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Abstract—In this paper we propose a microarchitectural tech-
nique called Constant Average Power Processing (CAPP) that
reduces the execution time of parallel programs by dynamically
detecting the power slack at runtime and directing it to specific
core(s) that are the bottleneck at any given time. The key insight
of this work is that by sensing the current, communicating it to
the global controller and adjusting the cores’ frequencies, it is
possible to maintain a constant power level in a distributed and
scalable manner. We evaluate the potential benefits and scalability
of the proposed technique on a set of synthetic benchmarks and
compare the results with related work such as Running Average
Power Limit (RAPL).

I. INTRODUCTION

In CMOS technology today there is a significant gap
between the peak clock frequency and the nominal clock
frequency of a core. This gap gets wider as the number of
cores on a die increases, because the fixed power input has
to be shared by a larger number of cores - this means the
cores themselves have to be operated at a lower nominal
frequency. Though a core cannot sustain higher frequencies
for all possible instruction mixes, certain power headroom can
be used to provide elevated frequencies. This is the approach
used by Intel’s Running Average Power Limit (RAPL), as
described in [15] and [3]. Here, an on-die microcontroller and
associated firmware called the Package Control Unit (PCU)
estimates the power consumption of each core based on the
instruction mix and uses that information to boost the clock
frequency of the cores up to the power limit. RAPL controls
the hardware through firmware which results in adaptation
interval anywhere from tens of microseconds to milliseconds
which misses some fine grained load imbalances. Furthermore,
the centralized PCU used in RAPL limits the scalability of the
approach, especially when the number of cores is large.

The objective of the work presented here is to overcome
these drawbacks and develop a power management architec-
ture and implementation strategy that (a) operates at a time
scale on the order of hundreds of nanoseconds due to a fully
hardware-based implementation, and (b) features a distributed
implementation in order to improve scalability.

We call this proposed power management method Constant
Average Power Processing (CAPP), which maximizes the
performance of a chipscale multiprocessor by measuring the
current draw from the power rails to determine the available
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Fig. 1: High Level Overview of Multi-tier Power Limiting and
Power Shifting Scheme in a Datacenter.

slack (the difference between the power target and the actual
power draw). This slack is used when calculating the appro-
priate voltage to put on the global voltage rail - the more
(or less) slack there is, the higher (or lower) the voltage will
be. This voltage is read by a local controller at each core,
which can employ a variety of local metrics such as IPC,
queue sizes, local temperature, etc. to determine the per core
voltage (and frequency) to use. This value can be higher than
the nominal voltage if the controller determines that there is
sufficient slack and there is work to be done, or it may be
lower if the controller decides the local processor has little or
nothing to do.

CAPP is a pure hardware-based approach with a control
interval of hundreds of nanoseconds to allow the detection
of fine grain load imbalances and dynamically divert power
from cores that are stalled to cores that are active. The goal
of CAPP is not to minimize power, but rather to maximize
performance by constantly consuming the target amount of
power. In CAPP there is an explicit attempt not to leave any
power unused from the power budget, if there is an opportunity
to use it to improve the performance. In this sense, CAPP acts
as a faster hardware-based decentralized version of RAPL.

We begin by describing the high level architecture and
principle of operation of CAPP in Section II and our evaluation
methodology in Section III. Next, we evaluate the performance
of CAPP on a set of synthetic benchmarks to verify that it
works as intended, as well as the potential benefits on future
applications. Finally, we close the paper with related work,
and conclusions and some directions for future work.

II. CAPP FRAMEWORK DETAILS

Datacenters or warehouse-scale computers [2] are emerg-
ing as an important class of computers that require high-
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Fig. 2: CAPP: High Level Architecture

performance computing with a constant power limit. We
consider a multi-tier power provisioning and management
scheme in a typical datacenter as shown in Figure 1. The main
datacenter-level power controller monitors the power usage
and sets a power budget for each rack (a cluster of computers).
The rack/cluster-level power manager sets the power target
(PTARGET ) for a computing device in the server. As stated
previously, the goal of CAPP is to deliver the maximum
performance from each server for the given power target.

