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Abstract 

Embedded real-time application code for embedded control systems is often developed 

from the ground up.  Often this produces code that couples the application to a specific 

hardware platform and that must be compiled by a specific compiler.  The development 

of a cross-platform “Open Systems and the Corresponding Interfaces for Automotive 

Electronics” (OSEK) implementation along with an abstracted driver model allows for 

application code reuse across hardware platforms.  Two hardware platforms, the 

Motorola MPC565 and Motorola HCS12, were chosen as the initial targets to prove this 

design concept.  The first application of this design concept is in use as the powertrain 

control software for a prototype hybrid-electric vehicle. 
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Chapter 1 Introduction 

Embedded real-time application code is often developed from the ground up [1].  Often 

this leads to code that is directly coupled to a specific hardware platform and must be 

compiled by a specific compiler.  The intermingling of compiler specific or hardware 

specific code directly in the application code creates application code that is coupled to a 

specific hardware platform or must be compiled by a specific compiler.  The use of 

compiler specific directives occurs because many embedded real-time operating systems 

(RTOS) are proprietary and therefore directly coupled to a specific compiler vendor.  The 

interlacing of hardware specific code in the application occurs because embedded 

systems developers often directly access hardware from the application code to gain what 

they perceive as a “speed” increase.  Embedded system developers do little in the way of 

developing hardware drivers separate from application code.  Directly accessing 

hardware couples the application code with hardware specific code, and can make 

changing hardware platforms or upgrading microcontrollers difficult and tedious. 

 

Solutions exist to decouple application code from hardware specific implementations, 

usually in the form of auto code generation software.  Software such as MATRIXX
™, 

AutoCode™, and TargetLink™ auto generate code for embedded real-time systems 

(ERTS) from a graphical description of the control systems.  TargetLink™ auto generates 

                                                 

™ MATRIXX, AutoCode, and LabView are trademarks of National Instruments. 

™ TargetLink is a trademark of dSpace. 



2 

 

C code from Simulink® for embedded targets.  MATRIXX™ and AutoCode™ perform a 

similar function as TargetLink™, but auto generates code from LabView™.  These pieces 

of auto code generation software, while very reliable, typically generate obfuscated C 

code that is difficult to debug or modify.  The use of auto code generators binds all 

applications designed in them to a specific software vendor because they use proprietary 

file formats to store the system model.  A limited number of embedded targets are 

available for these auto code generators making a hardware platform change impossible 

without significant investment in time and money. 

 

The decoupling of application code from hardware specific or compiler specific code 

allows developers to change hardware platforms or compiler vendors with a minimal 

amount of software rewrite.  The ultimate goal of this project is to allow for the 

application code reuse in ERTS across hardware platforms.  Furthermore the application 

code should not be restricted to a single compiler vendor.  The development of a cross 

platform RTOS with associated hardware drivers would allow for application code reuse 

in new ERTS. 

1.1 Real-Time Operating System Selection 

An RTOS for an ERTS should meet the following requirements: 

• Allow for preemptive multitasking; the OS must be able to preemptively switch to the 
highest priority task. 

• Provide methods for task management; the OS must have mechanisms for activation 
and termination of tasks. 

                                                 

® Simulink is a registered trademark of MathWorks. 
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• Provide a method of task synchronization; the OS must have a mechanism to 
synchronize tasks. 

• Provide Real-Time system response; the OS must provide a method for prioritizing 
the system tasks. 

 

The “Open Systems and the Corresponding Interfaces for Automotive Electronics” 

(OSEK™) OS specifies an API and allows for specific implementation to be decided by 

the system designer.  This in combination with meeting the previous system requirements 

makes OSEK™ an ideal RTOS choice for decoupling the application code from the 

hardware platform and compiler vendor.  In order for application code to be decoupled 

from the hardware platform, the drivers must be written to follow a defined interface.  

Only the hardware specific implementation will need to be rewritten if the hardware 

interfaces are well defined.  Figure 1 shows the ideal system hierarchy for an embedded 

system with application code that is decoupled from the hardware platform and compiler. 

 

Figure 1. Ideal OSEK/Driver Model Hierarchy 

                                                 

™ OSEK is a registered trademark of Siemens AG. 
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1.2 System Design and Initial Hardware Targets 

After evaluating the existing tools the decision was made to develop a Cross Platform 

OSEK™ Implementation (CPOI) and the hardware drivers.  The development of an 

OSEK™ implementation was chosen over purchasing OSEK™ since the development 

would create a body of code that could later be ported to target new hardware platforms.  

The Motorola MPC565 and the Motorola HCS12 were the two hardware platforms 

chosen for the first implementations of CPOI and hardware interface drivers.  It was 

estimated that the development for OSEK™ and associated hardware drivers would take 

twelve weeks for the Motorola MPC565 platform.  IAR was chosen as the development 

platform for the Motorola HCS12, while MetroWerks CodeWarrior was used for the 

MPC565.  The use of multiple hardware platforms and multiple compilers would prove 

the ability to write and test reusable application code based on the proposed OS and 

hardware driver interfaces.  The cross platform OS and hardware driver interfaces should 

also decrease the development cycle for targeting new hardware platforms since 

compatible test applications from previous platforms would be available for testing the 

new hardware dependent code. 

 

CPOI was developed for the MPC565 and HCS12 microcontroller targets.  Hardware 

driver interfaces were defined using the Abstracted Driver Model for Embedded Systems 

(ADMES).  ADMES was developed as part of this project to define a method of 

hardware abstraction for ERTS.  The development of CPOI and ADMES allows for 

application code reuse in ERTS.  Application code developed using CPOI and ADMES 

can be ported to another hardware platform or compiled by another compiler without 
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being rewritten.  Only hardware specific or compiler specific CPOI and ADMES code 

must be rewritten for applications to be ported. 

 

1.3 Initial Application of CPOI and ADMES 

The first application developed using CPOI and ADMES was for the University of 

California Davis’ 2003 FutureTruck Powertrain Control Module (PCM) [2].  The 

FutureTruck PCM has three tasks: 

• Powertrain Control Task (inputs driver commands and sends commands out to 
powertrain components) 

• Inter-microcontroller Communications Task (handles Controller Area Network 
(CAN) communication frames and implements proprietary communication protocol 
stack) 

• Diagnostics and Calibration Interface Task (provides an interface for vehicle 
designers to diagnose and calibrate the PCM operation) 

 

The FutureTruck PCM application has been successfully controlling the FutureTruck 

powertrain since June 2003.  Figure 2 shows the FutureTruck PCM system hierarchy. 

 

Figure 2. 2003 UC Davis FutureTruck PCM System Hierarchy 
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1.4 Outline 

The following chapters describe the background and design of both CPOI and ADMES.  

Chapter 2 explains the background information for this project and justifies the choice of 

the MPC565 and HCS12 as the two test platforms.  Chapter 3 describes the CPOI 

hardware independent design as well as the OSEK™ Application Programming Interface 

(API).  Chapter 4 describes the CPOI hardware specific design for the MPC565 and 

HCS12.  Chapter 5 describes the Abstracted Driver Model for Embedded Systems and a 

set of hardware driver interfaces.  Chapter 6 concludes this work. 
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Chapter 2 Background 

Multiple hardware platforms needed to be chosen for the development of the cross 

platform RTOS and hardware driver interfaces.  Multiple hardware platforms were also 

necessary in order to prove that the concept could be applied to real world ERTS.  The 

University of California Davis Hybrid Electric Vehicle Center at the time of this project 

was developing on two hardware platforms for use in advanced hybrid electric vehicles.  

The availability of the in-vehicle multiple hardware platform ERTS made the UC Davis 

HEV Center’s hybrid vehicle a perfect candidate for testing the cross platform application 

code reuse.  At the time of this project the UC Davis HEV Center was also in the process 

of changing microcontroller platforms making it the proper time to change RTOSs and 

hardware driver interfaces. 

2.1 History of UC Davis HEV Center Controls 

The UC Davis HEV Center develops vehicles with distributed control systems.  An 

example of a distributed vehicle control system similar to those seen in the UC Davis 

HEVs can be seen in Figure 3.  Until the year 2000 most of the source code written at the 

UC Davis HEV Center consisted of infinite loops that accessed hardware directly.  In 

2000 the UC Davis HEV Center replaced the Z-World BL1700 microcontroller PCM 

with a PC-104 microcontroller based on the x86 architecture.  The UC Davis HEV Center 

decided to take this opportunity to develop a set of hardware drivers for the PC-104 

microcontroller as source code needed to be ported for the PCM in any case.  In 2001 the 

UC Davis HEV Center switched from using Microchip PICs to Motorola HC12s as the 

auxiliary controllers.  A set of hardware drivers for the HC12 was developed during the 
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hardware switch because of the success of the PC-104 driver set.  However, the hardware 

drivers were incompatible across platforms and therefore application code could not be 

reused between hardware platforms.  Additionally the PC-104 driver set were C++ based 

and the compiler used for the HC12 only supported C. 

 

Figure 3. Distributed Vehicle Control System Example 

 

As of 2001 the two hardware platforms at the UC Davis HEV Center each had a set of 

drivers, but none of the software written for either platform allowed for multitasking.  In 

2002 the UC Davis HEV Center developed an RTOS for the PC-104 PCM loosely based 

on the µCOS-II RTOS [6].  During late 2002 and early 2003 the decision to change both 

hardware platforms was made.  The HC12 design was replaced with the Motorola HCS12 

microcontroller and the PC-104 PCM was replaced with a Motorola MPC565 

microcontroller.  The hardware platform change required software to be rewritten and it 

was decided to use this opportunity to move from the UC Davis proprietary RTOS to a 
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standardized RTOS that would support both hardware platforms.  It was also decided that 

the hardware driver sets should be consistent across hardware platforms.   

2.2 OSEK RTOS 

The “Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug” or in 

English “Open Systems and the Corresponding Interfaces for Automotive Electronics” 

(OSEK™) operating system is a specification for an RTOS API [3].  The OSEK™ RTOS 

was started in May of 1993 as a joint project among the German automotive 

manufacturers to develop an industry standard for an open-ended architecture for 

distributed control units in vehicles.  In 1994 the French automotive manufacturers joined 

OSEK™, developing the Vehicle Distributed eXecutive (VDX) approach that is similar 

to OSEK™.  OSEK™ has moved from a European to an industry wide automotive 

standard [4][5]. 

2.3 Existing Tools 

OSEK™ was chosen as the RTOS for its industry wide acceptance and availability.  Most 

importantly the use of OSEK™ does not bind the project to a specific hardware or 

compiler platform.  A set of hardware driver interfaces would need to be developed to 

allow for application code reuse on any embedded real-time hardware platform, 

especially the HCS12 and MPC565 platforms.  Obviously the RTOS and hardware 

                                                 

™ OSEK is a registered trademark of Siemens AG. 
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drivers would also allow for application code reuse in the case of hardware platform 

upgrades and changes. 

 

A choice of an integrated development environment (IDE) needed to be made for the 

development of this project.  IAR Embedded Workbench, MetroWerks CodeWarrior, and 

Wind River Tornado were the three IDEs given serious thought.  

2.3.1 IAR Embedded Workbench 

Unfortunately IAR does not have an OSEK™ implementation for the HCS12.  Third 

party vendors support their own proprietary RTOSs, but no third party vendor has 

OSEK™ for IAR Embedded Workbench targeting the HCS12.  Furthermore, IAR does 

not support the Motorola MPC565 target. 

2.3.2 MetroWerks CodeWarrior 

MetroWerks CodeWarrior supports both the Motorola MPC565 and the Motorola 

HCS12.  MetroWerks also offers OSEKturbo an OSEK™ implementation for both 

hardware platforms along with a set of low-level hardware drivers for both target 

platforms with a minimal configuration tool.  Unfortunately the use of these drivers 

would couple any application code written to the CodeWarrior compiler.  A set of 

hardware drivers would need to be written to allow application code reuse.  It was 

estimated from previous experience that six weeks would be required to develop the 

hardware drivers for both platforms if two graduate students worked on the development 

full time.  The lead time to obtain these software tools was estimated at four weeks due in 

part to University overhead. 
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2.3.3 Wind River Tornado 

Wind River Tornado, like MetroWerks CodeWarrior, supports both hardware platforms 

and offers OSEKWorks an OSEK™ implementation.  Wind River, like MetroWerks, 

offers low level hardware drivers, but like the MetroWerks drivers they would need to be 

rewritten.  The estimates for development time and software delivery lead time were the 

same as the MetroWerks solution, ten weeks. 
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Chapter 3 OSEK Hardware-Independent Design 

We designed Cross Platform OSEK™ Implementation (CPOI) to follow the OSEK™ API 

Specification, but allow it to easily be ported to other hardware platforms.  The majority 

of the CPOI is written as hardware independent code.  The CPOI hardware independent 

code is similar to the hardware independent microkernel design described in [24]; it is 

built on a hardware dependent nanokernel that must be written for each hardware 

platform target.  This design criterion was imposed so that minimal code rewrite would 

be required to implement OSEK™ on another hardware platform.  An effort to separate 

algorithm from implementation was made during the design and development of CPOI.  

The hardware independent CPOI source code can be found in the Appendix A.  This 

chapter encompasses the OSEK™ API description (Section 3.1), the OSEK™ API 

implementation (Section 3.1), the high-level design choices (Section 3.2), and the 

deviations of the CPOI from the OSEK™ standard (Section 3.3). 

3.1 OSEK API Services 

The OSEK™ API Services are the set of functions and macros described in the 

OSEK/VDX™ Operating System Specification [3].  The OSEK™ API Services are 

developed using abstracted function calls and macros that are hardware or 

implementation specific.  The bulk of the CPOI code has been written such that a 

minimal set of functions and macros must be developed specifically for each platform.  

All OSEK™ API services are grouped into six categories: task management, interrupt 

processing, resource management, event management, alarm management, and execution 
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control.  Each API description in this section presents the OSEK™ specification for the 

specific function and then describes the actual implementation of that specification. 

3.1.1 Task Management 

Tasks are the framework subdivision chosen in OSEK™ to provide asynchronous 

concurrent execution of code.  An OSEK™ task is similar to that of a thread since, noting 

that OSEK™ applications typically are compiled into a single executable, access to 

global memory is possible.  Each task is referenced by its unique task identifier (task ID).  

The task management functions of the OSEK™ API services encompass activation, 

termination, scheduling, and querying task state.  OSEK™ specifies two types of tasks: 

Basic and Extended.  Their difference is that Basic tasks cannot call the WaitEvent API; 

basic tasks must execute until termination only being preempted by higher priority tasks.  

Figure 4 shows the state transition model for Basic tasks and Figure 5 shows the state 

transition model for Extended tasks.  Basic tasks have three possible task states: 

SUSPENDED, READY, and RUNNING.  Extended tasks, similar to Basic tasks, can 

also incur a WAITING state.  Tasks in the SUSPENDED state must be activated before 

running.  A READY task will run when it is the highest priority READY task.  An 

Extended task that is WAITING will become READY when one or more of the events 

that the Extended task is waiting for is set.  The only task ever in the RUNNING state is 

the currently executing task. 



14 

 

running

ready

suspended

terminate

activate

preempt start

 

Figure 4. Basic Task State Model 
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Figure 5. Extended Task State Model 

3.1.1.1 ActivateTask 

ActivateTask activates a task from the SUSPENDED state to the READY state*.  If the 

task being activated is of higher priority than the activating task, the task being activated 

will be put into the RUNNING state and subsequently execute.  If the task being 

activated is of lower priority than the activating task then the task being activated will be 

placed in the READY state.  The newly activated task will wait in the READY state until 

it is the highest priority task of the READY and RUNNING tasks, then it will execute. 

 

ActivateTask, shown in Code Listing 1 in Appendix A, acquires exclusive control of the 

CPU by disabling interrupts through a call to GetMutex†.  ActivateTask then checks the 

                                                 

* Note: A task may immediately transition from READY to the RUNNING state. 

