
Improved Algorithms for Inferring the Minimum
Mosaic of a Set of Recombinants

Yufeng Wu and Dan Gusfield

Department of Computer Science
University of California, Davis

Davis, CA 95616, U.S.A.
{wuyu,gusfield}@cs.ucdavis.edu

Abstract. Detecting historical recombination is an important computa-
tional problem which has received great attention recently. Due to recom-
bination, input sequences form a mosaic, where each input sequence is
composed of segments from founder sequences. In this paper, we present
improved algorithms for the problem of finding the minimum mosaic
(a mosaic containing the fewest ancestral segments) of a set of recom-
binant sequences. This problem was first formulated in [15], where an
exponential-time algorithm was described. It is also known that a re-
stricted version of this problem (assuming recombination occurs only at
predefined block boundaries) can be solved in polynomial time [15,11].
We give a polynomial-time algorithm for a special case of the minimum
(blockless) mosaic problem, and a practical algorithm for the general
case. Experiments with our method show that it is practical in a range
of data much larger than could be handled by the algorithm described
in [15].

1 Introduction

A grand challenge for post-genomic era is dissecting the genetic basis of com-
plex diseases. An important connection between the sequences (the genotypes)
and the traits of interest (the phenotypes) is the evolutionary history (the ge-
nealogy) of the chosen individuals. Thus, inferring genealogy from sequences has
received much attention recently. A major difficulty in inferring genealogy is
meiotic recombination, one of the principal evolutionary forces responsible for
shaping genetic variation within species. Efforts to deduce patterns of historical
recombination or to estimate the frequency or the location of recombination are
central to modern-day genetics.

A central genetic model used throughout this paper (and used before in [15]) is
that the current population evolved from a small number of founder sequences.
Over time, recombination broke down ancestral sequences and thus a current
sequence is a concatenation of segments from the founder set. The set of input
sequences then looks like a mosaic of segments from the founder sequences,
when sequences are arranged as aligned rows. Thus, we refer the model as the
mosaic model. See Figure 1 for an illustration. The biological literature contains
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validations of this model. For example, it is stated in the Nature paper [14]
that “The Ferroplasma type II genome seems to be a composite from three
ancestral strains that have undergone homologous recombination to form a large
population of mosaic genomes.”

The mosaic pattern is potentially very informative in understanding the pop-
ulation evolution. The mosaic tells which sequences inherit their DNA from the
same founder at a genomic site, and thus can be very useful in understanding the
genetic basis of traits. In the context of inferring haplotypes from genotypes (i.e.
the haplotype inference problem, also called phasing problem), Hidden Markov
Model (HMM) based probabilistic approaches which exploit the mosaic patterns
have been actively studied [3,9,10]. Therefore, understanding the genomic mo-
saic structure is an interesting problem, and better understanding of the mosaic
pattern may be useful for population genetics problems.

Unfortunately, the mosaic boundaries (called breakpoints) are not readily seen
from the sequences, and so we have the problem of inferring the true breakpoints
(and the ancestral founder sequences) for the given input sequences. The break-
points break the given sequences into segments of (possibly inexact) copies of
ancestral materials that are inherited from some founder sequences of the popu-
lation. The inexact copies of ancestral materials are often due to point mutations
at nucleotide sites. In the context of recent human populations, however, the as-
sumption is that the time period is short and the point mutation rates are low
[15,11,1,2]. Hence, we assume throughout the paper that the input sequences in-
herit exact copies of ancestral material between two neighboring breakpoints. So
every input sequence is a concatenation of segments of some founder sequences.
Since there are a huge number of possible mosaic patterns for a set of input
sequences, we need a biologically meaningful model to infer breakpoints and
founders.

In 2002, Ukkonen [15] proposed a computational problem based on the mosaic
model, given input of n binary sequences with m columns each. The model
assume that the population evolves from a set of relatively small number of
founders. The natural parsimonious objective is to construct a mosaic with fewest
breakpoints. This motivates the following optimization problem.