CAPP works by measuring the server’s global voltage rail
current draw I(t) (i.e., the total current drawn by all of
the computing elements) through a Voltage Regulator (VR)
integrated with current sensing such as [1]. The current sensing
circuitry detects and amplifies the sense voltage and provides
that value to the CAPP global voltage controller, which uses
that information to calculate the ideal global supply voltage
that will maintain the target power level.

There are 3 main components to CAPP - the current sensing
circuitry, the global controller (GC), and the local controller
(LCj) at each system unit (SUj). The local controller can be a
passive passthrough (one level controller CAPP), or it can use
a variety of metrics such as IPC (two level controller CAPP).
A system unit can be a core, a cluster of cores, or a special
function unit such as a GPU or accelerator - we will focus on
a homogeneous chip-scale multiprocessor where the system
unit is a processor core.

Every power control epoch (T), the following set of closed
loop actions occur: Changes in activity in system unit SUj

cause a change in the current draw I(t) sensed by the VR and
detected by the GC, which results in the GC setting the target
voltage (VG(T )) for the next epoch. The local controllers use a
combination of (VG(T )), their own local metric vector (LMj),
the settings of some runtime/programmer-visible registers, and
a set of metrics such as the IPC to set their local voltage
(Vj(T )) and frequency (Fj(T )).

One of the main benefits of CAPP is that it is not a one-
size-fits-all scheme - each local controller can choose its own
metrics and make local decisions based on its recent behavior
or workload projections.

a) Assumptions and Implementation Issues: The duration
of the epoch (T ) is chosen so that the system is stable, i.e. all
voltages have a chance to settle to their new values. Hence T
depends on the actual resistance, capacitance, and inductance
of the power supply network. As explained in Section III,
we use a conservative value of 1 microsecond or higher in
our other simulations. The proposed decentralized voltage
controlled system makes the system units asynchronous with
respect to each other in terms of clocking, which could result
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Fig. 3: Simulated supply voltage (blue) and power (red).

in timing violations if not properly addressed. We make two
reasonable assumptions to avoid these problems - first, we
assume that there is a local voltage guardband that ensures
correct operation, and second we assume an adaptive clock
scheme [10]. Adaptive clocking uses a local oscillator, such
as an inverter ring, that operates at the same voltage as the rest
of the system unit. This oscillator provides the clock signals
used throughout the system unit - thus, the clock frequency
will slow down when the voltage drops ensuring no timing
errors occur.

b) Proof of Concept - Hardware Verification: In order
to evaluate a CAPP implementation using a realistic global
voltage controller cycle time (∼300 ns) we performed a Ca-
dence Spectre simulation with high-current Verilog-A “core”
models and a full implementation of the global controller.
Figure 3 shows the supply voltage changes over the course
of the simulation. Each “core” turns on in sequence and then
turns off in sequence. Drops (and subsequent rises) in the
supply voltage are seen for each of the “core” activity changes.
These drops take place over several steps due to the choices
of the Proportional Integral Derivative (PID) coefficient used
within the global controller. Figure 3 shows the power during
this simulation. Despite moderate spikes at voltage transition
times due to the charging of the capacitors in the power
supply network, the controller enforces the power target of
50 watts when possible. It exceeds the power target for short
durations when the “cores” turn on, but quickly readjusts to
match the power limit in the steady state (within an acceptable
error margin). Overall, this simulation demonstrates that the
hardware of CAPP functions as expected. The global voltage
controller raises and lowers the global voltage in response
to changes in the activity of the “cores”, and these voltage
changes keep the total power near the power target.

In summary, CAPP can be viewed as a simple, scalable, and
more flexible (because the local controller at each system unit
can be customized to meet its unique requirements) framework
to maximize performance given a power constraint.