† Note: The use of Mutex in GetMutex and Release Mutex is from legacy CPOI code.  See Section 3.3.1 for 

more information on GetMutex and ReleaseMutex. 
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task to be activated for a valid task ID and a SUSPENDED state.  If either the task ID is 

invalid or the task is not in the SUSPENDED state the previous CPU Interrupt Enable 

State (CPUIES) is restored and the appropriate error status is returned.  Otherwise the 

task is initialized.  During task initialization the task’s events are cleared, effective 

priority is reset, the stack is initialized, the task’s state is set to READY, and the task is 

added to the priority heap.  After the task has been initialized, Schedule is called to 

accommodate a context switch if a higher priority task than the current task has entered 

the READY state. 

3.1.1.2 TerminateTask 

TerminateTask terminates the current task by changing its state from RUNNING to 

SUSPENDED.  The OSEK™ standard specifies that all tasks must call either 

TerminateTask or ChainTask at the end of their task code. 

 

TerminateTask, listed in Code Listing 2, disables interrupts upon entry.  If the current 

task has not released all previously acquired resources, TerminateTask restores the 

previous CPUIES and returns the corresponding error.  The PostTaskHook is called prior 

to task termination while the task state is still RUNNING.  After the PostTaskHook call 

the task state is changed to SUSPENDED and Schedule is called so that the proper 

context switch can occur.  TerminateTask will not return upon successful task 

termination.   
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3.1.1.3 ChainTask 

ChainTask is a combination of TerminateTask and ActivateTask.  ChainTask terminates 

the current task and then activates the task with the taskid parameter.  Again, OSEK™ 

standard specifies that all tasks must call either ChainTask or TerminateTask at the end of 

its task code. 

 

ChainTask, listed in Code Listing 3, disables interrupts and then checks that the taskid 

parameter is valid, the task state of taskid is SUSPENDED, and that the current task has 

released all previously acquired resources.  If any of the prior conditions are not met the 

previous CPUIES is restored and a corresponding error status is returned.  If all 

conditions have been met, the task being activated is initialized and the PostTaskHook is 

called.  The current task state is subsequently changed to SUSPENDED and Schedule is 

called.  ChainTask will not return upon successful task termination.   

3.1.1.4 Schedule 

Schedule determines the task with the highest priority and switches context to it if the 

highest priority task is not currently running.  Schedule is called by ActivateTask, 

TerminateTask, ChainTask, ReleaseResource, SetEvent, and WaitEvent OSEK™ API 

services.  It is not necessary for the OSEK™ application developer to call Schedule since 

any time a task of higher priority could be ready Schedule is called.  As Schedule is part 

of the OSEK™ API services, precautions were taken so application developers may call 

Schedule without adversely affecting the system. 
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Interrupts are disabled by Schedule through a call to GetMutex, as shown in Section 

3.3.1.  GetMutex and ReleaseMutex calls can be nested so, in the cases where Schedule is 

called by another OSEK™ API service, there is no deadlock issue or loss of mutual 

exclusion.  After acquiring exclusive control of the CPU, Schedule, listed in Code Listing 

4, checks that the current task has released all previously acquired resources; in such a 

case the previous CPUIES is restored and the corresponding error status is returned.  If 

the current task is in the RUNNING state the top of the task priority heap is compared 

with the current task’s priority.  If the current task’s priority is lower than the top of the 

heap or if the current task is not in the RUNNING state then the task on the top of the 

heap is removed and the placed in the RUNNING state.  If a context switch is necessary a 

call to SwitchContextTo is made.  SwitchContextTo is a hardware dependent function 

that saves the current context and switches context to the task ID that is passed as a 

parameter.  

3.1.1.5 GetTaskID 

GetTaskID returns the task ID of the current task.  Exclusive control of the CPU is not 

required during the GetTaskID call since context switches will not affect the value 

returned by GetTaskID.  The GetTaskID source can be viewed in Code Listing 5. 

3.1.1.6 GetTaskState 

GetTaskState returns the current state of the task with ID taskid.  Interrupts are disabled 

by GetTaskState because a context switch could change the state of the task being 

queried in the middle of the line *state = TASK_STATE(taskid); in GetTaskState.  

Since this line is not guaranteed to be atomic on all platforms, a exclusive CPU control is 
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used to protect *state from an invalid value.  If either the taskid is not valid or state is a 

NULL pointer GetTaskState will restore the previous CPUIES and return with a 

corresponding error.  The GetTaskState source can be seen in Code Listing 6. 

3.1.2 Interrupt Processing 

Interrupt processing functions control the enabling and disabling of interrupts.  The 

Enable/DisableAllInterrupts functions are hardware dependent since they control 

interrupt processing of the microcontroller; however the Resume/SuspendAllInterrupts 

functions may be implemented using standard C and calls to the 

Enable/DisableAllInterrupts functions.  Suspend/Resume pairs of functions can be 

nested, but no other OSEK™ Service API may be called between these pairs.  Another 

method of suspending and resuming interrupts is available in CPOI and is discussed in 

Section 3.3.1. 

3.1.2.1 EnableAllInterrupts 

EnableAllInterrupts enables all interrupts in the microcontroller allowing the 

microcontroller to respond to hardware interrupts.  EnableAllInterrupts is always 

hardware specific and must be either written in assembly or with compiler specific 

macros. 

3.1.2.2 DisableAllInterrupts 

DisableAllInterrupts disables all interrupts in the microcontroller allowing the 

microcontroller to ignore all maskable hardware interrupts.  DisableAllInterrupts, like 

EnableAllInterrupts, is always hardware specific and must be either written in assembly 

or with compiler specific macros. 



19 

 

3.1.2.3 ResumeAllInterrupts 

ResumeAllInterrupts will re-enable all interrupts within the microcontroller given that it 

has been called an equal number of times as SuspendAllInterrupts.  If 

ResumeAllInterrupts is called fewer times than SuspendAllInterrupts then the interrupts 

will remain disabled.  ResumeAllInterrupts, as stated earlier, can be implemented in C 

using a global counter and calls to EnableAllInterrupts.   

3.1.2.4 SuspendAllInterrupts 

SuspendAllInterrupts disables all interrupts within the microcontroller and increments the 

nesting count for Suspend/ResumeAllInterrupts.  SuspendAllInterrupts as stated earlier 

can be implemented in C using a global counter and a call to DisableAllInterrupts.   

3.1.2.5 ResumeOSInterrupts 

ResumeOSInterrupts, like ResumeAllInterrupts, will re-enable all OS interrupts within 

the microcontroller given that it has been called an equal number of times as 

SuspendOSInterrupts.  The ResumeOSInterrupts implementation must be hardware 

specific since enabling and disabling specific interrupts may not be possible on all 

hardware platforms.  ResumeOSInterrupts may be implemented in C like 

ResumeAllInterrupts, but is platform dependent. 

3.1.2.6 SuspendOSInterrupts 

SuspendOSInterrupts, like SuspendAllInterrupts, disables all OS interrupts within the 

microcontroller and increments the nesting count for the Suspend/ResumeOSInterrupts.  

SuspendOSInterrupts, as stated above for ResumeOSInterrupts, may be implemented in 

C. 



20 

 

3.1.3 Resource Management 

Resources provide a mechanism to coordinate access of a shared resource by multiple 

tasks.  OSEK™ OS specifies the OSEK™ Priority Ceiling Protocol for resources to 

prevent priority inversion and deadlocks.  Priority inversion occurs when a lower-priority 

task delays the execution of a higher-priority task.  An example of priority inversion can 

be seen in Figure 6: Task 2 prevents Task 3 from running because Task 1 has acquired a 

resource for which Task 3 is waiting.  Deadlock occurs when two or more tasks wait for 

the impossible release of mutually locked resources, Figure 7 shows an example of 

deadlock.  If OSEK™ resources follow the OSEK™ Priority Ceiling Protocol priority 

inversion and deadlock will be avoided.  The OSEK™ Priority Ceiling Protocol states 

that each resource has a statically assigned priority such that: 

• The priority will be greater than or equal to the highest priority of all tasks that access 
it. 

• The priority will be greater than or equal to any resources linked to this resource.  
• The priority must be lower than the lowest priority of all tasks that do not access the 

resource, and which have priorities higher than the highest priority of all tasks that 
access the resource. 

 
When acquiring a resource if a task’s current priority is lower than the resource’s priority 

the task’s priority is raised to that of the resource.  When releasing a resource the task’s 

priority is reset to the priority which was dynamically assigned before acquiring the 

resource. 
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Figure 6. Priority Inversion Example 

 

Figure 7. Deadlock Example 

 

 

3.1.3.1 GetResource 

GetResource acquires a resource for the current task.  The current task’s effective priority 

is raised according to the OSEK™ Priority Ceiling Protocol.  

 

The GetResource source can be seen in Code Listing 7, exclusive CPU control is not 

necessary since the Priority Ceiling Protocol would prevent another task requesting the 

resource from running.  If the resource ID is invalid or if the resource has already been 

acquired by another task, GetResource will return with the corresponding error state.  If 

another task has acquired a common resource the current task should not be running.  

This condition would, however, occur if the system configuration was incorrect and the 

resource priorities were improperly chosen.  The higher of the resource priority and the 

current task effective priority is pushed onto the current task effective priority stack.   The 

task ID of the current task is stored to maintain resource ownership after the current 

task’s effective priority is updated. 
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3.1.3.2 ReleaseResource 

ReleaseResource releases a resource so that it may be acquired by another task.  The task 

releasing the resource has its effective priority lowered according to the OSEK™ Priority 

Ceiling Protocol. 

 

Interrupts are disabled since the releasing the resource can change the current task’s 

effective priority and scheduling may be necessary.  If the resource ID is invalid or if the 

resource has not been acquired by the current task ReleaseResource, seen in Code Listing 

8, will return with the corresponding error state.  The resource owner is set to 

INVALID_TASK_ID to signal that it is again free, but the resource is not completely 

released until the current task pops the effective priority from its priority stack.  Schedule 

is called if, after popping the effective priority from the priority stack, the current task’s 

effective priority is lower than the highest on the task priority heap.   

3.1.4 Event Management 

OSEK™ events provide a mechanism for tasks to ‘block’, or wait for a specific event or 

events to occur.  Only Extended tasks can wait for events to occur; though any task can 

query or set an event for another task.  Events are implemented as a bitmask, with the 

EventMaskType being platform dependent.  An example of the ‘blocking’ event 

mechanism is illustrated in Figure 8. 
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Figure 8. Event Mechanism Example 

3.1.4.1 SetEvent 

SetEvent sets the event mask for the task provided by the taskid parameter.  SetEvent can 

change a task state from WAITING to READY. 

 

Exclusive CPU control is necessary for the successful execution of SetEvent because task 

state and event masks are being modified, and concurrent access could leave the system 

in an inconsistent state.  If the task ID is not valid, the task is not an Extended task, or the 

task is in the SUSPENDED state, then SetEvent, seen in Code Listing 9, restores the 

previous CPUIES and returns with the corresponding error state.  The task event mask is 

bitwise or’d with the mask parameter so that previously set events are not lost.  If the task 

is in the WAITING state and if the result of bitwise anding the waiting task’s event mask 

with the current event mask is not zero then the task is made ready by changing its state 

to READY, clearing its waiting event mask, adding it to the task priority heap, and 

calling Schedule.  Two possible examples of the bitwise anding are shown in Figure 9. 
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Figure 9. SetEvent/WaitEvent Bitwise Anding Example 

3.1.4.2 ClearEvent 

ClearEvent clears the events passed in by mask for the current task.  If the current task is 

not an Extended task then ClearEvent with return with an E_OS_ACCESS error.  The 

current task’s event mask is bitwise and’d with the bitwise inverse of the mask parameter; 

this makes it possible to clear specific events without affecting all of the events.  An 

example of ClearEvent math can be seen in Code Listing 10.  The ClearEvent source can 

be seen in Figure 10. 

 

Figure 10. ClearEvent Math Example 

3.1.4.3 GetEvent 

GetEvent gets the current event mask for the task specified by the taskid parameter.  The 

task’s event mask is controlled with calls to SetEvent and ClearEvent. 

 

Exclusive CPU control is necessary for the successful execution of GetEvent because 

task event mask is being read and it is not guaranteed that the assignment of event is 

atomic, or that the task state could not change between testing state and returning event 
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mask.  If the task ID is not valid, the task is not an Extended task, or the task is in the 

SUSPENDED state then GetEvent, seen in Code Listing 11, restores the previous 

CPUIES and returns with the corresponding error state. 

3.1.4.4 WaitEvent 

WaitEvent sets the wait event mask for the current task, and then waits until at least one 

of the specified events has occurred.  If one of the waiting events has previously been set 

through a call to SetEvent, and has not been cleared through a call to ClearEvent, then the 

task will not enter the WAITING state. 

 

Exclusive CPU control is necessary for the successful execution of WaitEvent because 

task state and event masks are being modified, and concurrent access could leave the 

system in an inconsistent state.  If the current task is not an Extended task, or the task has 

acquired resources, WaitEvent, seen in Code Listing 12, restores the previous CPUIES 

and returns with the corresponding error state.  If the result of bitwise anding the task’s 

waiting event mask with the event mask is not zero then WaitEvent returns; otherwise the 

current task is placed in the WAITING state and Schedule is called to switch to the 

highest priority ready task.   

3.1.5 Alarm Management 

The OSEK™ alarm mechanism provides a method for handling recurring events.  Alarms 

can activate a task, set an event, or call a callback function when they expire.   OSEK™ 

alarms provide application developers a mechanism for timing, encoder measurement, or 
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any other regular countable event.  Alarms may be set ‘single-shot’ or cyclically for 

absolute or relative measurement.   

3.1.5.1 GetAlarmBase 

GetAlarmBase gets the alarm’s base info for the alarm specified by the alarmid 

parameter.  If the alarmid is invalid GetAlarmBase will return with an E_OS_ID error 

status.  The AlarmBaseType is a structure type that contains the maximum allowable tick 

count, tick base for the significant unit, and minimum cycle value for the alarm.  The 

GetAlarmBase source can be seen in Code Listing 13. 

3.1.5.2 GetAlarm 

GetAlarm gets the alarm’s relative value in ticks before the alarm specified by the 

alarmid parameter will expire.  If the alarmid is invalid GetAlarmBase will return with 

an E_OS_ID error status.  A value of zero ticks means that the alarm is not active or that 

the alarm has already occurred.  The GetAlarm source can be seen in Code Listing 14. 

3.1.5.3 SetRelAlarm 

SetRelAlarm sets an alarm to occur increment ticks relative to the SetRelAlarm call.  If 

cycle is non-zero the alarm will recur every cycle ticks from the first expiration of the 

alarm until the alarm is canceled.  If alarmid is not valid, increment is greater than the 

max-allowed value, cycle is non-zero and less than the minimum cycle, or the alarm is 

currently active, then SetRelAlarm will return with the correct error status.  The alarm’s 

ticks left and cycle are set from the increment and cycle parameters.  The SetRelAlarm 

source can be seen in Code Listing 15. 
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3.1.5.4 SetAbsAlarm 

SetAbsAlarm sets an alarm to occur at start ticks.  If cycle is non-zero the alarm will 

recur every cycle ticks from start until the alarm is canceled.  If alarmid is not valid, start 

is greater than the max-allowed value, cycle is non-zero and less than the minimum cycle, 

or the alarm is currently active, then SetAbsAlarm will return with the correct error 

status.  The alarm’s ticks left is set equal to the current ticks minus start, where the cycle 

is set from the cycle parameter.  The SetAbsAlarm source can be seen in Code Listing 16. 

3.1.5.5 CancelAlarm 

CancelAlarm cancels the alarm so that it will not expire.  CancelAlarm cancels the alarm 

by setting the ticks left to zero so that there will not be a one to zero transition signaling 

alarm expiration.  If the alarmid is not valid or the alarm is not active, CancelAlarm will 

return the corresponding error status.  The CancelAlarm source can be seen in Code 

Listing 17. 

