)

Run

(1b)

Retired

(1b)

Valid

(1b)

Inst 

(32b)

Replay

(1b)

NPC 

(32b)

Phys 

Addr 

(32b)

Running

(1b)

TID 

(28b)

Valid

(1b)

Run

(1b)

0 Pad 

(1b)

Figure 2: HySIM Ethernet Data Structures

scale linearly to at least 128 target cores. The LUT utiliza-
tion also drops from 28% to 13%, which frees up space on
the FPGA to add logic to improve the core model or im-
plement other features (like the lowest level of the memory
hierarchy). The digital signal processing (DSP) block util-
itzation increases slightly, potentially due to a difference in
the mapping software that found a less optimal DSP solution
than the one used by RAMP Gold. Overall, the reduction of
FPGA resource utilization allows for higher scalability and
enables new features to be placed on-chip.

The run time of HySIM cannot be accurately measured at
this point in the development process. However, a worst-case
upper bound on the added simulation time can be calculated
and added to the RAMP Gold simulation time. This pro-
vides insight into the worst case simulation time that HySIM
could take. The overall round-trip latency from the FPGA
to the host is 25 µs. This means that the upper bound on
the simulation speed with the current setup is 40 kHz. This
number is very low, and we are currently running a vari-
ety of experiments to confirm that it is the correct number.

Whether it is correct or not, however, the communication
path from the FPGA to the host is likely to be a bottleneck,
so in Section 6 we outline several different techniques we
intend to explore in order to increase the simulation speed
by reducing the probability of incurring the latency penalty.

6. DISCUSSION
HySIM gives up speed for flexibility and scalability. The

flexibility of having the timing model on the host allows the
use of multiple FPGAs, proper memory system modeling,
and reduced FPGA resource utilization. However, the com-
munication overhead incurred by the host slows the overall
simulation speed. Fortunately, there are things that can be
done to reduce the proportional cost of this overhead, such
as aggregating requests for all of the target cores into a sin-
gle packet. This improvement increases the size of the data
payload and reduces the total number of packets transferred,
while keeping the header size the same. Thus, the propor-
tion of relevant data to overhead increases, and continues to

2013 Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 1



Table 1: HySIM vs. RAMP Gold Resource Utilization

Simulator LUT Register BRAM DSP

HySIM 13% 14% 25% 29%

RAMP Gold 28% 34% 90% 25%

increase as more cores are added (up to the limit of the max-
imum ethernet data frame). This allows the FPGA to spend
less time on communication and more time on simulation.

Our goal is to get the simulation time of HySIM to ap-
proach that of RAMP Gold, so that we will have a simulator
which provides new functionality (in the form of memory
system and network modeling) as well as increased scalabil-
ity with similar performance. The ability to use multiple
FPGAs means the simulated system could have over 1000
cores and still be cycle-accurate. This ability would enable
new simulations of systems that have not yet been demon-
strated.

HySIM could also get significantly closer to RAMP Gold
simulation times by adding an L1 timing model onboard.
Using the Intel Core i7 memory hierarchy and a simulator
clock speed of 20 MHz, we calculated that adding an L1
cache could reduce the required link bandwidth from 429
MB/s to 45.9 MB/s. This is significant, because it reduces
the bandwidth required to below the 1 Gb/s link bandwidth
that is available. The instruction cache was assumed to be
identical to the data cache for all performance metrics for a
worst-case approximation, and the load and store instruction
percentages were assumed to be 26% and 10%, respectively.
This large reduction in link traffic reduces the time spent
waiting for host communication, since most timing model
requests would hit in the L1 cache. (This optimization is ex-
plained further in Section 7.) Without the L1 optimization,
the simulator would still function correctly, but either the
clock speed must be reduced or the logic must be throttled
to avoid overloading the link. The addition of the L1 allows
the FPGA to operate at full speed without requiring exces-
sive bandwidth. Our preliminary tests indicate a round-trip
communication latency of 25 µs for single transactions - the
larger data frames that would be used to transfer cache lines,
when combined with aggregating multiple core requests, will
greatly improve the payload efficiency.