The Minimum Mosaic Problem . Given n input sequences (each with m columns)
and a number Kf , find Kf founder sequences that minimize the total number
of breakpoints needed to be put in the input sequences, which break the input
sequences into segments from the founder sequences. See Figure 1 for an example.
The Minimum Mosaic Problem has also been turned into a graphical game, called
the Haplotye Threading Game, developed at the University of North Carolina [5].

It is important to emphasize that we require each segment to be derived
from the corresponding aligned positions of a founder sequence, although the
breakpoints do not need to be the same in each of the input sequences. Also
note that once founder sequences are known, it is straightforward (using e.g. a
method in [12]) to place breakpoints in the input sequences, so that the number of
breakpoints is minimized for each sequence and thus also for all input sequences
together.
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(a) Haplotypes (b) Mosaic

Fig. 1. An example illustrating the minimum mosaic problem on binary sequences.
Figure 1(a) shows the input sequences. Figure 1(b) shows one way to partition the
sequences in Figure 1(a) into segments, such that each segment comes from one of three
founders: 0110100, 1101111 and 1010001. Note that there are totally four breakpoints,
which is the minimum over all possible solutions with three founders.

In [15] (and also [11]), efficient algorithms were developed for a related but dif-
ferent problem. In addition, Ukkonen [15] also described a dynamic programming
algorithm for the minimum mosaic problem described above. But the algorithm
given in [15] does not scale well when the number of founders or the size of in-
put matrix grows. Another unaddressed question is how to deal with genotypes
(to be defined later), since most current biological data comes in the form of
genotypes.
Our contributions. This paper focuses on the combinatorial properties of the
minimum mosaic problem, on which little progress has been made since the
work of Ukkonen [15]. We report on two main results.

1. For the special case where there are two founders, we show the minimum
mosaic problem can be solved in O(mn) time 1. We also give an efficient
algorithm for finding the minimum breakpoints when the input sequences
consist of genotype data (instead of haplotype data).

2. For the general minimum mosaic problem, we present an efficiently com-
putable lower bound on the minimum number of breakpoints. We also de-
velop an algorithm which solves the minimum mosaic problem exactly. Sim-
ulations show that this method is practical when the number of founders is
small, and the numbers of rows and columns are moderate.

1.1 Additional Definitions

In diploid organisms (such as humans) there are two (not completely identical)
“copies” of each chromosome, and hence of each region of interest. A description
of the data from a single copy is called a haplotype, while a description of the con-
flated (mixed) data on the two copies is called a genotype. Today, the underlying
data that forms a haplotype is usually a vector of values of m single nucleotide
1 Note that the algorithm proposed by Ukkonen [15] is also implicitly polynomial-time

when Kf = 2. The advantage of our method is that we establish an easily-verified
condition to construct a minimum mosaic for two founder sequences.
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polymorphisms (SNP’s). A SNP is a single nucleotide site where exactly two (of
four) different nucleotides occur in a large percentage of the population. Geno-
type data is represented as n n by m 0-1-2 (ternary) matrix G. Each row is a
genotype. A pair of binary vectors of length m (haplotypes) generate a row i of
G if for every position c both entries in the haplotypes are 0 (or 1) if and only
if G(i, c) is 0 (or 1) respectively, and exactly one entry is 1 and one is 0 if and
only if G(i, c) = 2.

Given an input set of n genotype vectors (i.e. matrix) G of length m, the
Haplotype Inference (HI) Problem is to find a set (or matrix) H of n pairs of
binary vectors (with values 0 and 1), one pair for each genotype vector, such
that each genotype vector in G is generated by the associated pair of haplotypes
in H . H is called an “HI solution for G”. Genotype data is also called “unphased

data”, and the decision on whether to expand a 2 entry in G to [ 01 ] or to [ 10 ] in

H , is called a “phasing” of that entry. The way that all the 2’s in a column (also
called a site) are expanded is called the phasing of the column (site). Note that
if a genotype is 02 at two sites, we know the two haplotypes in an HI solution
will be 00 and 01 at these two positions. We sometimes call this case trivial for
these two sites. If a genotype is 22 instead, the HI solutions are ambiguous : an
HI solution may be either 00/11 or 01/10 at the two sites.

Each input row r inherits a state at a site s from a particular founder. We
say this founder is ancestral to r at site s.