3.1.6 Operating System Execution Control 

The OS execution control functions encompass the OS startup, shutdown, and application 

mode identification.   

3.1.6.1 GetActiveApplicationMode 

GetActiveApplicationMode returns the application mode that was set when the OS was 

started.  OSDEFAULTAPPMODE is the only OSEK™ defined application mode; all 

other application modes are application specific.  The GetActiveApplicationMode source 

can be seen in Code Listing 18. 
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3.1.6.2 StartOS 

StartOS starts the OSEK™ operating system and also becomes the system Idle task.  The 

mode parameter sets the application mode for the OS and can be accessed by tasks and 

hook functions through the calls to GetActiveApplicationMode.  StartOS clears all 

events, effective priority stack, and sets task state to SUSPENDED for all tasks.  All 

alarms are canceled and all resources are released.  The resetting of all tasks, alarms, and 

resources is performed in case the global system structures have not been statically 

initialized properly or in the case of the OS restarting without the low level C 

initialization occurring.  After resetting the OS data structures the current task is set to 

zero, or the Idle task.  The Idle task state is set to RUNNING, the Idle Counter is reset, 

and the RES_SCHEDULER resource is acquired to prevent context switches.  The 

StartupHook is then called where ActivateTask, SetRelAlarm, SetAbsAlarm, and 

SetEvent may be called within, since the RES_SCHEDULER resource has already been 

acquired by the Idle task as discussed in Section 3.3.2.  After the StartupHook completes, 

the OSEKStartupHWHook is called so hardware specific implementations may complete 

the initialization without requiring the application developer to have knowledge of the 

hardware platform.  Interrupts are then enabled through a call to EnableAllInterrupts and 

the RES_SCHEDULER resource is released.  At this time the OS is fully functional and 

context switches may occur.  StartOS then enters an infinite loop that continually calls 

OSEK_INCREMENT_IDLE_COUNTER, thus it becomes the Idle task.  The StartOS 

source can be seen in Code Listing 19.  Figure 11 shows the system startup program flow. 
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Figure 11. StartOS Program Flow 

3.1.6.3 ShutdownOS 

ShutdownOS stops execution of the OS.  Interrupts are disabled so that ShutdownOS has 

exclusive control of the CPU.  The ShutdownHook is called with the error parameter 

passed to ShutdownOS.  The OSEKShutdownHWHook is then called if the 

ShutdownHook returns so that hardware specific implementations can shutdown 

hardware without requiring the application developer to have knowledge of the hardware 

platform.  ShutdownOS enters an infinite loop if both the ShutdownHook and the 

OSEKShutdownHWHook return.  The ShutdownOS source can be seen in Code Listing 

20.  Figure 12 shows the system shutdown program flow. 

 

Figure 12. ShutdownOS Program Flow 
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3.2 Design Choices 

The design choices that were made for the development of CPOI are primarily platform 

dependent.  The use of independent task stacks is hardware platform dependent; there is 

nothing in the hardware independent CPOI code that prevents an implementation of 

integrated task stacks.  The use of a heap to maintain the highest priority READY task is 

also hardware platform dependent, but the macro/functions in the hardware independent 

CPOI code that deal with the highest priority task contain “HEAP” in the identifier.  

These two design choices discussed in this section were the two that had the greatest 

impact on the system implementation; most of the other design choices made were the 

obvious solution based on the OSEK™ specification. 

3.2.1 Independent Task Stacks 

Basic tasks can be implemented either with independent stacks or with the use of a 

common stack.  Basic tasks can be implemented as a function call using a common stack 

since they cannot enter the waiting state; Basic tasks only release the processor if they 

terminate or a higher priority task or an interrupt is scheduled.  The OSEK™ BCC1 

conformance class can be implemented by function calls without context switching 

through stack switch.  This yields a simple implementation with minimal processor and 

memory overhead.  Figure 13 shows an implementation of BCC1 conformance class with 

a common stack.  The task number is also the task priority. 
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Figure 13. BCC1 Common Stack Implementation 

The OSEK™ ECC1 conformance class allows for both Extended and Basic tasks but no 

multiple task activations; there may only be one task per priority.  Extended tasks, unlike 

Basic tasks, cannot be implemented as function calls; each Extended task must have its 

own stack because there is no guarantee that they will continue execution until 

termination.  Figure 14 illustrates what could happen if two Extended tasks shared a 

single stack. 

 

 

Figure 14. Two Extended Task Stack Overrun 

Activation overhead for Basic tasks can be reduced when a common stack is used.  The 

stack initialization that Extended tasks require is not necessary for Basic tasks using a 

common stack as the task function is called directly instead of through a stack swap.  

This performance improvement for Basic tasks comes at a cost of slightly lower 
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performance for all other context switches.  A few extra comparison and branch 

instructions are required to implement the common stack. 

 

Both independent task stacks and a shared Basic task stack were implemented for the 

MPC565.  It was determined that Extended tasks were used more frequently and 

therefore the common Basic task stack implementation had slightly poorer performance 

that the independent stack implementation.  The time for a context switch is constant in 

the independent task stacks implementation; this in turn makes the job of determining the 

OS overhead much easier. 

3.2.2 Priority Heap 

It is necessary for the OSEK™ implementation to determine which task in the READY 

state has the highest priority.  The determination of the highest priority task must be done 

every time there is a possibility for a context switch.  A simple linked list could be 

searched each time.  Insertions and deletions to and from the linked list require constant 

time, but the overhead of determining the highest priority task requires O(n) time.    For 

small values of n this is not a problem, but it is desirable for CPOI to be very scalable.  

While the constant insertion and deletion time is very desirable, a determination of the 

highest priority task will occur at least as often as the insertion and deletions. 

 

A heap data structure was chosen over the linked list to maintain the highest priority task.  

The top of a heap can be determined in constant time and accordingly the highest priority 

task can be determined in constant time.  The overhead of maintaining the highest 

priority task requires O(log2n) time since this is the time bound on insertions and 
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deletions to and from a heap.  Figure 15 shows an example of Task 3 being inserted into 

the priority heap. 
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Figure 15. Priority Heap Insertion Example 

3.3 Deviations From the OSEK Specification 

All of the deviations from the OSEK™ specification were chosen to ease the 

development of OSEK™ applications and to provide standard mechanisms for necessary 

OS services not covered by the OSEK™ specification.  CPOI deviations from the 

OSEK™ specification allow applications written to the OSEK™ specification to function 

properly.  CPOI relaxes some of the requirements described in the OSEK™ specification 

and provides added services.  Other services were evaluated to be added to CPOI, but 
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those deviations from the OSEK™ specification chosen were done since they were 

necessary for decoupling application code from the hardware specific code. 

3.3.1 Addition of Mutex Functions 

The OSEK™ Standard specifies the SuspendAllInterrupts function, which can provide 

the application developer with mutually exclusive control of the CPU.  The 

SuspendAllInterrupts function’s inverse is the ResumeAllInterrupts function.  The 

OSEK™ standard specifies that no other OSEK™ API calls besides 

SuspendAllInterrupts/ ResumeAllInterrupts pairs be allowed within a 

SuspendAllInterrupts/ ResumeAllInterrupts pair.  This means that there are no API 

functions for the application developer to gain mutual exclusion and maintain it into an 

OSEK™ API call.   

 

The SuspendAllInterrupts/ResumeAllInterrupts functions are implemented with a single 

global count variable that maintains the call nesting level.  It is not necessary to maintain 

individual counts for each task since it is not possible to switch to another task within a 

SuspendAllInterrupts/ResumeAllInterrupts pair. 

 

It is necessary to gain mutually exclusive control of the CPU to properly implement the 

OSEK™ API functions.  Being interrupted in the middle of an OSEK™ API call could 

leave the system in an inconsistent state.  Since the 

SuspendAllInterrupts/ResumeAllInterrupts functions are implemented using globals and 

context switches could occur within the pairs, it is not possible to use these functions as a 
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solution.  The use of two separate mutual exclusion methods by the OSEK™ 

implementation designer and the application developer could lead to loss of mutual 

exclusion by either party. 

 

Two functions were added to CPOI as a solution to both the OSEK™ API 

implementation and application developer’s mutual exclusion requirements.  The 

GetMutex and ReleaseMutex functions are used in the OSEK™ implementation and are 

also provided for the application developers as a method of gaining mutual exclusion.  

The GetMutex function suspends all interrupts and returns a MutexType, which is 

platform dependent.  A MutexType variable returned by the previous GetMutex call is 

passed as parameter to the ReleaseMutex function.  The ReleaseMutex function will re-

enable interrupts if interrupts were enabled prior to the GetMutex call that returned the 

MutexType parameter. 

 

The implementation of GetMutex and ReleaseMutex is platform dependent, as are 

SuspendAllInterrupts and ResumeAllInterrupts.  The MutexType is an integer the size of 

the CPU flags register in the two platforms currently supported by CPOI.  The interrupt 

enable bit is typically part of the CPU flags register.  Current implementations of 

GetMutex save the flags register, disable interrupts and return the saved flags.  The 

ReleaseMutex function restores the flags register with the MutexType parameter. 

3.3.2 Activation of Tasks in StartupHook 

The OSEK™ standard specifies API service restrictions for task types, hooks, and 

callbacks.  In CPOI some of the API service restrictions have been lifted in order to 
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simplify application development.  The StartupHook is only allowed to call 

GetActiveApplicationMode and ShutdownOS.  An interrupt must activate the first non-

”Idle” task  since no Tasks can be activated in the StartupHook.  An Alarm cannot even 

be set to activate the first task since both of the SetXAlarm functions are not allowed in 

the StartupHook.   

 

The API service restrictions for ActivateTask, SetRelAlarm, SetAbsAlarm, and SetEvent 

during the StartupHook have been lifted under CPOI.  The StartOS function takes the 

RES_SCHEDULER resource prior to calling StartupHook so no task switching occurs 

from the StartupHook even though they have been activated.  The StartOS function 

acquires the RES_SCHEDULER so it can finish the system startup after the StartupHook 

call.  This lifting of the API service restrictions was not implemented to change the 

OSEK™ specification, but to ease the burden of the OSEK™ application developer.  

Those OSEK™ application developers adhering strictly to the OSEK™ specification have 

the option of not using the normally restricted API services . 

3.3.3 Precision Count Functions 

Often it is necessary for application developers to delay for short periods of time such as 

a few milliseconds.  The clock interrupt source for an Alarm may not have the precision 

to measure at the millisecond level or provide microsecond accuracy.  Even if the clock 

interrupt source can provide the required accuracy, the overhead of having a high 

precision Alarm may not be desirable.   
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One common solution to the short delay problem is hand tuned countdown loops.  These 

loops are simple to implement, but only guarantee the minimum delay.  If a task using 

one of these delay loops is switched out during its waiting period and then restored it will 

continue to wait until the loop has counted down, even though the delay period may have 

already lapsed.  Delay loops such as these are very platform dependent and will have to 

be tuned for each platform.  A better solution than the count down delay loop is a delay 

loop that compares an expiration time with a current time. 

 

PrecisionCount and PrecisionFrequency functions were added to provide a method for 

application developers to determine time advancement precisely in a platform 

independent manner.  Both PrecisionCount and PrecisionFrequency return a 

PrecisionCountType.  The value returned by PrecisionCount is incremented at the rate 

returned by PrecisionFrequency, such that every second the current PrecisionCount is 

incremented PrecisionFrequency counts.   

 

Some hardware platforms have a free running counter incrementing at the speed of the 

external crystal.  Hardware platforms that do not have a free running counter typically 

will have some form of periodic interrupt timer or modulus down counter.  If the 

timer/counter has a current count register, that current count can be used to add precision 

timing beyond that of the Alarm source.  The current count and Alarm source may even 

be the same piece of hardware. 
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3.3.4 Relaxation of TerminateTask/ChainTask Requirement 

The OSEK™ standard specifies that a task must call TerminateTask or ChainTask at the 

end of the task, Figure 16 illustrates program flow under OSEK™ standard.  Failure to call 

one of the two termination APIs can result in unknown behavior; this requirement is 

relaxed in CPOI.  The TaskSkeleton, seen in Code Listing 21, wraps all tasks.  The 

TaskSkeleton function is used as the primary entry point for all tasks.  TaskSkeleton calls 

the PreTaskHook and then enters the beginning of the task.  TaskSkeleton prevents Tasks 

that do not call one of the two termination APIs from causing unknown behavior, and 

instead will terminate those tasks normally, this is shown in Figure 17.  This relaxation of 

the TerminateTask/ChainTask requirement was not implemented to change the OSEK™ 

specification, but to enhance the system reliability for beginning OSEK™ application 

developers.  Those OSEK™ application developers that adhere strictly to the OSEK™ 

specification will not notice any change in system performance.  

 

 

Figure 16. Task Calls TerminateTask 

 

Figure 17. TaskSkeleton Calls 

TerminateTask
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3.4 Summary 

The development of CPOI was split into a hardware independent microkernel and a 

hardware dependent nanokernel.  The use of heaps and independent task stacks allow for 

a scalable system with predictable task switching overhead.  The deviations of CPOI 

from the OSEK™ standard are enhancements that ease application development; those 

applications strictly written to the OSEK™ standard will still execute properly.  The 

development of the CPOI nanokernels for both the MPC565 and the HCS12 is discussed 

in the next chapter. 
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Chapter 4 OSEK Hardware Specific Design 

As stated previously, the two hardware platforms targeted for CPOI are Motorola 

embedded microcontrollers designed for automotive use.  The Motorola MPC565 and the 

HCS12 were the two microcontrollers chosen as targets for CPOI.  These two hardware 

platforms were chosen for there availability at the UC Davis HEV Center, but are not the 

only two platforms that CPOI could target.  Nothing prevents CPOI from targeting any 

embedded microcontroller with at compiler that supports the C language. 

4.1 Motorola MPC565 

The Motorola MPC565 was the first platform target for the CPOI.  MetroWerks 

CodeWarrior for the embedded PowerPC was the compiler used for development of 

MPC565 target.  The Motorola MPC565, the successor to the Motorola MPC555, is an 

automotive grade microcontroller implementing the PowerPC instruction standard, a 

megabyte for FLASH memory, and advanced peripheral set such as Time Processing 

Units (TPU).  The hardware dependent source code for the MPC565 implementation of 

CPOI can be seen in Appendix B.  This chapter describes the MPC565 hardware 

dependent implementation of the CPOI subfunctions. 

4.1.1 Mutex Functions 

The GetMutex and ReleaseMutex functions are implemented for the MPC565 using 

inline assembly.  The MutexType for the MPC565 target is a 32-bit integer since the 

Machine State Register (MSR) is 32-bits wide.  The importance of the MSR will be 

shown the following two subsections. 
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4.1.1.1 GetMutex 

The GetMutex function moves the MSR into the return register, and then disables 

interrupts by clearing the EE bit in the MSR.  By returning the previous MSR value the 

application developer can restore the previous machine state whether interrupts were 

enabled or disabled.  The GetMutex source code for the MPC565 can be seen in Code 

Listing 22. 

4.1.1.2 ReleaseMutex 

ReleaseMutex is implemented by restoring the MSR with the mutex parameter.  This 

restores the previous machine state.  The ReleaseMutex source code for the MPC565 can 

be seen in Code Listing 23. 

4.1.2 Idle Counter 

The OSEKIdleCounter variable is constantly incremented while the Idle Task is running.  

Application developers can determine approximately how much free processing time is 

still available by calling the OSEK_IDLE_PERCENT function.  The Idle Counter 

functions are a useful tool to determine system load, and if more time is available for 

increased system responsibilities. 