III. EVALUATION METHODOLOGY

In order to evaluate the performance impact of CAPP,
we modified Sniper version 6.0 [6] so that we could do
full closed-loop power simulations. Sniper is a multi-core
simulator that uses instruction instrumentation and instruction
intervals to accelerate simulation. Because Sniper does not
execute an entire program in cycle level accurate mode, there
is a maximum execution time variation of approximately 3%.

In order to evaluate the power consumed when using CAPP,
we had to do closed-loop power simulations over periods as
short as 300 nanoseconds. We extracted the power model
for our target processor from McPAT version 1.3 [11] and



TABLE I: Breakdown of delays for CAPP transitions
Component Transition time (ns)

Voltage Regulator 36-226
Sensing Circuitry 50-60

Controller 10-30
Power Supply Network 3-15

Total 99-331

embedded it within Sniper. These changes were verified using
McPAT and match to within 2% (this is below the variability
of the Sniper execution).

We created Python scripts to implement the local con-
trollers. The CAPP Python script calls the Sniper embedded
power model to calculate the chip-level power, which the
global voltage controller model within the Python script uses
to determine future behavior.

The local voltage controllers use thresholds specific to the
particular metric in order to determine whether to increase,
decrease or maintain a voltage ratio. This voltage ratio is
multiplied by the global voltage and matched to the highest
frequency that can be run at that voltage. For example, a local
voltage controller on Hi-IPC would raise the ratio if the IPC
is above 0.6 and would lower the ratio if the IPC is below 0.3.
For this paper, we used IPC as the local control metric for the
2 level CAPP with the thresholds of 0.6 and 0.3.

We used a Nehalem model for the cores in the Sniper
simulations. The frequency of the cores can range from 2
GHz to 800 MHz at voltages from 1.2 volts to 0.8 volts
(respectively). The configuration details were taken from the
pre-existing configuration files within Sniper. Based on early
simulation feedback, we allow the maximum global voltage to
go up to 1.5 Volts - this allows the global voltage controller to
push the frequencies of the cores upward (despite their ratios)
when additional power is available.

In order to calculate a reference case for CAPP, we used
a fixed frequency configuration of the same Sniper Nehalem-
based system. We selected a frequency of 1.5 GHz, which
was in the middle of the core’s possible frequencies, to
provide a reasonable margin for increasing frequency. Then,
we measured the maximum power used by the fixed frequency
system for a range or workloads. We also ran simulations using
the maximum allowable frequency for the Nehalem cores,
according to the processor model provided with Sniper (2
GHz). Running at this speed highlights the maximum possible
performance that could be achieved on a particular workload.

Once the baseline and ceiling configurations were selected,
we defined the parameters for CAPP, starting with the global
voltage controller cycle time. Based on both individual compo-
nent simulations and references from the literature, we calcu-
lated the roundtrip time of a CAPP update to the global voltage
passing through the entire system (the range of possible times
are shown in Table I). The voltage regulator delay is derived
from [5], while the operational amplifier delay was measured
using Cadence Spectre and the ADC delay was obtained
from Murmann’s ADC survey spreadsheet [13]. The controller
delay was approximated by implementing similar logic and
evaluating the delay using Spectre.
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Fig. 4: Normalized execution time of CAPP, the maximum
fixed frequency possible, and varying power vs. varying se-
quential to parallel ratios.

We calculated a range of 99 to 331 nanoseconds for the
CAPP control cycle time, so we used a very conservative
control cycle time of 1 microsecond for our performance
evaluations. This ensures that the performance evaluation of
CAPP reflects a realistic implementation by using a pessimistic
control cycle time.

IV. PERFORMANCE ANALYSIS OF CAPP

One of the main motivations for CAPP is to detect and
overcome serial bottlenecks continuously to reduce the execu-
tion time and improve scalability of parallel programs. Serial
sections are a problem, because according to Amdahl’s law
Equation, Speedup = 1 /( X + (1-X)/N) where X is the time
spent on the serial portion that cannot be sped up, and N is
the number of cores. In order to be able to evaluate CAPP’s
capability we need a controlled workload, where we can vary
the duration and distribution of critical sections. Thus, we
constructed a parameterized synthetic benchmark with a set
of parameters to control different aspects of the execution,
such as the length of the critical and parallel sections.