2 The Two-Founder Case

We consider the special case where there are only two founders. Note that for
any haplotype data H , there exists two founders that can derive H in a mosaic
[15]: a trivial set of two founders consists an all-0 sequence and an all-1 sequence.
However, it is not immediately clear which pair of founder sequences leads to a
minimum mosaic.

2.1 Solution for Haplotype Data Input

For a haplotype matrix H at two sites si and sj , there are four possible states
(called gametes): 00, 01, 10, 11. We use ni,j,g to denote the number of times that
a gamete g appears in H for two sites si and sj . As an example, for the first two
sites (sites 1 and 2) of the data in Figure 1, n1,2,00 = 0, n1,2,01 = 2, n1,2,10 = 1
and n1,2,11 = 2.

It is easy to see that we can remove from input sequences any site that is
uniform (i.e. either all 0 or all 1). This will not reduce the minimum number
of breakpoints in a minimum mosaic. Hence we assume there are two founder
states at any site, one is 0 and the other is 1. We can also remove any site i
which is identical to site i + 1. A key observation is: at two neighboring sites
si, si+1, we will have either 00, 11 gametes or 01, 10 gametes for the two founder
sequences. We define the distance between a sites si and its neighboring site to
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the right si+1 in H as di = MIN(ni,i+1,00 + ni,i+1,11, ni,i+1,10 + ni,i+1,01). We
have the following simple lemma.

Lemma 1. The minimum number of breakpoints between two neighboring sites
si, si+1 is at least di.

Proof. Since the two founders have either 00/11 or 01/10 gametes at sites si and
si+1, either there is a breakpoint between si and si+1 for every gamete 01 and
10 (if the founders have 00/11 states at sites si and si+1), or between si and
si+1 for every gamete 00 and 11 (if the founders have 01/10 states). ��

The above lemma implies that the minimum number of breakpoints is at least
ntb =

∑m−1
i=1 di. On the other hand, the following algorithm finds two founders

that derive the input sequences with exactly ntb breakpoints.

Algorithm 1. Polynomial-time algorithm for finding two founders F1, F2 that
gives the minimum number of breakpoints
1. Let F1[1] ← 0, and F2[1] ← 1. And set i ← 1.
2. while i ≤ m − 1
2.1. If ni,i+1,00 +ni,i+1,11 ≥ ni,i+1,10 +ni,i+1,01, then F1[i+1] = F1[i], and F2[i+1] =

F2[i].
2.2. Otherwise, F1[i + 1] = 1 − F1[i], and F2[i + 1] = 1 − F2[i].
2.3 i ← i + 1

It is easy to verify that the above algorithm produces two founder sequences
using exactly ntb breakpoints. Intuitively, Algorithm 1 gives the optimal solution
to the minimum mosaic problem by constructing founders from left to right.
At each position (other than the leftmost site, i.e. s1) the algorithm is only
constrained by the single site to its immediate left. This means it can always
choose a state to introduce exactly di breakpoints for each si and si+1. Thus,
the solution is optimal due to Lemma 1. The running time of the algorithm is
O(mn). Thus, we have:

Proposition 1. When Kf = 2, the minimum mosaic problem can be solved for
haplotype data H in O(nm) time.

2.2 Solution for Genotype Data Input

Now we consider genotypes (not haplotypes) as input. This problem is important
because most currently available biological data is genotypic. With genotype
data, the minimum problem can be formulated as follows.

The minimum mosaic problem with genotypes. Given a genotype matrix G and
a number Kf , find an HI solution H and Kf founder sequences such that the
number of breakpoints needed to derive H from the founders is minimized among
all possible HI solutions and Kf founder sequences.
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We give a polynomial-time algorithm for the special case of Kf = 2. We begin
with a lemma which extends Lemma 1 to genotypes. Note that for two genotypic
sites i and j, the possible states are: 00, 01, 10, 11, 02, 20, 12, 21, and 22. Similar
to the haplotype case, we denote the number of times that gamete g appears at
two sites i and j as ni,j,g. We define the distance between two genotypic sites
si and its right neighbor si+1 as dg

i = MIN(2ni,i+1,00 + ni,i+1,02 + ni,i+1,20 +
2ni,i+1,11 + ni,i+1,12 + ni,i+1,21, 2ni,i+1,01 + ni,i+1,02 + ni,i+1,21 + 2ni,i+1,10 +
ni,i+1,20 + ni,i+1,12).