4.1.2.1 OSEK_RESET_IDLE_COUNTER 

OSEK_RESET_IDLE_COUNTER resets the OSEKIdleCounter and the 

OSEKIdlePercent variables to zero. 
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4.1.2.2 OSEK_INCREMENT_IDLE_COUNTER 

The Idle Task repeatedly calls OSEK_INCREMENT_IDLE_COUNTER while it runs.  

OSEK_INCREMENT_IDLE_COUNTER acquires mutual exclusion by disabling 

interrupts, incrementing the OSEKIdleCounter, and then reenabling interrupts.  The 

OSEK_INCREMENT_IDLE_COUNTER is implemented using inline assembly for 

efficiency, but could easily been implemented in C using calls to GetMutex and 

ReleaseMutex.  The OSEK_INCREMENT_IDLE_COUNTER source code for the 

MPC565 can be seen in Code Listing 24. 

4.1.2.3 OSEK_IDLE_PERCENT 

OSEK_IDLE_PERCENT returns the OSEKIdlePercent value.  The OSEKIdlePercent is 

the average value of the OSEKIdleCounter since the OSEKIdleCounter is reset during 

each call to AlarmTickInterrupt.  The OSEKIdlePercent variable should use by 

application developers instead of reading OSEKIdleCounter directly to accommodate 

other target platform without a similar Idle Counter implementation. 

4.1.3 Task Functions 

The platform specific task functions are those that initialize and switch tasks, and thus 

require knowledge of the specific platform.  

4.1.3.1 SwitchContextTo 

SwitchContextTo switches the current running task to the task that is passed in as the 

taskid parameter.  The MPC565 implementation of the SwitchContextTo is written in 

assembly.  SwitchContextTo saves all of the non-volatile registers onto the stack.  

MetroWerks CodeWarrior for the embedded PowerPC uses registers r3 through r12 as 
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volatile registers and therefore do not need to be saved by the called function.  After all of 

the registers have been saved the current stack pointer is stored in the current task’s 

global area.  The stack pointer is then restored with the switch to taskid’s stack pointer.  

After the registers are popped off the stack, the context has been switched.  The 

SwitchContextTo source code for the MPC565 can be seen in Code Listing 25. 

4.1.3.2 TASK_INIT_STACK 

TASK_INIT_STACK prepares a SUSPENDED task’s stack so that it can be switched to 

when it is the highest priority READY task.  The task stack being initialized has initial 

values for the 32 general-purpose and 32 floating-point registers*.  Initial values for the 

other condition and status registers have been chosen such that the system has floating-

point math and interrupts enabled.  The Link Register initial value, chosen so that the 

return of SwitchContextTo would jump the system into the beginning of the newly 

initialized task, is set to point to the TaskSkeleton.  The TASK_INIT_STACK source 

code for the MPC565 can be seen in Code Listing 26. 

4.1.4 AlarmTickInterrupt 

The real time interrupt calls AlarmTickInterrupt.  This function handles the single Alarm 

source and signals the expired alarms.  The AlarmTickInterrupt function also updates the 

OSEKIdlePercent variable so that it can be maintained at a regular interval.  The 

AlarmTickInterrupt function acquires the RES_SCHEDULER so that it can signal all 

necessary Events and activate all necessary Tasks without being switched out.  The 

                                                 

* Note: These initial values were chosen for debugging purposes. 
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AlarmTickInterrupt may not be switched out of since multiple tasks could be activated at 

the same time, and therefore a lower priority task could be switched to before 

AlarmTickInterrupt has had a chance to activate the higher priority task.  The 

AlarmTickInterrupt source code for the MPC565 can be seen in Code Listing 27. 

4.1.5 Precision Count Functions 

The PrecisionCountType is a 64-bit unsigned integer on the MPC565 implementation.  

64-bit math was chosen because even with a 4MHz source for the PrecisionCount a 

wraparound will only occur about every 146,135 years. 

4.1.5.1 PrecisionCount 

The PrecisionCount function, as described in Section 3.3.3, provides highly precise 

timing capability.  The MPC565 Time Base Register is used to keep the Precision Count.  

The current value of the Time Base, a 64-bit free running counter incremented at the rate 

of the external clock, is returned by the PrecisionCount function. 

4.1.5.2 PrecisionFrequency 

The PrecisionFrequency function returns the frequency of the MPC565 external clock.  

This is a constant value that is dependent on the MPC565 external circuitry.  The first 

implementation of CPOI was on an MPC565 with an external clock of 4MHz.  This 

provided a PrecisionCount accurate to the nearest 250ns.  

4.2 Motorola HCS12 

The Motorola HCS12 is the successor to the HC12 family of microcontrollers.  The 

HC12 family of microcontrollers was developed for instruction set compatibility with the 
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Motorola HC11, an automotive industry standard microcontroller for many years.  The 

HCS12 was the second platform target for CPOI.  IAR Systems Embedded Workbench 

for the HC12 and HCS12 was the development environment used for the HCS12 target.  

The Motorola HCS12, like the MPC565, is an automotive grade microcontroller.  The 

HCS12 implements an instruction set compatible with the Motorola HC11 while 

incorporating 256KB of FLASH memory and 12KB of RAM.  The HCS12 has an 

advanced set of peripherals including analog-to-digital converters and capture compare 

hardware.  The hardware dependent source code for the HCS12 implementation of CPOI 

can be seen in Appendix C.  This section describes the HCS12 hardware dependent 

implementation of the CPOI subfunctions. 

4.2.1 Mutex Functions 

The GetMutex and ReleaseMutex functions are implemented for the HCS12 using 

assembly.  The MutexType for the HCS12 target is a 16-bit integer since the Condition 

Code Register (CCR) is 16-bit wide register.  The importance of the CCR will be shown 

the following two subsections. 

4.2.1.1 GetMutex 

The GetMutex function moves the CCR into the return register, and then disables 

interrupts by clearing the I bit in the CCR.  By returning the previous CCR value the 

application developer can restore the previous machine state with a call to ReleaseMutex.  

The GetMutex source code for the HCS12 can be seen in Code Listing 28. 
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4.2.1.2 ReleaseMutex 

ReleaseMutex is implemented by restoring the CCR with the mutex parameter.  This 

restores the previous machine state.  The ReleaseMutex source code for the HCS12 can 

be seen in Code Listing 29. 

4.2.2 Idle Counter 

The OSEKIdleCounter variable gets incremented constantly while the Idle Task is 

running.  Application developers can determine approximately how much free processing 

time is available by calling the OSEK_IDLE_PERCENT function.  The Idle Counter 

functions are a useful tool to determine system load, and if more time is available for 

increased system responsibilities. 

4.2.2.1 OSEK_RESET_IDLE_COUNTER 

OSEK_RESET_IDLE_COUNTER resets the OSEKIdleCounter and the 

OSEKIdlePercent variables to 0. 

4.2.2.2 OSEK_INCREMENT_IDLE_COUNTER 

The Idle Task repeatedly calls OSEK_INCREMENT_IDLE_COUNTER while it runs.  

OSEK_INCREMENT_IDLE_COUNTER acquires mutual exclusion by disabling 

interrupts, incrementing the OSEKIdleCounter, and then reenabling interrupts.  The 

OSEK_INCREMENT_IDLE_COUNTER is implemented in C using calls to GetMutex 

and ReleaseMutex.  The OSEK_INCREMENT_IDLE_COUNTER source code for the 

HCS12 can be seen in Code Listing 30. 
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4.2.2.3 OSEK_IDLE_PERCENT 

OSEK_IDLE_PERCENT returns the OSEKIdlePercent value.  The OSEKIdlePercent is 

the average value of the OSEKIdleCounter since the OSEKIdleCounter is reset during 

each call to AlarmTickInterrupt.  The OSEKIdlePercent variable should use by 

application developers instead of reading OSEKIdleCounter directly in case another 

target platform did not implement the Idle Counter in the same way. 

4.2.3 Task Functions 

The platform specific task functions are those that initialize and switch tasks, and thus 

require knowledge of the specific platform.  

4.2.3.1 SwitchContextTo 

SwitchContextTo switches the current running task to the task that is passed in as a 

parameter.  The HCS12 implementation of the SwitchContextTo is written in assembly.  

SwitchContextTo saves all of the registers onto the stack and then stores the current stack 

pointer in the current tasks global area.  The stack pointer is then restored with the task 

that is being switched to.  All the registers are popped off of the stack and the context has 

been switched.  The SwitchContextTo source code for the HCS12 can be seen in Code 

Listing 31. 

4.2.3.2 TASK_INIT_STACK 

TASK_INIT_STACK prepares a SUSPENDED task’s stack so that a context switch to 

the task may occur when necessary.  The task stack being initialized has initial values for 

the CCR, X, Y, and D registers.  Unlike the MPC565, the HCS12 does not have a Link 

Register and therefore an initial return subroutine location is set to TaskSkeleton for the 
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non-banked memory model.  For the banked memory model version the bank location is 

also placed on the stack for a return from call instruction instead of a return from 

subroutine.  The TaskSkeleton value was chosen so that the return of SwitchContextTo 

would jump the system into the beginning of the newly initialized task.  The 

TASK_INIT_STACK source code for the HCS12 can be seen in Code Listing 32. 

4.2.4 AlarmTickInterrupt 

The real time interrupt calls AlarmTickInterrupt.  This function handles the single Alarm 

source and signals the expired alarms.  The AlarmTickInterrupt function also updates the 

OSEKIdlePercent variable so that it can be maintained at a regular interval.  The 

AlarmTickInterrupt function acquires the RES_SCHEDULER so that it can signal all 

necessary Events and activate all necessary Tasks without being switched out of; multiple 

tasks could be activated at the same time and thus a lower priority task could be switched 

to before AlarmTickInterrupt has had a chance to activate the higher priority task.  The 

AlarmTickInterrupt source code for the HCS12 can be seen in Code Listing 33. 

4.2.5 Precision Count Functions 

The PrecisionCountType is a 64-bit unsigned integer on the HCS12 implementation.  64-

bit math was chosen because even with a 2.5MHz source for the PrecisionCount a 

wraparound will only occur about every 233,816 years. 

4.2.5.1 PrecisionCount 

The PrecisionCount function, as described in Section 3.3.3, provides capability for high 

precision timing.  The Modulus Down-Counter is used to keep the Precision Count.  The 

Modulus Down-Counter is a 16-bit free running counter that is decremented at a rate 
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proportional to the external clock.  When the Modulus Down-Counter reaches zero an 

interrupt is generated and the upper 48-bits of the 64-bit Precision Count is incremented.  

The current value of the Modulus Down-Counter is combined with the upper 48-bits of 

the 64-bit Precision Count and then returned by the PrecisionCount function. 

4.2.5.2 PrecisionFrequency 

The PrecisionFrequency function returns the frequency at which the Precision Count is 

incremented; this frequency is proportional to the HCS12 external clock.  This is a 

constant value that is dependent upon the HCS12 external circuitry.  The first 

implementation of CPOI for the HCS12 was with an external clock of 10MHz, and the 

Modulus Down-Counter was decremented at 1/4th that frequency or 2.5MHz.  This 

provided a PrecisionCount accurate to the nearest 400ns. 

4.3 Summary 

The development of the CPOI nanokernel services for the MPC565 and HCS12 were 

discussed in this chapter.  The separation of the microkernel from the nanokernel 

increases the portability of CPOI.  CPOI can be ported to other platforms with 

development of the ten nanokernel functions described in this chapter.  The previous two 

sections show that application code written for CPOI can be ported from one 

microcontroller platform to another.  Hardware access is the final problem to be solved in 

this design, and will be discussed in the next chapter. 
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Chapter 5 Abstracted Driver Model for Embedded 

Systems 

Often embedded systems developers directly access hardware in application code and do 

little in the way of developing hardware drivers.  This behavior stems from the attitude 

that the speed is required and that it is easier to work with embedded hardware in this 

manner [1].  Directly accessing hardware couples the algorithm code with hardware 

specific code, and can make changing hardware platforms or upgrading microcontrollers 

difficult and tedious.   

 

The ADMES was designed with the following goals in mind:  

• Allow for application code reuse across hardware platforms 
• Small code and memory size, since the target microcontrollers could have as little as 

32KB of flash and 1KB of RAM 
• Fast execution, since automotive embedded systems are real-time systems and can 

have severe consequences if real-time performance is not met. 
• No runtime reconfigurability, since changes in the system that would require 

reconfiguring hardware would typically also require updated firmware. 
 
The combination of CPOI with ADMES provides the ability for application code reuse in 

automotive embedded systems.  Figure 18 shows the CPOI with ADMES system 

hierarchy. 
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Figure 18. CPOI/ADMES System Hierarchy 

5.1 Introduction to ADMES 

The ADMES abstracts interfaces for different hardware classes.  Existing driver models 

such as the Linux/Unix driver model are better suited for desktop systems, but not as well 

suited for embedded systems.  In automotive embedded systems hardware is initialized 

and then used, but rarely needs to be disabled.  Many embedded hardware systems have 

more complex interfaces than can easily be controlled with read and write functions; this 

leads to overuse of the ioctl function.  Those embedded systems described in [24], [25], 

and [26] have simpler hardware interfaces than those found in the ERTS of this project.  

The fact that the networking interfaces such as TCP/IP are not fully integrated into the 

Linux/Unix driver model is a further argument that it would not suit the purposes of the 

ERTS of this project.  The ADMES defines hardware classes and their interfaces by 

specifying an “adapter pattern” for each hardware class [11].  The “adapter pattern” 
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converts the interface of a class into another interface that clients expected.  This lets 

classes work together that could not otherwise because of incompatible interfaces. 

 

C was chosen as the language for the ADMES since almost all embedded compilers 

support C, and very few support C++, or only support a subset of C++.  The obvious 

choice for the ADMES hardware interfaces would be C++ virtual classes, but the 

unavailability of embedded C++ compilers removed C++ as an option.  All hardware 

class interfaces define a C structure that contains function pointers and a void pointer to 

point to internal data.  C++ classes can be simulated in C using the previously discussed 

method.  Macros are provided to simplify the function calls for each hardware type.  An 

example of a generic hardware class HwX interface can be seen in Figure 19.   

 

The void pointer can be a dangerous programming practice since all type information has 

been lost, but the alternative is to pass a pointer that needs to be recast to the internal 

structure type, and therefore equally as dangerous. 

 

Figure 19. HwX Interface Code Example 

typedef struct{ 
    void (*DInitializationFunction)(void *); 
    void *DData; 
    void (*DDoSomethingFunction)(void *); 
    ... 
}SHwX; 
 
#define HwXInitialize(x)     (x)->DInitializationFunction((x)->DData) 
#define HwXDoSomething(x)    (x)->DDoSomethingFunction((x)->DData) 
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5.2 Driver Classes 

The driver classes that have been developed for ADMES were designed to meet the needs 

of an automotive PCM.  The following hardware class interfaces have been defined for 

ADMES: analog to digital converters, digital to analog converters, digital input / output 

ports, pulse width modulation, period measurement, counters, queued serial peripheral 

interfaces, universal asynchronous receiver transmitter serial ports, and Controller Area 

Network interfaces.  The interface header source for the ADMES hardware classes can be 

seen in Appendix D. 

5.2.1 Analog To Digital Converters 

Analog to digital converters (ADC) sample an analog voltage and convert the value into 

an integer value that is linearly proportional to the voltage.  For example a 12-bit, 0 to 5V 

ADC will produce a value that is equal to 4095 counts / 5V or 1 count per 1.22mV.  

ADCs typically have accuracies ranging from 6 to 24 bit, minimum voltage ranges of 

minus10V to 0V and maximum voltage ranges of plus 5V to 10V.   