We wrote the synthetic benchmark in C++. The benchmark
has each core loop through a small kernel a set number of
times, separated by locks. The kernel behavior contains integer
operations, memory operations and a conditional branch.

When modeling a critical section, all cores run the kernel
for a set number of loops. Then, the lock begins and the first
core to get the lock completes a the kernel workload while
all other cores stop. Each other thread completes the serial
section under the lock until they are all done.

Figure 4 shows the execution time of CAPP using sin-
gle level and two level control strategies along side fixed
maximum frequency runs on a synthetic parallel workload
with a multiprocessor size of 8 cores. The execution times
have been normalized to the base fixed frequency 1.5GHz
cores. The results are grouped by the ratio of sequential
to parallel code that exists in the synthetic benchmark. The
power target of the CAPP systems is that of the peak power
utilized by the fixed 1.5GHz system. As one might expect, as
the sequential code increases the performance shifts toward
that of the maximum obtainable (this is due to the fact that
there is power slack in the system). The other point to note
is that while even the simple strategy improves performace,
the two level strategy consistently performs as well or better
than the simple single level strategy. This implies that local
knowledge can help further improve the global performance
on a particular workload.

Figure 4 also shows normalized execution time for an 8
core CAPP with varing degrees of sequential and parallel
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Fig. 5: Normalized execution time of CAPP and MAX for
varying balance of non-critical to critical work.

time grouped by power target. As one would expect, the
performance increases with both higher sequential time and
also with a higher power target. What is interesting is that
CAPP is capable of about the same performance as the
baseline with a power target of only 60W. The baseline fixed
frequency utilizes a peak of 86W, but CAPP can obtain similar
performance with ∼70% of the peak power.

Figure 5 shows the balance of non-critical to critical work
varying on a synthetic benchmark. This represents an imbal-
anced parallel workload, and demonstrates that as the work
becomes more imbalanced the relative performance of CAPP
improves. (The Fixed 2GHz values are maximum values, and
are not obtainable due to excess power consumption.)

V. RELATED WORK

Power management in processors has been an active area
of research for more than a decade. See [16] for a detailed
survey of power management schemes, especially DVFS and
its variants. As mentioned before, classic DVFS is different
from what is proposed here since the goal of classic DVFS is to
minimize power consumption while satisfying a performance
constraint, while the goal of CAPP is maximizing performance
while staying with an average power budget. However, it
is important to note that the local controllers in CAPP can
choose to minimize power if they so desire (for example,
when they have no work to do). They don’t have to run as
fast as the voltage set by the global controller. Adrenaline [7],
which attempts to reduce the tail latency of Memcached
queries by voltage boosting, Rubik [9] which does fine grain
voltage scaling and boosting to reduce variability in latency
in datacentric workloads, The use of voltage/frequency islands
(VFIs) is proposed in [12], [14], which break a multiprocessor
chip up into various independent domains. These VFIs are
controlled to minimize the energy of the total system while
maintaining a certain quality of service (QoS) standard. Juang
et al minimize the energy-delay product (EDP) of a chip
multiprocessor design by reducing the power and slightly
increasing the runtime [8]. A coordinated and stable scheme
for controlling DVFS results in reduced frequencies without
significant loss of performance. Ellsworth et al use dynamic
scheduling to enforce a system-level power limit in an over-
provisioned data center. [4]

VI. CONCLUSIONS AND FUTURE WORK

The technique proposed here is purely hardware. In the
future we plan to extend this approach to allow the OS to guide
the local controllers, to set their voltage and frequency based
on execution history of applications or user-hints. In this paper
we selected a the IPC metric to guide the local controller in

order to demonstrate the feasibility of the approach. However,
there may be other metrics that are more appropriate for
detecting fine grain critical sections.We intend to explore the
design space of these control strategies in the future.
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