Lemma 2. The minimum number of breakpoints between two neighboring geno-
typic sites si, si+1 is at least dg

i .

Proof. Note that dg
i represents the minimum number of gametes 00/11 and

gametes 01/10 for all possible ways of phasing these two sites. Note that one
can always phase a “22” gamete at sites si and si+1 to agree exactly with the two
founders at si, si+1. Therefore, following the same idea in the proof of Lemma
1, it is easy to see dg

i is a lower bound on the number of breakpoints between
sites i and i + 1. ��

Proposition 2. When Kf = 2, the minimum mosaic problem with genotypes
can be solved in O(nm) time.

Proof. Using a similar idea as in Proposition 1, the two-founder minimum mosaic
problem can also be solved efficiently even when the input is genotypic. The
number of minimum breakpoints is equal to

∑m−1
i=1 dg

i . This can be done as
follows.

We can construct two founders using a procedure similar to Algorithm 1. A
small difference is that here we use the smaller term in dg

i (rather than di) to
decide whether to let founders have gametes 00/11 or 01/10. Now that we have
constructed two founders, we derive an HI solution H as follows. We start from
the leftmost site and move to the right by one site each time. We pick any feasible
phasing for the leftmost site. Now we consider site si+1 by assuming si has been
properly phased. Note that the only ambiguous rows at sites si and si+1 are
those containing 22. We phase 22 so that the phased gametes agree with the
founder states at sites si and si+1.

The only subtle issue left is whether there are will ever be an inconsistency
during the process. That is, will we be prohibited from phasing si+1 in the way
described, due to the phasing of site si. But inconsistency will not occur. For
one row r of G, suppose the above procedure dictates the two 2’s in si, si+1 are

phased to 01 and 10. If column si (for row r) has been phased as [
0
1 ] we phase

si+1 (for row r) as [
1
0 ]. Otherwise, we phase si+1 as [

0
1 ]. In either case, we will

produce the needed binary pairs in sites si, si+1 for row r. ��
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2.3 The Minimum Mosaic Problem with Unknown Site Order

We consider here a variation of the two-founder minimum mosaic problem, where
the linear order of the m sites is unknown. Formally, we define an optimization
problem as follows.

The two-founder minimum mosaic with permutation problem. Given a matrix
M , we want to find a permutation Π of the sites, and two founder sequences,
such that with those founders and by ordering the sites according to Π , the
number of breakpoints used is the minimum over all possible site permutations
and all possible pair of founders.

A Biological motivation. One biological motivation for allowing site permutation
is the linkage mapping problem, which is to find the true ordering of multiple loci
on a chromosome. Linkage maps remain important for species which have not
yet been sequenced. See the recent paper [13] for a discussion of current interest
in linkage mapping and a detailed explanation of computational issues involved
in linkage mapping. In order to infer the true site ordering, a natural approach
is to find the ordering of sites, and a small set of founders, so that the number
of needed breakpoints is minimized with that number of founders.

We establish an interesting connection to the metric traveling salesman prob-
lem, which implies a 1.5-approximation solution to the minimum mosaic with
permutation problem. Details are omitted due to lack of space.

3 The Case of Three or More Founders

When the number of founders is at least three, we do not have a polynomial-time
algorithm for the minimum mosaic problem, although we conjecture that there
is one. In this section, we first describe an efficiently computable lower bound
on the minimum number of breakpoints for any fixed Kf with haplotype data.
We also develop an algorithm that solves the minimum mosaic problem exactly.
In our testing, the method is practical for many problem instances when the
number of founders is three or four and the size of input matrix is moderate
(e.g. with 50 sequences and 50 sites).