 

Three ADC class interfaces were defined: 8, 16, and 32-bit, since ADC accuracies do not 

always align to byte boundaries.  The ADC class interface header code can be seen in 

Code Listing 34.  The ADC interface describes three functions: AToDXInitialize, 

AToDXRead, and AToDXMaxValue, where the X is 8, 16, or 32.  AToDXInitialize 

initializes the ADC if any initialization is necessary.  AToDXRead performs an analog to 

digital conversion or returns the value of the previous conversion in the case of an 

interval sampling ADC.  AToDXMaxValue returns the maximum value that could 

possibly be returned from AToDXRead; this value is equal to 2N – 1 where N is the bit 
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accuracy of the ADC.  It is important to note that N is not guaranteed to equal X, but X 

must be greater than or equal to N. 

5.2.2 Digital To Analog Converters 

Digital to analog converters (DACs) produce an analog voltage that is linearly 

proportional to the digital value provided.  For example a 10-bit, 0 to 5V DAC will 

produce 5V / 1023 counts, or 4.88mV per count.  DACs typically have accuracies 

ranging from 6 to 24 bit, and maximum voltage ranges of 2.5V to 10V. 

 

Three DAC class interfaces were defined: 8, 16, and 32-bit, since DAC accuracies do not 

always align to byte boundaries.  The DAC class interface header code can be seen in 

Code Listing 35.  The DAC interface describes four functions: DToAXInitialize, 

DToAXRead, DToAXWrite and DToAXMaxValue, where the X is 8, 16, or 32.  

DToAXInitialize initializes the DAC if any initialization is necessary.  DToAXRead 

returns the value the previously written to the DAC.  DToAXWrite makes the analog 

voltage appear at the output pin that corresponds to the value written.  DToAXMaxValue 

returns the maximum value that could possibly be written to DToAXWrite; this value is 

equal to 2N – 1 where N is the bit accuracy of the DAC.  It is important to note that N is 

not guaranteed to equal X, but X must be greater than or equal to N. 

5.2.3 Digital Input / Output Ports 

Digital input/output (I/O) ports are made up of multiple pins that are set as either inputs 

or outputs.  Each pin has a digital value either 0 or 1.  If the pin is set as an output then 

the value present at the pin is dictated by the microcontroller, otherwise the pin is set to 
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high impedance and the digital value received is controlled by external circuitry.  Like 

the analog converter classes there are three digital input/output class interfaces defined: 8, 

16, and 32-bit.  A separate interface is defined for a single digital input/output pin.   

 

The digital input/output interface defines five functions: DIOXInitialize, DIOXRead, 

DIOXWrite, DIOXGetDirection, and DIOXSetDirection where X is 8, 16, or 32.  The 

digital input/output port class interface header code can be seen in Code Listing 36.  

DIOXInitialize initializes the digital input/output port, including setting an initial port 

direction and output value, if necessary.  DIOXRead reads the current settings for the port 

independent of the port direction; input pins read the externally set value while output 

pins read back the last value set.  DIOXWrite writes the value to the output port, this 

function has no effect on pins set to input.  DIOXGetDirection returns the pin direction 

bitmask where each bit set to 1 defines an output pin and each bit set to 0 defines an 

input.  DIOXSetDirection sets the pin direction bitmask using the same I/O logic as the 

bitmask returned by DIOXGetDirection. 

5.2.4 Digital Input / Output Pin 

Digital I/O pins, as described for the digital I/O ports, are set as either inputs or outputs.  

Each pin has a digital value either 0 or 1; if the pin is set as an output then the value 

present at the pin is dictated by the microcontroller, otherwise the pin is set to high 

impedance and the digital value is controlled by external circuitry.   

 

The digital input/output pin interface defines seven functions: DIOPinInitialize, 

DIOPinGet, DIOPinSet, DIOPinClear, DIOPinToggle, DIOPinGetDirection, and 
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DIOPinSetDirection.  The digital I/O pin class interface header code can be seen in Code 

Listing 37.  DIOPinInitialize initializes the digital I/O pin, including setting an initial pin 

direction and output value, if necessary.  DIOPinGet reads the current setting for the pin 

independent of the port direction; if the pin is set to input it reads the externally set value 

while if the pin is set to output it reads back the last value set.  DIOPinSet sets the value 

of the pin to logic 1 if the pin is set to output.  DIOPinClear sets the value of the pin to 

logic 0 if the pin is set to output.  DIOPinToggle sets the value of the pin to the opposite 

logic value prior to the function call if the pin is set to output.  DIOPinSet, DIOPinClear, 

and DIOPinToggle functions have no effect if the pin is set to input.  

DIOPinGetDirection returns the pin direction where 1 means output and 0 means input.  

DIOPinSetDirection sets the pin direction using the same logic as DIOPinGetDirection. 

5.2.5 Pulse Width Modulation 

Pulse width modulation (PWM) is modulation where the pulse duration is varied for 

control.  PWM parameters include the duty cycle and the switching frequency.  The duty 

cycle is the proportion of time the signal is high versus low, and the switching frequency 

is the frequency at which the beginning and end of a cycle are marked.  PWM hardware 

is often used to control loads such as fans and DC motors.  PWM hardware can also be 

used for variable frequency output, where the duty cycle is always set to 50%. 

 

Three PWM class interfaces were defined: 8, 16, and 32-bit.  The PWM class interface 

header code can be seen in Code Listing 38.  The PWM interface describes seven 

functions: PWMXInitialize, PWMXPulse, PWMXPeriod, PWMXPulsePeriod, 

PWMXBaseFrequency, PWMXEnable, and PWMXDisable, where the X is 8, 16, or 32.  
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PWMXInitialize initializes the PWM hardware if any initialization is necessary; this will 

likely include setting an initial period.  PWMXPulse sets the number of counts the PWM 

signal will remain high.  The pulse input should be less than or equal to the previously set 

period value; pulse values greater than the period value will provide a 100% duty cycle.  

To adjust the switching frequency, PWMXPeriod sets the PWM period in counts based 

on the base frequency.   Period values of less than two counts will result in the PWM 

hardware only able to output duty cycles of 0 or 100%.  PWMXPulsePeriod sets both the 

pulse width and the period in a single atomic action; this function is useful when the 

PWM hardware is being used as a variable frequency output.  PWMXBaseFrequency 

returns a 32-bit unsigned integer that is equal to the frequency at which counts are 

incremented; this base frequency is necessary so that the proper pulse and period values 

can be calculated independent of hardware.  A 32-bit value was chosen for the base 

frequency since it is highly unlikely that automotive embedded hardware will approach 

4GHz running speeds.  PWMXEnable and PWMXDisable functions were provided as a 

simple way to enable and disable the PWM output, and it should be noted that this could 

have been achieved by setting a pulse of zero.  Figure 20 shows an example of PWM 

with a period of eighteen counts and a pulse of fourteen counts. 

 

Figure 20. PWM Example 
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5.2.6 Period Measurement 

Period measurement measures either the high, low, entire, or multiple periods of an input 

signal.  Speeds are typically measured using period measurement in automotive 

powertrain and vehicle embedded electronics.  Inductive or magnetic pickups provide 

pulses that can be used to calculate speed. 

 

The period measurement class interfaces currently defined is for 16, 32, and 64-bit.  The 

period measurement class interface header code can be seen in Code Listing 39.  The 

period measurement interface describes four functions: PeriodXInitialize, PeriodXGet, 

PeriodXBaseFrequency, and PeriodXFreshData where X is 16, 32, or 64.  

PeriodXInitialize initializes the period measurement hardware so that it will measure the 

correct type of period.  PeriodXGet returns the number of counts at the base frequency 

was measured during the last period.  The PeriodXBaseFrequency function returns a 32-

bit unsigned integer that is equal to the frequency at which counts are incremented by the 

period measurement hardware.  Like the PWM interface, a 32-bit value was chosen for 

the base frequency since it is highly unlikely that automotive embedded hardware will 

approach 4GHz running speeds.  PeriodXFreshData returns a non-zero value if the value 

returned by PeriodXGet will be a new value; this is important so a long period is not 

mistaken for the previous period duration.  Figure 21 shows an example of a period 

measurement which would return a value of eighteen. 
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Figure 21. Period Measurement Example 

5.2.7 Counters 

Counters count events that occur at frequencies higher than can be obtained by software 

counters.  Counters can be used to count such events as drive shaft rotations, which in 

automotive applications can be directly correlated to distance traveled. 

 

The counter class interfaces currently defined are 32 and 64-bit.  The counter class 

interface header code can be seen in Code Listing 40.  The counter interface describes 

three functions: CounterXInitialize, CounterXCount, and CounterXCumulativeCount 

where X is 32 or 64.  CounterXInitialize initializes the counter hardware.  CounterXCount 

returns the count since the previous call to CounterXCount.  CounterXCumulativeCount 

returns the total count since the initialization of the counter hardware. 

5.2.8 Queued Serial Peripheral Interfaces 

Queued Serial Peripheral Interfaces (QSPIs) are serial interfaces primarily designed for 

inter-chip communication in embedded systems.  SPI is a synchronized serial interface 

with three signals: a Master Output Slave Input (MOSI), Master Input Slave Output 

(MISO), and a serial clock.  Typically a chip select signal accompanies all SPI slave 

devices.  The master uses chip select lines so that a single SPI host port can service 
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multiple SPI slave devices.  SPI allows for simultaneous read/write transactions.  The 

QSPI class interface handles the queuing of data transactions and the chip select line.  A 

separate QSPI device will be required for each external slave SPI device.  An example of 

two 8-bit SPI data transfers is illustrated in Figure 22. 

 

Figure 22. QSPI 8-bit Data Transfer Example 

 

The QSPI class interfaces currently defined are for 8 and 16-bit. The QSPI class interface 

header code can be seen in Code Listing 41.  Class interfaces of 32-bit or larger were not 

implemented since data transfers can be performed using either the 8 or 16-bit QSPI in 

the hold chip select mode, and the typical data transfer size for SPI slave devices is either 

8 or 16-bits in size.  The QSPI interface describes five functions: QueuedSPIXInitialize, 

QueuedSPIXRead, QueuedSPIXWrite, QueuedSPIXBlocking, and 

QueuedSPIXChipSelect.  QueuedSPIXInitialize initializes the QSPI hardware if any 

initialization is necessary, such as initialization of software queues.  QueuedSPIXRead 

performs an SPI read/write transaction, since data must be written out during the read 

transaction.  QueuedSPIXRead requires four parameters: datain, dataout, length, and 

eventmask.  The datain parameter is a pointer to the beginning of an array where read 

data will be placed, while dataout is a pointer to the beginning of data to be written out.  
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Both datain and dataout point to arrays of size length.  The eventmask parameter is an 

OSEK EventMaskType that defines the event to be set when the transaction has 

completed.  QueuedSPIXWrite is identical to QueuedSPIXRead except that it does not 

have the datain parameter; all the SPI data read in during the QueuedSPIXWrite is 

ignored.  QueuedSPIXBlocking sets the QSPI device into blocking or non-blocking 

mode.  If the QSPI device is in blocking mode calls to QueuedSPIXRead and 

QueuedSPIXWrite will block until the transaction has completed.  If the QSPI device is 

in non-blocking mode calls to QueuedSPIXRead and QueuedSPIXWrite will return 

immediately and the event defined by the eventmask parameter will be set when the 

transaction has completed.  QueuedSPIXChipSelect sets the chip select mode for the 

QSPI device.  If the QSPI chip select mode is set to hold, then the chip select will be held 

active until the entire read/write transaction has completed; otherwise the chip select line 

will be brought to inactive between each data unit transaction. 

5.2.9 Universal Asynchronous Receiver Transmitter Serial 

Communications 

The Universal Asynchronous Receiver Transmitter (UART) Serial Communications 

device is a serial port that allows for full duplex communication.  The UART Serial 

Communication device defined follows the electrical and communication byte format of 

RS232, but does not require the Request To Send, Clear To Send, Data Set Ready, and 

Data Terminal Ready signals.  Furthermore communication data rates may exceed 19,200 

bps.  Figure 23 shows two bytes being transferred via a UART. 
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Figure 23. UART Serial Bit Stream 

 

The UART Serial Communications class interface defines four functions: 

UARTInitialize, UARTRead, UARTWrite, and UARTBlocking.  The UART Serial 

Communications class interface header code can be seen in Code Listing 42.  

UARTInitialize initializes the UART hardware and any associated software queues.  

UARTRead reads in length bytes into the array pointed to by datain and will signal the 

event eventmask when completed.  UARTWrite writes length bytes out starting at the 

byte pointed to by dataout and then signals the event eventmask when completed.  

UARTBlocking sets the blocking mode for UART.  If the UART is in blocking mode, 

calls to UARTRead and UARTWrite will not return until the data transfer has completed.  

If the UART is in non-blocking mode, calls to UARTRead and UARTWrite will return 

immediately and the event eventmask will be signaled when the data transfer has 

completed. 

5.2.10 Controller Area Network 

Controller Area Network (CAN) is a serial communications protocol that is designed for 

automotive and industrial applications [23].  CAN supports distributed real time control 

systems with bit rates up to 1Mbps.  Real time support is possible because the CAN 

protocol specifies a collision resolution scheme without data or time loss.  CAN 

specification 2.0 allows for two data frame types: standard and extended frames.  
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Standard data frames have eleven bit identifiers and zero to eight bytes of data.  Extended 

data frames added with the 2.0 specification of CAN have twenty nine bit identifiers and 

like standard data frames zero to eight bytes of data.  The Standard CAN frame and 

Extended CAN frame layouts can be seen in Figure 24 and Figure 25 respectively.  

Unlike many other networking technologies, CAN frames do not specify a source or 

destination fields, but instead leave that for the higher layer protocols developer to handle 

from the identifier.  Since CAN interfaces lack an address, masking of the identifier 

provides hardware level filtering.  Typically the filtering incorporates a filter identifier 

and a “care/don’t care” bitmask. 

 

Figure 24. Standard CAN Frame 

 

 

Figure 25. Extended CAN Frame 

 

The CAN class interface defines three structures: SCANFrame, SCANPort, and 

SCANObject.  The CAN class interface header code can be seen in Code Listing 43.  The 

SCANFrame is the data structure used by both the SCANPort and the SCANObject 
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interfaces.  The SCANPort is the CAN interface and has six functions associated with it:  

CANInitialize, CANRead, CANWrite, CANGlobalMask, CANBlocking, and 

CANCreateObject.  The CANInitialize function initializes the CAN interfaces baud rate 

and prepares any software queues.  CANRead reads length CAN frames into the array 

starting at the datain pointer.  CANRead will signal the event eventmask when it has 

completed.  CANWrite will transmit length CAN frames starting at the CAN frame 

pointed to by dataout and then signals the event eventmask when the transmission of all 

frames has completed.  CANGlobalMask sets the global identifier filter for received 

CAN frames.  All CAN frames are ignored unless the CAN frames identifier, when 

bitwise anded with mask, is equal to the value of id bitwise anded with mask. 

 

CANBlocking sets the blocking mode for the CAN port.  If the CAN port is in blocking 

mode then calls to CANRead and CANWrite will not return until the 

transmission/reception of CAN frames has completed.  If the CAN port is in non-

blocking mode then calls to CANRead and CANWrite will return immediately and the 

event eventmask will be signaled when the transmission/reception of CAN frames has 

completed. 

 

CANCreateObject is used to quickly filter can frames for specific application use, the 

CAN objects may be implemented in software, but often CAN hardware supports CAN 

objects.  CANCreateObject creates the CAN object from frame a SCANFrame, a mask, 

and the rxortx parameter that sets the CAN object to be either a transmission or reception 

frame.  The SCANObject interface returned by CANCreateObject has three functions: 
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CANObjectInitialize, CANObjectRead, and CANObjectWrite.  CANObjectInitialize 

initializes any hardware that may not have already been initialized by the call to 

CANCreateObject.  CANObjectRead places the last CAN frame to match the CAN 

object into the frame parameter, and returns a non-zero value if the frame is one that has 

not been read through a previous call to CANObjectRead.  CANObjectWrite writes 

frame out to the CAN bus when possible.  CANObjectRead and CANObjectWrite unlike 

CANRead and CANWrite cannot block. 