7. FUTURE WORK
The previous sections have outlined the current state of

the hybrid simulator HySim. There is much work to be done
to improve upon the current implementation. This involves
a series of steps that each enhance the current simulator in
terms of speed, scalability and accuracy.

As stated previously, HySIM will feature a replacement of
the simple timing model with the detailed memory and net-
work simulator combination of Ruby and Garnet. The Ruby
and Garnet code from GEM5 can be adapted and integrated
into the application server code, which will provide accurate
and flexible memory and network models which do not exist
in the current timing models. Ruby will properly model the
details of the memory hierarchy, including cache coherence,
which is critical for accurate simulation of realistic target
systems. By using Ruby, different candidate memory hier-
archy configurations for the system being simulated can be
easily tested and compared.

Garnet is a network simulator that is connected to the
back-end of Ruby, and it provides a flexible framework to
define any arbitrary network. The ability to define any net-
work accurately is useful for modeling real-world target sys-
tems with over 16 cores. Using Ruby and Garnet together
allow the architect to study a more “real-world” system by
adding cache coherence, a realistic memory hierarchy, and
an accurate network. These aspects of the model are espe-
cially important when doing cycle-accurate simulation be-
cause they can have a significant impact on the execution of
the benchmark on the target system.

The current implementation of HySIM suffers from a non-
optimal implementation that reduces the overall speed of the
simulator. There are several techniques we will be explor-
ing in order to reduce the overall simulation time. As out-
lined in the previous chapter, the link latency overhead can
be reduced by reading and writing the data on the FPGA
in larger groups, so that the overhead is proportionally re-
duced. This allows the FPGA to spend less time working on
the link and dealing with latency limitations, and more time
simulating. And as cores are added to the target system,
the communication overhead will be proportionally reduced
even further, allowing for more useful simulation time. For
the current 64 core setup, this would speed the upper limit of
the target core simulated frequency from 40 kHz to 2.5 MHz.
This would continue to scale with more cores, and would
bring the HySIM frequency much closer to the RAMP Gold
frequency (and would definitely be faster than the GEM5
frequency). We also have discussed placing an L1 cache for
each core on the FPGA to service most of the memory re-
quests, to further reduce the simulation time. This prevents
the link latency and host processing time from slowing down
the majority of the memory operations in the simulated pro-
grams. The difficulties with this approach are synchronizing
the modeled L1 on the host with the actual L1 on the FPGA
for standard memory operations, and ensuring all relevant
cache coherence is handled correctly.

We also intend to be able to spread the target system
emulation across multiple FPGAs. This requires all of the
functional data for the system to be on the host, and the
host can connect to multiple FPGAs over different links.
The application server will be modified to connect with and
identify the different FPGAs through their MAC addresses.
Then, traffic can be routed between the FPGAs using the
Ruby and Garnet simulated network. If done correctly, this
could enable a large number of simulated target cores. Sig-
nificantly, it would also enable the simulation of heteroge-
neous cores, because one FPGA could instantiate a core of
one type while another could instantiate a radically differ-
ent one. Perhaps equally significantly, placing the memory
on the host system enables the use of a standard operat-
ing system, and the use of a non-standard operating system
can be avoided. Using Ruby and Garnet means it should
be possible to boot and run benchmarks on a standard op-
erating system such as Linux, and based on our experience

2013 Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 1



with RAMP, this should increase the flexibility, scalability
and usability of the simulator.

8. CONCLUSIONS
In this paper we have presented our work on HySIM,

which is based on RAMP Gold. HySIM moves the tim-
ing model of the memory subsystem on RAMP Gold to the
host, which has four important advantages: 1) it makes it
possible to employ multiple FPGAs, allowing the simulator
to scale to a large number of cores, including heterogeneous
cores and cores that use hardware accelerators; 2) it facili-
tates the modeling of detailed cache-coherence protocols by
allowing the simulator to interface to an existing memory
simulator such as Ruby; 3) it provides the ability to do cycle-
accurate modeling of different on-chiop network topologies,
routing schemes, and router micro-architectures; and 4) it
frees up resources on the FPGA to increase the number of
physical cores or to incorporate a subset of the memory hi-
erarchy. We have presented some of our preliminary work
on HySIM and described our ongoing efforts to improve its
performance.