3.1 Lower Bound on the Number of Breakpoints for Haplotype
Data

We now describe a simple lower bound on the minimum mosaic problem, inspired
by the “composite haplotype bound”, a lower bound developed for a different
recombination model [7]. Consider a binary matrix H . We collect the set S of
distinct rows together with their multiplicities (denoted as (si, ni) ∈ S). Here,
ni records the number of times si appears in the input. We order S so that
{ni} is non-increasing. If |S| ≤ Kf , then the lower bound (denoted Bm) on the
minimum number of breakpoints is simply 0. Otherwise,

∑|S|
i=Kf +1 ni is a lower

bound on the minimum number of breakpoints.
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This is a trivial bound. But Myers and Griffiths [7] introduced a general
method (called the composite method) to amplify weaker bounds, to get much
higher overall lower bounds. We apply the composite method to the minimum
mosaic problem. Instead of computing a lower bound on the whole matrix, we
compute lower bound Bm for each of the

(
m
2

)
intervals, each with the above

idea. Then we combine these bounds to form a composite bound as detailed in
[7,6]. This improves the lower bounds, demonstrated by our empirical studies in
Section 4. One of our major results in this paper is the demonstration of the
effectiveness of the composite lower bound for the minimum mosaic problem.

3.2 Exact Method for the Minimum Mosaic Problem When Kf ≥ 3

When Kf ≥ 3, no polynomial-time algorithm is known for the minimum mo-
saic problem for either haplotypes or genotypes. Here we develop a method that
solves the minimum mosaic problem exactly, and give heuristics that make it
practical for a range of data of current biological interest. Simulation shows
that our method works well for a large range of problem instances when Kf =
3, and for medium-size data (say 50 by 50 matrix) when Kf = 4. We de-
scribe our method for haplotypes, but remark that the method can be modi-
fied to handle genotype data. Practical performance of the method in [15] was
not demonstrated there, but the method was implemented in program haplovi-
sual (http://www.cs.helsinki.fi/u/prastas/haplovisual). Direct implementation
of Ukkonen’s method is expected to be prohibitive when n and m increase, even
for a small number of founders. Our initial experiments with program haplovisual
suggest it is not practical for 20 or more rows and three or more founders.

We start by developing some notation and terminology. The choice of binary
states for each of the Kf founders at a site i is called the “founder setting at
site i”, and denoted f(i). There are 2Kf − 2 possible founder settings at a site,
assuming each site contains both 0’s and 1’s. A combined founder setting at each
of the sites from 1 to i is denoted F (i) and called a “founder setting up to i”;
a founder setting up to m is denoted F and is called a “full founder setting”.
The founder setting at site i together with a legal mapping of input sequences
to the Kf founders is called the “configuration at site i”. A mapping is legal
for site i if the state of each input sequence equals the state, at site i, of the
founder it is mapped to. Clearly, given configurations at sites i and i + 1, the
number of breakpoints that occur between these two sites is the number of input
sequences mapped to different founders at sites i and i + 1, which is at most n.
A combined configurations at each of the sites from 1 to i is denoted C(i) and
called a “configuration up to i”, and the founder setting up to m is called the
“full configuration”.

Given a founder setting F , the problem of finding a full configuration that
minimizes the number of breakpoints is called the “CF problem”. Given F and
i, the problem of finding a configuration C(i) up to i to minimize the number of
breakpoints in F (i) is called the CF (i) problem. Problem CF can be solved by
a simple greedy algorithm [12] that is run independently for each input sequence
s as follows. To start, set a variable ps to 1 and find the longest match, starting
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at site ps, between s and any of the founder sequences. If the longest match
extends to site i and occurs between s and founder q, then map each site from 1
to i in s to founder q. If there are ties for longest match, q can be set to be any
one of the tied founders. Next, set ps to i+1 and iterate. Continue until the end
of s is reached.