5.3 Driver Chaining 

Driver chaining describes the development of a hardware class interface by using other 

hardware class interfaces.  Automotive controllers typically have multiple integrated 

circuits (IC) external to the microcontroller; often they are ADCs or DACs connected via 

QSPI.  The device drivers for such external ICs would conform to an ADMES driver 

class, but would also use a QSPI device to implement the driver.  This means that 

hardware class interfaces for external ICs can be written in a platform independent 

manner.   

 

Another possible use of driver chaining is to emulate a hardware device with other device 

interfaces.  An example of hardware emulation is implementing a QSPI using only digital 

input/output pins; four digital input/output pins would be required for such an 

implementation. A digital input could be implemented using an ADC that used a mid 

value as the cut off between zero and one.  A digital output could be implemented using a 

DAC that sets the output values to extremes.  By defining the ADMES driver classes 
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some hardware may be emulated through the use of other ADMES devices.  Figure 26 

shows a few examples of driver chaining. 

 

Figure 26. Driver Chaining Examples 

5.4 Summary 

ADMES describes hardware interface classes for use in embedded systems.  The 

ADMES interfaces are adapter design patterns designed to decouple the application code 

for hardware dependent software.  The ADMES hardware drivers adapt hardware specific 

code to an interface that is compatible with application code.  ADMES hardware 

interfaces are developed on top of CPOI.  The use of an adapter pattern allows for driver 

chaining and development of new ADMES hardware implementations using existing 

ADMES interfaces.  This means that ADMES hardware implementations may even be 

written in a platform independent manner; this is especially true of ICs external to the 

microcontroller. 
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Chapter 6 Conclusions 

6.1 Analysis of CPOI and ADMES 

The CPOI and ADMES initial development for the MPC565 hardware was completed 

within the twelve week estimate including initial 2003 FutureTruck PCM application 

code.  The HCS12 development of CPOI with ADMES was completed in three weeks 

after the completion of the MPC565 development.  CPOI alone was ported to the HCS12 

platform with less than a day of development.  The CPOI and ADMES development 

was completed in less time than originally estimated.  The combination of CPOI with 

ADMES provides the ability for application code reuse between hardware platforms in 

ERTS.  The development of CPOI and ADMES is considered successful since 

application code built on this design is in use in a real-world application, the UC Davis 

2003 FutureTruck. 

6.2 Future Work 

There are two obvious areas for future CPOI and ADMES work.  The definition of more 

ADMES driver classes and the reevaluation of the existing ADMES driver classes is one 

area of possible future work.  Software tools to aid in the embedded system configuration 

can also be developed.  Computer Aided Software Engineering (CASE) tools are 

becoming widely used in the automotive industry especially in combination with 

OSEK™ [27][28][29][30]. 
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6.2.1 ADMES Driver Classes 

The development of the existing ADMES driver classes was done for the 2003 UC Davis 

FutureTruck control system but other ADMES driver classes may need to be declared.  

The existing ADMES driver class interfaces may also need to be redeclared to 

incorporate functionality previously overlooked in the initial interface declaration. 

 

The ADMES driver classes are currently implemented using data structures each with all 

the interface function pointers, this is a non-Virtual Method Table (VMT) object 

orientated design [36].  The ADMES driver classes could be implemented using another 

level of indirection and a single structure with all the interface function pointers, or in 

other words a VMT design.  Adding another level of indirection can save space, but this 

comes at a cost of performance.  For the purposes of this project the VMT design would 

not save much space since few identical ADMES driver objects exist in a single system.  

The limited space savings of a VMT design at this time does not justify the cost of 

system performance. 

6.2.2 System Configuration Software Tools 

The OSEK™ Implementation Language (OIL) is a specification language to describe the 

OSEK™ RTOS system configuration.  Many OSEK™ implementations have software 

tools that input OIL files to configure the system [27][28].  No software tool has been 

written to automate the configuration of any of the CPOI implementations. 

 

Software tools to automate the configuration of CPOI and ADMES data structures would 

be the greatest addition to the existing body of work, and were originally planned if time 
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had permitted.  The planned software tools would not use OIL, but would have a 

graphical interface for ease of use.  They would be similar to those tools described in 

Chapter 1, but would only be used for system configuration, not full system development.  

Ideally the software tool would input files that describe the ADMES drivers and can 

output the source required for configuring the embedded system.  Preferably the input 

files would be structured, ASCII files so that the configuration files could be easily 

modified to target new hardware platforms.  In this way the software tools would not 

require recompilation to target new hardware platforms.  
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Appendix A Hardware Independent OSEK OS Source 

StatusType ActivateTask(TaskType taskid){ 
    StatusType ReturnStatus; 
    MutexType Mutex; 
     
    Mutex = GetMutex(); 
    if(OSEK_TASK_COUNT <= taskid){ 
        ReleaseMutex(Mutex); 
        return E_OS_ID; 
    } 
    if(SUSPENDED != TASK_STATE(taskid)){ 
        ReleaseMutex(Mutex); 
        return E_OS_LIMIT; 
    } 
    TASK_EVENTS_CLEAR(taskid); 
    TASK_EFFECTIVE_PRIORITY_RESET(taskid); 
    TASK_INIT_STACK(taskid); 
    TASK_STATE(taskid) = READY; 
    TASK_PRIORITY_HEAP_ADD(taskid); 
    ReturnStatus = Schedule(); 
    ReleaseMutex(Mutex); 
    return ReturnStatus; 
} 

Code Listing 1. ActivateTask Source Code 

 
StatusType TerminateTask(void){ 
    StatusType ReturnStatus; 
    MutexType Mutex; 
     
    Mutex = GetMutex(); 
    if(TASK_ACQUIRED_RESOURCE_COUNT(OSEKCurrentTask)){ 
        ReleaseMutex(Mutex); 
        return E_OS_RESOURCE; 
    } 
    PostTaskHook(); 
    TASK_STATE(OSEKCurrentTask) = SUSPENDED; 
    ReturnStatus = Schedule(); 
    ReleaseMutex(Mutex); 
    return ReturnStatus; 
} 

Code Listing 2. TerminateTask Source Code 

 
StatusType ChainTask(TaskType taskid){ 
    StatusType ReturnStatus; 
    MutexType Mutex; 
     
    Mutex = GetMutex(); 
    if(OSEK_TASK_COUNT <= taskid){ 
        ReleaseMutex(Mutex); 
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        return E_OS_ID; 
    } 
    if(SUSPENDED != TASK_STATE(taskid)){ 
        ReleaseMutex(Mutex); 
        return E_OS_LIMIT; 
    } 
    if(TASK_ACQUIRED_RESOURCE_COUNT(OSEKCurrentTask)){ 
        ReleaseMutex(Mutex); 
        return E_OS_RESOURCE; 
    } 
    TASK_EVENTS_CLEAR(taskid); 
    TASK_EFFECTIVE_PRIORITY_RESET(taskid); 
    TASK_INIT_STACK(taskid); 
    TASK_STATE(taskid) = READY; 
    TASK_PRIORITY_HEAP_ADD(taskid); 
    PostTaskHook(); 
    TASK_STATE(OSEKCurrentTask) = SUSPENDED; 
    ReturnStatus = Schedule(); 
    ReleaseMutex(Mutex); 
    return ReturnStatus; 
} 

Code Listing 3. ChainTask Source Code 

 
StatusType Schedule(void){ 
    TaskType SwitchToTask; 
    MutexType Mutex; 
     
    Mutex = GetMutex(); 
    if(TASK_ACQUIRED_RESOURCE_COUNT(OSEKCurrentTask)){ 
        ReleaseMutex(Mutex); 
        return E_OS_RESOURCE; 
    } 
    if(TASK_PRIORITY_HEAP_COUNT()){ 
        SwitchToTask = TASK_PRIORITY_HEAP_TOP(); 
        if(RUNNING == TASK_STATE(OSEKCurrentTask)){ 
            if(TASK_EFFECTIVE_PRIORITY(SwitchToTask) < 
TASK_EFFECTIVE_PRIORITY(OSEKCurrentTask)){ 
                ReleaseMutex(Mutex); 
                return E_OK; 
            } 
            TASK_STATE(OSEKCurrentTask) = READY; 
            TASK_PRIORITY_HEAP_ADD(OSEKCurrentTask); 
        } 
        TASK_PRIORITY_HEAP_DEL_TOP(); 
        TASK_STATE(SwitchToTask) = RUNNING; 
        SwitchContextTo(SwitchToTask); 
        ReleaseMutex(Mutex);         
        return E_OK; 
    } 
    ReleaseMutex(Mutex); 
    return E_OK; 
} 

Code Listing 4. Schedule Source Code 
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StatusType GetTaskID(TaskRefType taskid){ 
    if(NULL == taskid){ 
        return E_OK; 
    } 
    *taskid = OSEKCurrentTask; 
    return E_OK; 
} 

Code Listing 5. GetTaskID Source Code 

 
StatusType GetTaskState(TaskType taskid, TaskStateRefType state){ 
    MutexType Mutex; 
     
    Mutex = GetMutex(); 
    if(OSEK_TASK_COUNT <= taskid){ 
        ReleaseMutex(Mutex); 
        return E_OS_ID; 
    } 
    if(NULL == state){ 
        ReleaseMutex(Mutex); 
        return E_OK; 
    } 
    *state = TASK_STATE(taskid); 
    ReleaseMutex(Mutex); 
    return E_OK; 
} 

Code Listing 6. GetTaskState Source Code 

 
StatusType GetResource(ResourceType resid){ 
 
    if(OSEK_RESOURCE_COUNT <= resid){ 
        return E_OS_ID; 
    } 
    if(INVALID_TASK_ID != RESOURCE_TASK_ID(resid)){ 
        return E_OS_ACCESS;     
    } 
    if(TASK_EFFECTIVE_PRIORITY(OSEKCurrentTask) < 
RESOURCE_PRIORITY(resid)){ 
        TASK_EFFECTIVE_PRIORITY_PUSH(OSEKCurrentTask, 
RESOURCE_PRIORITY(resid)); 
    } 
    else{ 
        TASK_EFFECTIVE_PRIORITY_PUSH(OSEKCurrentTask, 
TASK_EFFECTIVE_PRIORITY(OSEKCurrentTask)); 
    } 
    RESOURCE_TASK_ID(resid) = OSEKCurrentTask; 
 
    return E_OK; 
} 

Code Listing 7. GetResource Source Code 
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StatusType ReleaseResource(ResourceType resid){ 
    StatusType ReturnStatus; 
    MutexType Mutex; 
     
    Mutex = GetMutex(); 
    if(OSEK_RESOURCE_COUNT <= resid){ 
        ReleaseMutex(Mutex); 
        return E_OS_ID; 
    }       
    if(OSEKCurrentTask != RESOURCE_TASK_ID(resid)){ 
        ReleaseMutex(Mutex); 
        return E_OS_ACCESS;     
    }  
 
    RESOURCE_TASK_ID(resid) = INVALID_TASK_ID;     
    TASK_EFFECTIVE_PRIORITY_POP(OSEKCurrentTask); 
    if(TASK_EFFECTIVE_PRIORITY(OSEKCurrentTask) < 
TASK_PRIORITY_HEAP_TOP()){ 
        ReturnStatus = Schedule(); 
        ReleaseMutex(Mutex); 
        return ReturnStatus; 
    } 
 
    ReleaseMutex(Mutex); 
    return E_OK; 
} 

Code Listing 8. ReleaseResource Source Code 

 
StatusType SetEvent(TaskType taskid, EventMaskType mask){ 
    StatusType ReturnStatus; 
    MutexType Mutex; 
     
    Mutex = GetMutex(); 
    if(OSEK_TASK_COUNT <= taskid){ 
        ReleaseMutex(Mutex); 
        return E_OS_ID; 
    } 
    if(!TASK_EXTENDED(taskid)){ 
        ReleaseMutex(Mutex); 
        return E_OS_ACCESS; 
    } 
    if(SUSPENDED == TASK_STATE(taskid)){ 
        ReleaseMutex(Mutex); 
        return E_OS_STATE; 
    } 
    TASK_EVENTS(taskid) |= mask; 
    if(WAITING == TASK_STATE(taskid)){ 
        if(TASK_WAITING_EVENTS(taskid) & TASK_EVENTS(taskid)){ 
            TASK_WAITING_EVENTS_CLEAR(taskid); 
            TASK_STATE(taskid) = READY; 
            TASK_PRIORITY_HEAP_ADD(taskid); 
            ReturnStatus = Schedule(); 
            ReleaseMutex(Mutex); 
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            return ReturnStatus; 
        } 
    } 
    ReleaseMutex(Mutex); 
    return E_OK; 
} 

Code Listing 9. SetEvent Source Code 

 
StatusType ClearEvent(EventMaskType mask){ 
    MutexType Mutex; 
     
    Mutex = GetMutex(); 
    if(!TASK_EXTENDED(OSEKCurrentTask)){ 
        ReleaseMutex(Mutex); 
        return E_OS_ACCESS; 
    } 
    TASK_EVENTS(OSEKCurrentTask) &= ~mask; 
    ReleaseMutex(Mutex); 
    return E_OK; 
} 

Code Listing 10. ClearEvent Source Code 

StatusType GetEvent(TaskType taskid, EventMaskRefType event){ 
    MutexType Mutex; 
     
    Mutex = GetMutex(); 
    if(OSEK_TASK_COUNT <= taskid){ 
        ReleaseMutex(Mutex); 
        return E_OS_ID; 
    } 
    if(!TASK_EXTENDED(taskid)){ 
        ReleaseMutex(Mutex); 
        return E_OS_ACCESS; 
    } 
    if(SUSPENDED == TASK_STATE(taskid)){ 
        ReleaseMutex(Mutex); 
        return E_OS_STATE; 
    } 
    *event = TASK_EVENTS(taskid); 
    ReleaseMutex(Mutex); 
    return E_OK; 
} 

Code Listing 11. GetEvent Source Code 

 
StatusType WaitEvent(EventMaskType mask){ 
    StatusType ReturnStatus; 
    MutexType Mutex; 
     
    Mutex = GetMutex(); 
    if(!TASK_EXTENDED(OSEKCurrentTask)){ 
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        ReleaseMutex(Mutex); 
        return E_OS_ACCESS; 
    } 
    if(TASK_ACQUIRED_RESOURCE_COUNT(OSEKCurrentTask)){ 
        ReleaseMutex(Mutex); 
        return E_OS_RESOURCE; 
    } 
 
    TASK_WAITING_EVENTS(OSEKCurrentTask) |= mask; 
    if(TASK_WAITING_EVENTS(OSEKCurrentTask) & 
TASK_EVENTS(OSEKCurrentTask)){ 
        TASK_WAITING_EVENTS_CLEAR(OSEKCurrentTask); 
        ReleaseMutex(Mutex); 
        return E_OK; 
    } 
    TASK_STATE(OSEKCurrentTask) = WAITING; 
    ReturnStatus = Schedule(); 
    ReleaseMutex(Mutex); 
    return ReturnStatus; 
} 

Code Listing 12. WaitEvent Source Code 

 
StatusType GetAlarmBase(AlarmType alarmid, AlarmBaseRefType info){ 
    MutexType Mutex; 
     
    Mutex = GetMutex(); 
    if(OSEK_ALARM_COUNT <= alarmid){ 
        ReleaseMutex(Mutex); 
        return E_OS_ID; 
    } 
    *info = ALARM_ALARM_BASE(alarmid); 
    ReleaseMutex(Mutex); 
    return E_OK;         
} 

Code Listing 13. GetAlarmBase Source Code 

 
StatusType GetAlarm(AlarmType alarmid, TickRefType tick){ 
    MutexType Mutex; 
     
    Mutex = GetMutex(); 
    if(OSEK_ALARM_COUNT <= alarmid){ 
        ReleaseMutex(Mutex); 
        return E_OS_ID; 
    } 
    *tick = ALARM_TICKS(alarmid); 
    ReleaseMutex(Mutex); 
    return E_OK;    
} 