9. REFERENCES
[1] H. Angepat, D. Sunwoo, and D. Chiou,

“RAMP-White: An FPGA-based coherent shared
memory parallel computer emulator,” in 8th Annual
Austin CAS Conference, 2007.

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower,
T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, vol. 39,
no. 2, pp. 1–7, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2024716.2024718

[3] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi,
and S. Reinhardt, “The m5 simulator: Modeling
networked systems,” Micro, IEEE, vol. 26, no. 4, pp.
52–60, 2006.

[4] C. Chang, J. Wawrzynek, and R. Brodersen, “BEE2: a
high-end reconfigurable computing system,” Design
Test of Computers, IEEE, vol. 22, no. 2, pp. 114–125,
2005.

[5] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil,
W. Reinhart, D. E. Johnson, J. Keefe, and
H. Angepat, “Fpga-accelerated simulation technologies
(fast): Fast, full-system, cycle-accurate simulators,” in
Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, ser.
MICRO 40. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 249–261. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2007.16

[6] M. D. Hill and M. R. Marty, “Amdahl’s law in the
multicore era,” Computer, vol. 41, no. 7, pp. 33 –38,
July 2008.

[7] A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling,
and P.-Y. Droz, “RAMP Blue: A message-passing
manycore system in FPGAs,” in Field Programmable
Logic and Applications, 2007. FPL 2007. International
Conference on, 2007, pp. 54–61.

[8] R. Kumar, D. M. Tullsen, and N. P. Jouppi, “Core
architecture optimization for heterogeneous chip
multiprocessors,” in Proceedings of the 15th

international conference on Parallel architectures and
compilation techniques, ser. PACT ’06. New York,
NY, USA: ACM, 2006, pp. 23–32. [Online]. Available:
http://doi.acm.org/10.1145/1152154.1152162

[9] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.
Hill, and D. A. Wood, “Multifacet’s general
execution-driven multiprocessor simulator (gems)
toolset,” SIGARCH Comput. Archit. News, vol. 33,
no. 4, pp. 92–99, Nov. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1105734.1105747

[10] J. Miller, H. Kasture, G. Kurian, C. Gruenwald,
N. Beckmann, C. Celio, J. Eastep, and A. Agarwal,
“Graphite: A distributed parallel simulator for
multicores,” in High Performance Computer
Architecture (HPCA), 2010 IEEE 16th International
Symposium on, 2010, pp. 1–12.

[11] T. Oguntebi, S. Hong, J. Casper, N. Bronson,
C. Kozyrakis, and K. Olukotun, “Farm: A prototyping
environment for tightly-coupled, heterogeneous
architectures,” in Proceedings of the 2010 18th IEEE
Annual International Symposium on
Field-Programmable Custom Computing Machines,
ser. FCCM ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 221–228. [Online].
Available: http://dx.doi.org/10.1109/FCCM.2010.41

[12] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and
J. Emer, “HAsim: FPGA-based high-detail multicore
simulation using time-division multiplexing,” in High
Performance Computer Architecture (HPCA), 2011
IEEE 17th International Symposium on, 2011, pp.
406–417.

[13] D. Sanchez and C. Kozyrakis, “ZSim: fast and
accurate microarchitectural simulation of
thousand-core systems,” in Proceedings of the 40th
Annual International Symposium on Computer
Architecture, ser. ISCA ’13. New York, NY, USA:
ACM, 2013, pp. 475–486. [Online]. Available:
http://doi.acm.org/10.1145/2485922.2485963

[14] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook,
D. Patterson, and K. Asanovic, “RAMP Gold: an
FPGA-based architecture simulator for
multiprocessors,” in Design Automation Conference
(DAC), 2010 47th ACM/IEEE. IEEE, 2010, pp.
463–468.

2013 Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL): Category 1