Now suppose that a full founder setting F , and the input sequences, are only
given to the greedy algorithm one site at a time, in increasing order. Then the
greedy algorithm doesn’t know the full length of any match between a founder
sequence and an input sequence. However, the CF problem can be solved with
a “locally greedy algorithm” that implicitly records all the possible actions of
the greedy algorithm on each F (i). Since the greedy algorithm considers each
input sequence separately, we describe the locally-greedy algorithm for one input
sequence s. At each site i, the locally-greedy algorithm records a subset SFs(i) of
founders, and a number BFs(i). To begin, let x denote the state of sequence s at
site 1. The original greedy algorithm would map s to one of the founders that has
state x at site 1, so in the locally-greedy algorithm we let SFs(1) be the set of all
founders which have state x at site 1, and set BFs(1) to zero. For i > 1, let As(i)
be the subset of founders whose state at site i agrees with the state of s at site i.
Then SFs(i) = SFs(i − 1) ∩ As(i), and BFs(i) = BFs(i − 1), if the intersection
is non-empty; otherwise, SFs(i) = As(i), and BFs(i) = BFs(i − 1) + 1. BFs(m)
is the number of breakpoints in the optimal solution to problem CF , given the
full founder setting F . It is also easy to reconstruct the optimal configuration
by a backwards trace from m to 1. Note that at each i, the SF sets compactly
and implicitly encode all the optimal configurations for the CF (i) problem that
the greedy algorithm could find. Note also that the locally-greedy algorithm not
only solves the CF problem, given F , but also solves each of the CF (i) problems
implied by each F (i).

We now describe our method to solve the minimum mosaic problem; the
method must find both an optimal F and a solution to the implied CF problem.
At the high level, before optimizations to significantly speed it up, the method
enumerates all possible founder settings F (i), for i from 1 to m, dovetailing the
execution of the locally-greedy algorithm on each growing F (i). In more detail,
the algorithm builds a branching tree T where the root is at level 0 and each node
v at level i represents one possible founder setting at site i, denoted fv(i). The
path from the root to v specifies a distinct founder setting up to i, denoted F v(i).
Let w denote the predecessor of v in T ; the path in T to w specifies a founder
setting denoted Fw(i − 1). Suppose that the execution of the locally-greedy
algorithm along the path to w has computed the subset of founders SFw

s (i − 1)
and the number of breakpoints BFw

s (i − 1) (based on Fw(i − 1)), for each input
sequence s. Then, given fv(i), one step of the locally-greedy algorithm can easily
compute the next set SF v

s (i) and the number BF v
s (i) for each input sequence s.

Note that the algorithm at level i only needs information from level i− 1, which
allows significant space savings. The node at level m with smallest

∑
s BFs(m)

identifies an optimal solution to the minimum mosaic problem. The correctness
of this method follows from the correctness of the locally-greedy algorithm on any
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fully specified F , and the fact that all possible F (i) are enumerated. However,
without further speedups the method is only practical for very small data sizes.

The obvious speedup is to implement a branch-and-bound strategy, using a
lower bound L(i + 1) on the number of breakpoints needed for the sites i + 1
to m. If at node v,

∑
s BF v

s (i) + L(i + 1) is greater or equal to the number of
breakpoints needed in some known full configuration, then no expansion from
node v is needed. We have implemented this strategy using the lower bound
described earlier, but we have found the following speedup to be more effective.

If
∑

s BF v
s (i) −

∑
s BFu

s (i) ≥ n, then no expansion from v is needed. To see
this, note that if v were expanded, any configuration at a child of v (at level i+1)
can be created from any one of the implicitly described configurations at u, using
at most n breakpoints between sites i and i + 1. Therefore, any path to level m
from v requiring b breakpoints will require at most b + n breakpoints from u.
This idea can be greatly sharpened as follows. Suppose for some input sequence
s, the set SF v

s (i) ⊆ SFu
s (i), and consider a configuration c at a child of v at

level i + 1. If configuration c maps s to a founder in SF v
s (i), then configuration

c can be created from at least one of the implicitly described configurations at
u, with no breakpoints in s between sites i and i + 1. If c maps s to a founder
not in SF v

s (i) then there is one breakpoint used (for s) on that path out of v,
and so one breakpoint can also be used on a path out of u to create the same
mapping of s. Continuing with this reasoning, let n′ be the number of sequences
s where SF v

s (i) ⊆ SFu
s (i). Then if

∑
s BF v

s (i) −
∑

s BFu
s (i) ≥ n − n′, node

u is as good or better than v, and v can be pruned. To fully implement this
idea, we examine pairs of nodes at level i to find any node that is “beaten” by
another node, and therefore can be pruned. While that is a relatively expensive
step, without any pruning the size of T grows exponentially with i, and so it
is worthwhile for the algorithm to spend time finding significant pruning. We
have seen empirically that this approach is very effective in efficiently solving
the minimum mosaic problem for a small number of founders (in the range 3
to 5) and a number of input sequences and sites which is generally larger than
many biological applications today.