Code Listing 14. GetAlarm Source Code 
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StatusType SetRelAlarm(AlarmType alarmid, TickType increment, TickType 
cycle){ 
    MutexType Mutex; 
     
    Mutex = GetMutex(); 
    if(OSEK_ALARM_COUNT <= alarmid){ 
        ReleaseMutex(Mutex); 
        return E_OS_ID; 
    } 
    if(ALARM_ALARM_BASE(alarmid).maxallowedvalue < increment){ 
        ReleaseMutex(Mutex); 
        return E_OS_VALUE;             
    } 
    if(cycle){ 
        if(ALARM_ALARM_BASE(alarmid).mincycle > cycle){ 
            ReleaseMutex(Mutex); 
            return E_OS_VALUE; 
        } 
    } 
    if(ALARM_TICKS(alarmid)){ 
        ReleaseMutex(Mutex); 
        return E_OS_STATE;             
    }     
    ALARM_TICKS(alarmid) = increment; 
    ALARM_CYCLE(alarmid) = cycle; 
    ReleaseMutex(Mutex); 
    return E_OK; 
} 

Code Listing 15. SetRelAlarm Source Code 

 
StatusType SetAbsAlarm(AlarmType alarmid, TickType start, TickType 
cycle){ 
    MutexType Mutex; 
     
    Mutex = GetMutex(); 
    if(OSEK_ALARM_COUNT <= alarmid){ 
        ReleaseMutex(Mutex); 
        return E_OS_ID; 
    } 
    if(ALARM_ALARM_BASE(alarmid).maxallowedvalue < start){ 
        ReleaseMutex(Mutex); 
        return E_OS_VALUE;             
    } 
    if(cycle){ 
        if(ALARM_ALARM_BASE(alarmid).mincycle > cycle){ 
            ReleaseMutex(Mutex); 
            return E_OS_VALUE; 
        } 
    } 
    if(ALARM_TICKS(alarmid)){ 
        ReleaseMutex(Mutex); 
        return E_OS_STATE;             
    }     
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    ALARM_TICKS(alarmid) = OSEKAlarmTicks - start; 
    ALARM_CYCLE(alarmid) = cycle; 
    ReleaseMutex(Mutex); 
    return E_OK; 
} 

Code Listing 16. SetAbsAlarm Source Code 

 
StatusType CancelAlarm(AlarmType alarmid){ 
    MutexType Mutex; 
     
    Mutex = GetMutex(); 
    if(OSEK_ALARM_COUNT <= alarmid){ 
        ReleaseMutex(Mutex); 
        return E_OS_ID; 
    } 
    if(0 == ALARM_TICKS(alarmid)){ 
        ReleaseMutex(Mutex); 
        return E_OS_NOFUNC;             
    } 
    ALARM_TICKS(alarmid) = 0; 
    ReleaseMutex(Mutex); 
    return E_OK; 
} 

Code Listing 17. CancelAlarm Source Code 

 
AppModeType GetActiveApplicationMode(void){ 
    return OSEKApplicationMode; 
} 

Code Listing 18. GetActiveApplication Source Code 

 
void StartOS(AppModeType mode){   
    AlarmType AlarmIndex; 
    ResourceType ResourceIndex; 
     
    OSEKApplicationMode = mode; 
    for(OSEKCurrentTask = 1; OSEKCurrentTask < OSEK_TASK_COUNT; 
OSEKCurrentTask++){             
        TASK_EVENTS_CLEAR(OSEKCurrentTask); 
        TASK_EFFECTIVE_PRIORITY_RESET(OSEKCurrentTask); 
        TASK_STATE(OSEKCurrentTask) = SUSPENDED; 
    } 
    for(AlarmIndex = 0; AlarmIndex < OSEK_ALARM_COUNT; AlarmIndex++){ 
        ALARM_TICKS(AlarmIndex) = 0; 
        ALARM_CYCLE(AlarmIndex) = 0; 
    } 
    for(ResourceIndex = 0; ResourceIndex < OSEK_RESOURCE_COUNT; 
ResourceIndex++){ 
        RESOURCE_TASK_ID(ResourceIndex) = INVALID_TASK_ID; 
    }     
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    OSEKCurrentTask = 0;     
    TASK_PRIORITY_HEAP_CLEAR();     
    TASK_EVENTS_CLEAR(OSEKCurrentTask); 
    TASK_EFFECTIVE_PRIORITY_RESET(OSEKCurrentTask); 
    TASK_STATE(OSEKCurrentTask) = RUNNING;     
    OSEKAlarmTicks = 0; 
    OSEK_RESET_IDLE_COUNTER(); 
    GetResource(RES_SCHEDULER); 
    StartupHook();        
    OSEKStartupHWHook(); 
    EnableAllInterrupts();  
    ReleaseResource(RES_SCHEDULER); 
    while(1){ 
        OSEK_INCREMENT_IDLE_COUNTER(); 
    } 
} 

Code Listing 19. StartOS Source Code 

 
void ShutdownOS(StatusType error){ 
    DisableAllInterrupts(); 
    ShutdownHook(error); 
    OSEKShutdownHWHook(); 
    while(1); 
} 

Code Listing 20. ShutdownOS Source Code 

 
void TaskSkeleton(void){ 
    PreTaskHook(); 
    TASK_ENTRY_POINT(OSEKCurrentTask); 
    TerminateTask(); 
} 

Code Listing 21. TaskSkeleton Source Code 
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Appendix B Motorola MPC565 Hardware Dependent 

OSEK Source 

asm MutexType GetMutex(void){ 
    mfmsr   r3 
    mtspr   82, r3 
} 

Code Listing 22. MPC565 GetMutex Source Code 

 
asm void ReleaseMutex(MutexType mutex){ 
    nofralloc 
    mtmsr   r3 
    blr 
} 

Code Listing 23. MPC565 ReleaseMutex Source Code 

 
asm void OSEK_INCREMENT_IDLE_COUNTER(void){ 
    nofralloc 
    mtspr   82, r3 
    lis     r4, OSEKIdleCounter@ha 
    lwz     r3, OSEKIdleCounter@l(r4) 
    addi    r3, r3, 1 
    stw     r3, OSEKIdleCounter@l(r4) 
    mtspr   80, r3 
    blr 
} 

Code Listing 24. MPC565 OSEK_INCREMENT_IDLE_COUNTER Source Code 

 
asm void SwitchContextTo(TaskType taskid){ 
    nofralloc 
 
    stwu    rsp, -376(rsp) 
    stw     r31, 104(rsp) 
    mfmsr   r31 
    stw     r31, 0(rsp) 
    mtspr   82, r31 
         
    mfsrr0  r31 
    stw     r31, 4(rsp) 
    mfsrr1  r31 
    stw     r31, 8(rsp) 
    mfcr    r31 
    stw     r31, 12(rsp) 
    mfxer   r31 
    stw     r31, 16(rsp) 
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    mflr    r31 
    stw     r31, 20(rsp) 
    mfctr   r31 
    stw     r31, 24(rsp) 
    mfdar   r31 
    stw     r31, 28(rsp) 
    stw     r0, 32(rsp) 
    stw     r14, 36(rsp) 
    stw     r15, 40(rsp) 
    stw     r16, 44(rsp) 
    stw     r17, 48(rsp) 
    stw     r18, 52(rsp) 
    stw     r19, 56(rsp) 
    stw     r20, 60(rsp) 
    stw     r21, 64(rsp) 
    stw     r22, 68(rsp) 
    stw     r23, 72(rsp) 
    stw     r24, 76(rsp) 
    stw     r25, 80(rsp) 
    stw     r26, 84(rsp) 
    stw     r27, 88(rsp) 
    stw     r28, 92(rsp) 
    stw     r29, 96(rsp) 
    stw     r30, 100(rsp) 
     
    stfd    fp0, 120(rsp) 
    mffs    fp0 
    stfd    fp0, 112(rsp) 
    stfd    fp1, 128(rsp) 
    stfd    fp2, 136(rsp) 
    stfd    fp3, 144(rsp) 
    stfd    fp4, 152(rsp) 
    stfd    fp5, 160(rsp) 
    stfd    fp6, 168(rsp) 
    stfd    fp7, 176(rsp) 
    stfd    fp8, 184(rsp) 
    stfd    fp9, 192(rsp) 
    stfd    fp10, 200(rsp) 
    stfd    fp11, 208(rsp) 
    stfd    fp12, 216(rsp) 
    stfd    fp13, 224(rsp) 
    stfd    fp14, 232(rsp) 
    stfd    fp15, 240(rsp) 
    stfd    fp16, 248(rsp) 
    stfd    fp17, 256(rsp) 
    stfd    fp18, 264(rsp) 
    stfd    fp19, 272(rsp) 
    stfd    fp20, 280(rsp) 
    stfd    fp21, 288(rsp) 
    stfd    fp22, 296(rsp) 
    stfd    fp23, 304(rsp) 
    stfd    fp24, 312(rsp) 
    stfd    fp25, 320(rsp) 
    stfd    fp26, 328(rsp) 
    stfd    fp27, 336(rsp) 
    stfd    fp28, 344(rsp) 
    stfd    fp29, 352(rsp) 
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    stfd    fp30, 360(rsp) 
    stfd    fp31, 368(rsp) 
    lfd     fp0, 120(rsp) 
 
    // OSEKDynamicTaskInfo[OSEKCurrentTask].StackPointer = rsp; 
    lis     r30, OSEKDynamicTaskInfo@ha  
    // r30 = OSEKDynamicTaskInfo 
    addi    r30, r30, OSEKDynamicTaskInfo@l 
    // r29 = OSEKCurrentTask@ha 
    lis     r29, OSEKCurrentTask@ha 
    // r28 = OSEKCurrentTask 
    lwz     r28, OSEKCurrentTask@l(r29) 
    // r28 = r28 * OSEK_DYNAMIC_TASK_INFO_SIZE 
    mulli   r28, r28, OSEK_DYNAMIC_TASK_INFO_SIZE 
    // r28 = &OSEKDynamicTaskInfo[OSEKCurrentTask].StackPointer 
    add     r28, r30, r28 
    // r27 = rsp 
    or      r27, rsp, rsp 
    // OSEKDynamicTaskInfo[OSEKCurrentTask].StackPointer = r27 
    stw     r27, 0(r28) 
     
    // r28 = taskid * OSEK_DYNAMIC_TASK_INFO_SIZE 
    mulli   r28, r3, OSEK_DYNAMIC_TASK_INFO_SIZE 
    // r28 = &OSEKDynamicTaskInfo[taskid].StackPointer 
    add     r28, r30, r28 
    // r27 = OSEKDynamicTaskInfo[taskid].StackPointer 
    lwz     r27, 0(r28) 
    // rsp = r27 
    or      rsp, r27, r27 
    // OSEKCurrentTask = taskid 
    stw     r3, OSEKCurrentTask@l(r29) 
 
    lwz     r0, 32(rsp) 
    lwz     r14, 36(rsp) 
    lwz     r15, 40(rsp) 
    lwz     r16, 44(rsp) 
    lwz     r17, 48(rsp) 
    lwz     r18, 52(rsp) 
    lwz     r19, 56(rsp) 
    lwz     r20, 60(rsp) 
    lwz     r21, 64(rsp) 
    lwz     r22, 68(rsp) 
    lwz     r23, 72(rsp) 
    lwz     r24, 76(rsp) 
    lwz     r25, 80(rsp) 
    lwz     r26, 84(rsp) 
    lwz     r27, 88(rsp) 
    lwz     r28, 92(rsp) 
    lwz     r29, 96(rsp) 
    lwz     r30, 100(rsp) 
 
    lfd     fp0, 112(rsp) 
    mtfs    fp0 
    lfd     fp0, 120(rsp) 
    lfd     fp1, 128(rsp) 
    lfd     fp2, 136(rsp) 
    lfd     fp3, 144(rsp) 
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    lfd     fp4, 152(rsp) 
    lfd     fp5, 160(rsp) 
    lfd     fp6, 168(rsp) 
    lfd     fp7, 176(rsp) 
    lfd     fp8, 184(rsp) 
    lfd     fp9, 192(rsp) 
    lfd     fp10, 200(rsp) 
    lfd     fp11, 208(rsp) 
    lfd     fp12, 216(rsp) 
    lfd     fp13, 224(rsp) 
    lfd     fp14, 232(rsp) 
    lfd     fp15, 240(rsp) 
    lfd     fp16, 248(rsp) 
    lfd     fp17, 256(rsp) 
    lfd     fp18, 264(rsp) 
    lfd     fp19, 272(rsp) 
    lfd     fp20, 280(rsp) 
    lfd     fp21, 288(rsp) 
    lfd     fp22, 296(rsp) 
    lfd     fp23, 304(rsp) 
    lfd     fp24, 312(rsp) 
    lfd     fp25, 320(rsp) 
    lfd     fp26, 328(rsp) 
    lfd     fp27, 336(rsp) 
    lfd     fp28, 344(rsp) 
    lfd     fp29, 352(rsp) 
    lfd     fp30, 360(rsp) 
    lfd     fp31, 368(rsp) 
 
    lwz     r31, 28(rsp) 
    mtdar   r31 
    lwz     r31, 24(rsp) 
    mtctr   r31 
    lwz     r31, 20(rsp) 
    mtlr    r31     
    lwz     r31, 16(rsp) 
    mtxer   r31 
    lwz     r31, 12(rsp) 
    mtcr    r31 
    lwz     r31, 8(rsp) 
    mtsrr1  r31    
    lwz     r31, 4(rsp) 
    mtsrr0  r31         
    lwz     r31, 0(rsp) 
    mtmsr   r31         
     
    lwz     r31, 104(rsp) 
    addi    rsp, rsp, 376 
    blr 
} 

Code Listing 25. MPC565 SwitchContextTo Source Code 

 
void TASK_INIT_STACK(TaskType taskid){ 
    INT8U *StackTop; 
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    StackTop = (INT8U *)TASK_STACK_BASE(taskid); 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)31.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)30.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)29.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)28.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)27.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)26.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)25.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)24.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)23.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)22.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)21.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)20.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)19.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)18.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)17.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)16.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)15.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)14.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)13.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)12.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)11.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)10.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)9.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)8.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)7.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)6.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)5.0; 
    StackTop -= sizeof(FLOAT64); 
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    *(FLOAT64 *)StackTop = (FLOAT64)4.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)3.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)2.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)1.0; 
    StackTop -= sizeof(FLOAT64); 
    *(FLOAT64 *)StackTop = (FLOAT64)0.0; 
 
    StackTop -= sizeof(FLOAT64);                 //FPSCR 
    *(INT32U *)StackTop = (INT32U)0x00000000;    //FPSCR 
    StackTop -= sizeof(INT32U); 
     
     
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x31; 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x30; 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x29; 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x28; 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x27; 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x26; 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x25; 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x24; 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x23; 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x22; 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x21; 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x20; 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x19; 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x18; 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x17; 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x16; 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x15; 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x14; 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x00;             //r0 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x00;             //DAR 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x00;             //CTX 
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    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)TaskSkeleton;     //LR 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x00;             //XER 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x00;             //CR 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x0000B002;       //SRR1 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)TaskSkeleton;     //SRR0 
    StackTop -= sizeof(INT32U); 
    *(INT32U *)StackTop = (INT32U)0x0000B002;       //MSR 
    TASK_STACK(taskid) = (StackType *)StackTop; 
 
} 

Code Listing 26. MPC565 TASK_INIT_STACK Source Code 

void AlarmTickInterrupt(void){ 
    AlarmType AlarmID; 
     
    GetResource(RES_SCHEDULER); 
    OSEKAlarmTicks++; 
 
    OSEKIdlePercent = (OSEKIdlePercent>>1) + (OSEKIdleCounter>>1); 
    OSEKIdleCounter = 0; 
 
    for(AlarmID = 0; AlarmID < OSEK_ALARM_COUNT; AlarmID++){ 
        if(ALARM_TICKS(AlarmID)){ 
            ALARM_TICKS(AlarmID)--; 
            if(0 == ALARM_TICKS(AlarmID)){ 
                if(NULL != ALARM_CALLBACK(AlarmID)){ 
                    ALARM_CALLBACK(AlarmID)(); 
                } 
                else if(ALARM_EVENT_MASK(AlarmID)){ 
                    SetEvent(ALARM_TASKID(AlarmID), 
ALARM_EVENT_MASK(AlarmID)); 
                } 
                else{ 
                    ActivateTask(ALARM_TASKID(AlarmID)); 
                } 
                ALARM_TICKS(AlarmID) = ALARM_CYCLE(AlarmID); 
            } 
        } 
    } 
    ReleaseResource(RES_SCHEDULER); 
} 

Code Listing 27. MPC565 AlarmTickInterrupt Source Code 
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Appendix C Motorola HCS12 Hardware Dependent OSEK 

Source 

GetMutex: 
    psha        ; push A 
    tpa         ; CCR -> A 
    tab         ; A -> B 
    pula        ; pop A 
    sei         ; Disable interrupts 
#ifndef CODE_BANKING 
    rts 
#else 
    rtc 
#endif 

Code Listing 28. HCS12 GetMutex Source Code 

 
ReleaseMutex: 
    Psha        ; push A 
    tba         ; B -> A 
    tap         ; A -> CCR 
    pula        ; pop A 
#ifndef CODE_BANKING 
    rts 
#else 
    rtc 
#endif 

Code Listing 29. HCS12 ReleaseMutex Source Code 

 
void OSEK_INCREMENT_IDLE_COUNTER(void){ 
    MutexType Mutex; 
    Mutex = GetMutex(); 
    OSEKIdleCounter++; 
    ReleaseMutex(Mutex); 
} 

Code Listing 30. HCS12 OSEK_INCREMENT_IDLE_COUNTER Source Code 

 
SwitchContextTo: 
    pshc                              ; Push CCR 
    pshx                              ; Push X 
    pshy                              ; Push Y 
    pshd                              ; Push D 
    ldd     OSEKCurrentTask           ; D = OSEKCurrentTask 
    ldy     #26                       ; Y = OSEK_DYNAMIC_TASK_INFO_SIZE 
    emul                              ; Y:D = Y * D 
    tfr     d, x                      ; X = D 
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    sts     OSEKDynamicTaskInfo, x    ; *(OSEKDynamicTaskInfo + X) = SP 
    ldd     0, sp                     ; D = id 
    std     OSEKCurrentTask           ; OSEKCurrentTask = id; 
    ldy     #26                       ; Y = OSEK_DYNAMIC_TASK_INFO_SIZE 
    emul                              ; Y:D = Y * D 
    tfr     d, x                      ; X = D 
    lds     OSEKDynamicTaskInfo, x    ; SP = *(OSEKDynamicTaskInfo + X) 
    puld                              ; Pop D 
    puly                              ; Pop Y 
    pulx                              ; Pop X 
    pulc                              ; Pop CCR 
#ifndef CODE_BANKING 
    rts 
#else 
    rtc 
#endif 

Code Listing 31. HCS12 SwitchContextTo Source Code 

 
void TASK_INIT_STACK(TaskType taskid){ 
    INT8U *StackTop; 
 
    StackTop = (INT8U *)TASK_STACK_BASE(taskid); 
    StackTop -= sizeof(INT16U); 
    *(INT16U *)StackTop = (INT16U)TaskSkeleton; 
#ifdef CODE_BANKING 
    StackTop -= sizeof(INT8U); 
    *(INT8U *)StackTop = (INT8U)(((INT32U)TaskSkeleton)>>16); 
#endif 
    StackTop -= sizeof(INT8U); 
    *(INT8U *)StackTop = (INT8U)0x40;         //CCR Must set X bit 
    StackTop -= sizeof(INT16U); 
    *(INT16U *)StackTop = (INT16U)0x2222;     //X register 
    StackTop -= sizeof(INT16U); 
    *(INT16U *)StackTop = (INT16U)0x1111;     //Y register 
    StackTop -= sizeof(INT16U); 
    *(INT16U *)StackTop = (INT16U)0x0000;     //D register 
    TASK_STACK(taskid) = (StackType *)StackTop; 
} 

Code Listing 32. HCS12 TASK_INIT_STACK Source Code 

 
void AlarmTickInterrupt(void){ 
    AlarmType AlarmID; 
     
    GetResource(RES_SCHEDULER); 
    OSEKAlarmTicks++; 
 
    OSEKIdlePercent = (OSEKIdlePercent>>1) + (OSEKIdleCounter>>1); 
    OSEKIdleCounter = 0; 
 
    for(AlarmID = 0; AlarmID < OSEK_ALARM_COUNT; AlarmID++){ 
        if(ALARM_TICKS(AlarmID)){ 
            ALARM_TICKS(AlarmID)--; 
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            if(0 == ALARM_TICKS(AlarmID)){ 
                if(NULL != ALARM_CALLBACK(AlarmID)){ 
                    ALARM_CALLBACK(AlarmID)(); 
                } 
                else if(ALARM_EVENT_MASK(AlarmID)){ 
                    SetEvent(ALARM_TASKID(AlarmID), 
ALARM_EVENT_MASK(AlarmID)); 
                } 
                else{ 
                    ActivateTask(ALARM_TASKID(AlarmID)); 
                } 
                ALARM_TICKS(AlarmID) = ALARM_CYCLE(AlarmID); 
            } 
        } 
    } 
    ReleaseResource(RES_SCHEDULER); 
} 

Code Listing 33. HCS12 AlarmTickInterrupt Source Code 
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Appendix D Abstract Driver Model for Embedded 

Systems Hardware Classes 

 
typedef struct{ 
    void (*DInitializationFunction)(void *); 
    void *DData; 
    INTXU (*DReadFunction)(void *); 
    INTXU DMaxValue; 
} SAToDX; 
 
#define AToDXInitialize(atod)  (atod)->DInitializationFunction((atod)-
>DData) 
#define AToDXRead(atod)        (atod)->DReadFunction((atod)->DData) 
#define AToDXMaxValue(atod)    (atod)->DmaxValue 

Code Listing 34. Analog To Digital Converter Interface 

 
typedef struct{ 
    void (*DInitializationFunction)(void *data); 
    void *DData; 
    INTXU (*DReadFunction)(void *data); 
    void (*DWriteFunction)(void *data, INTXU value);  
    INTXU DMaxValue; 
} SDToAX; 
 
#define DToAXInitialize(dtoa)    (dtoa)-
>DInitializationFunction((dtoa)->DData) 
#define DToAXRead(dtoa)          (dtoa)->DReadFunction((dtoa)->DData) 
#define DToAXWrite(dtoa, value)  (dtoa)->DWriteFunction((dtoa)->DData, 
value) 
#define DToAXMaxValue(dtoa)      (dtoa)->DMaxValue 

Code Listing 35. Digital To Analog Converter Interface 

 
typedef struct{ 
    void (*DInitializationFunction)(void *); 
    void *DData; 
    INTXU (*DReadFunction)(void *); 
    void (*DWriteFunction)(void *, INTXU); 
    INTXU (*DGetDirectionFunction)(void *); 
    void (*DSetDirectionFunction)(void *, INTXU); 
} SDIOX; 
 
#define DIOXInitialize(dio)            (dio)-
>DInitializationFunction((dio)->DData) 
#define DIOXRead(dio)                  (dio)->DReadFunction((dio)-
>DData) 



92 

 

#define DIOXWrite(dio, val)            (dio)->DWriteFunction((dio)-
>DData, (val)) 
#define DIOXGetDirection(dio)          (dio)-> DGetDirectionFunction 
((dio)->DData) 
#define DIOXSetDirection (dio, val)    (dio)-> DSetDirectionFunction 
((dio)->DData, (val))  

Code Listing 36. Digital Input / Output Port Interface 

 
typedef struct{ 
    void (*DInitializationFunction)(void *); 
    void *DData; 
    INT8U (*DGetFunction)(void *); 
    void (*DSetFunction)(void *); 
    void (*DClearFunction)(void *); 
    void (*DToggleFunction)(void *); 
    INT8U (*DGetDirectionFunction)(void *); 
    void (*DSetDirectionFunction)(void *, INT8U); 
} SDIOPin; 
 
#define DIOPinInitialize(dio)        (dio)-
>DInitializationFunction((dio)->DData) 
#define DIOPinGet(dio)               (dio)->DGetFunction((dio)->DData) 
#define DIOPinSet(dio)               (dio)->DSetFunction((dio)->DData) 
#define DIOPinClear(dio)             (dio)->DClearFunction((dio)-
>DData) 
#define DIOPinToggle(dio)             (dio)->DToggleFunction((dio)-
>DData) 
#define DIOPinGetDirection(dio)       (dio)-
>DGetDirectionFunction((dio)->DData) 
#define DIOPinSetDirection(dio, val)  (dio)-
>DSetDirectionFunction((dio)->DData, (val))  

Code Listing 37. Digital Input / Output Pin Interface 

 
typedef struct{ 
    void (*DInitializationFunction)(void *data); 
    void *DData; 
    void (*DPulseFunction)(void *data, INTXU pulse); 
    void (*DPeriodFunction)(void *data, INTXU period);  
    void (*DPulsePeriodFunction)(void *data, INTXU pulse, INTXU 
period); 
    INT32U (*DBaseFrequencyFunction)(void *data); 
    void (*DEnableFunction)(void *data); 
    void (*DDisableFunction)(void *data); 
} SPWMX; 
 
#define PWMXInitialize(pwm)            (pwm)-
>DInitializationFunction((pwm)->DData) 
#define PWMXPulse(pwm, pul)            (pwm)->DPulseFunction((pwm)-
>DData, pul) 
#define PWMXPeriod(pwm, per)           (pwm)->DPeriodFunction((pwm)-
>DData, per) 
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#define PWMXPulsePeriod(pwm, pul, per) (pwm)-
>DPulsePeriodFunction((pwm)->DData, pul, per) 
#define PWMXBaseFrequency(pwm)         (pwm)-
>DbaseFrequencyFunction((pwm)->DData) 
#define PWMXEnable(pwm)                (pwm)->DEnableFunction((pwm)-
>DData) 
#define PWMXDisable(pwm)               (pwm)->DDisableFunction((pwm)-
>DData) 

Code Listing 38. Pulse Width Modulation Interface 

 
typedef struct{ 
    void (*DInitializationFunction)(void *data); 
    void *DData; 
    INTXU (*DGetFunction)(void *data); 
    INTXU (*DBaseFrequencyFunction)(void *data); 
    INTXU (*DFreshDataFunction)(void *data); 
} SPeriodX; 
 
#define PeriodXInitialize(p)    (p)->DInitializationFunction((p)-
>DData) 
#define PeriodXGet(p)           (p)->DGetFunction((p)->DData) 
#define PeriodXBaseFrequency(p) (p)->DBaseFrequencyFunction((p)->DData) 
#define PeriodXFreshData(p)     (p)->DFreshDataFunction((p)->DData)  

Code Listing 39. Period Measurement Interface 

 
typedef struct{ 
    void (*DInitializationFunction)(void *); 
    void *DData; 
    INTXU (*DCountFunction)(void *); 
    INTXU (*DCumulativeCountFunction)(void *); 
} SCounterX; 
 
#define CounterXInitialize(cntr)           (cntr)-
>DInitializationFunction((cntr)->DData) 
#define CounterXCount(cntr)                (cntr)-
>DCountFunction((cntr)->DData) 
#define CounterXCumulativeCount(cntr)      (cntr)-
>DCumulativeCountFunction((cntr)->DData)  

Code Listing 40. Counter Interface 

 
typedef struct{ 
    void (*DInitializationFunction)(void *); 
    void *DData; 
    INTXU (*DReadFunction)(void *data, INTXU *datain, INTXU *dataout, 
INTXU length, EventMaskType event); 
    INTXU (*DWriteFunction)(void *data, INTXU *dataout, INTXU length, 
EventMaskType event); 
    void (*DBlockingFunction)(void *data, INTXU blocking); 
    void (*DChipSelectFunction)(void *data, INTXU hold);   
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} SQueuedSPIX; 
 
#define QueuedSPIXInitialize(spi)                          (spi)-
>DInitializationFunction((spi)->DData) 
#define QueuedSPIXRead(spi,datain,dataout,length,event)    (spi)-
>DReadFunction((spi)->DData, datain, dataout, length, event) 
#define QueuedSPIXWrite(spi,dataout,length,event)          (spi)-
>DWriteFunction((spi)->DData, dataout, length, event) 
#define QueuedSPIXBlocking(spi,block)                      (spi)-
>DBlockingFunction((spi)->DData, block) 
#define QueuedSPIXChipSelect(spi,hold)                     (spi)-
>DChipSelectFunction((spi)->DData, hold)  

Code Listing 41. Queued Serial Peripheral Interface (QSPI) Interface 

 
typedef struct{ 
    void (*DInitializationFunction)(void *); 
    void *DData; 
    INT8U (*DReadFunction)(void *data, INT8U *datain, INT8U length, 
EventMaskType event); 
    INT8U (*DWriteFunction)(void *data, INT8U *dataout, INT8U length, 
EventMaskType event); 
    void (*DBlockingFunction)(void *data, INT8U blocking); 
} SUART; 
 
#define UARTInitialize(uart)                              (uart)-
>DInitializationFunction((uart)->DData) 
#define UARTRead(uart,datain,length,event)                (uart)-
>DReadFunction((uart)->DData, datain, length, event) 
#define UARTWrite(uart,dataout,length,event)              (uart)-
>DWriteFunction((uart)->DData, dataout, length, event) 
#define UARTBlocking(uart,block)                          (uart)-
>DBlockingFunction((uart)->DData, block)  

Code Listing 42. UART Interface 

 
typedef struct{ 
    void (*DInitializationFunction)(void *); 
    void *DData; 
    INT8U (*DReadFunction)(void *data, SCANFrame *datain, INT8U length, 
EventMaskType event); 
    INT8U (*DWriteFunction)(void *data, SCANFrame *dataout, INT8U 
length, EventMaskType event); 
    void (*DGlobalMask)(void *data, INT32U id, INT32U mask); 
    void (*DBlockingFunction)(void *data, INT8U blocking); 
    void* (*DCreateObjectFunction)(void *data, SCANFrame *frame, INT32U 
mask, INT8U rxortx); 
} SCANPort; 
 
typedef struct{ 
    void (*DInitializationFunction)(void *); 
    void *DData; 
    INT8U (*DReadFunction)(void *data, SCANFrame *frame); 
    void (*DWriteFunction)(void *data, SCANFrame *frame);     
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} SCANObject; 
 
#define CANInitialize(can)                                  (can)-
>DInitializationFunction((can)->DData) 
#define CANRead(can,datain,length,event)                    (can)-
>DReadFunction((can)->DData, datain, length, event) 
#define CANWrite(can,dataout,length,event)                  (can)-
>DWriteFunction((can)->DData, dataout, length, event) 
#define CANGlobalMask(can,id,mask)                          (can)-
>DGlobalMask((can)->DData, id, mask)  
#define CANBlocking(can,block)                              (can)-
>DBlockingFunction((can)->DData, block) 
#define CANCreateObject(can,frame,mask,rxortx)              (can)-
>DCreateObjectFunction((can)->DData, frame, mask, rxortx) 
 
#define CANObjectInitialize(object)                         (object)-
>DInitializationFunction((object)->DData) 
#define CANObjectRead(object,frame)                         (object)-
>DReadFunction((object)->DData, frame) 
#define CANObjectWrite(object,frame)                        (object)-
>DWriteFunction((object)->DData, frame)  

Code Listing 43. Controller Area Network (CAN) Interface 
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