There is another speedup that can be introduced if the number of founders
becomes large. As described above, tree T cannot contain two founder settings
up to i, Fu(i) and F v(i) at nodes u and v, where the ordered rows of Fu(i) and
F v(i) are identical. However, the rows of Fu(i) can be the same as the rows of
F v(i), but in a permuted order. We call such a pair of nodes “isomorphic”, and
in any isomorphic pair only one of the two nodes needs to be expanded; the other
node and the subtree extending from it can be deleted. Redundant computation
caused by isomorphism only becomes a significant problem when the number
of founders is large, but isomorphism can be easily handled or avoided. One
simple rule to handle it is to only expand a node u if the rows of Fu(i) are
in lexicographic sorted order (say lexicographically non-decreasing); any node
whose rows are not in lexicographic sorted order can be pruned. That leads
to the idea of only generating founder settings whose rows are in lexicographic
order, avoiding isomorphic pairs entirely. Suppose inductively that at level i−1,
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every generated founder setting up to i − 1, Fw(i − 1), has rows that are in
lexicographic sorted order. Of course, all identical rows in Fw(i − 1) will be
contiguous. Then for any set of k identical rows in Fw(i − 1), if a potential
founder setting fv(i) for a child v of w, would set k′ of those k rows to 0, and
k − k′ to 1, at site i, place the zeros in the first k′ of those k rows. In that way,
the rows of F v(i) will be in lexicographic sorted order, and no isomorphism will
be created at level i.

4 Simulation Results and Open Problems

We implemented the general method (without speedups to avoid isomorphism)
in a C++ program, and ran our program on biological datasets on a standard
2.0GHz Pentium PC.

The first data is Kreitman’s classic data [4]. After appropriate data reduction
[12], there are 9 haplotypes and 16 sites left. The simulation results, including
lower bound and exact minimum number of breakpoints, are shown in Table 1
for different Kf . As expected, as the number of founders increases, the minimum
number of breakpoints decreases. Note that the composite lower bound using the
composite method can be higher than the simple lower bound Bm on the entire
data. For example, when Kf = 3, Bm = 9 − 3 = 6, while the composite bound
reported in Table 1 is equal to 10.

Table 1. Solutions for minimum mosaic problem for Kreitman’s data. The data is
reduced from the original 11 haplotypes and 43 binary sites. After data reduction,
there are 9 rows and 16 sites left. Both lower bound (LB) and exact minimum number
of breakpoints (EMB) are shown. Running time (Time) is also displayed.

Kf = 2 Kf = 3 Kf = 4 Kf = 5 Kf = 6
LB 27 10 7 4 3
EMB 37 15 8 6 4
Time (s) < 1 < 1 1 12 1245

For a larger example, we use the full Jackson region of the LPL data [8] (with
40 haplotypes and 49 sites). After data reduction, it contains 37 haplotypes and
43 sites. When Kf = 3, it takes 27 seconds to find 241 as the minimum number
of breakpoints. When Kf = 4, it takes a little over an hour to find 181 as the
minimum number of breakpoints. The program, taking about 50 minutes, was
also used to show that 53 breakpoints are the minimum needed in a dataset with
20 haplotypes and 36 sites and Kf = 5, posted at http://www.unc.edu/courses/
2007spring/comp/790/087/. A heuristic greedy algorithm discussed there previ-
ously found a solution with 54 breakpoints.

Our program, called RecBlock, is available for download at the web page:
http://wwwcsif.cs.ucdavis.edu/˜wuyu/.
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Open problems. A major open problem is to determine the complexity of the mini-
mum mosaic problem. Another interesting problem is to develop a (possibly para-
metrized) polynomial time algorithm when Kf is a small constant larger than two.
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