
The History Bound and ILP

Julia Matsieva and Dan Gusfield

UC Davis

March 15, 2017

Bad News for Tree Huggers

More Bad News

Far more convincingly even than the (also highly
convincing) fossil evidence, the evidence from
comparisons among genes is converging, rapidly and
decisively, on a single great tree of life. ...
It is the consistency of agreement among all the different
genes in the genome that gives us confidence, not only in
the historical accuracy of the consensus tree itself, ...
R. Dawkins, The Greatest Show on Earth

So there is no “Species Tree - Gene Tree” disagreement, and no
need to resolve discordance.

Recombination in Meiosis

01011

10100 parent 1

parent 2

10111 recombinant
Figure : Crossing-over in Meiosis. A single-crossover recombination, and
a recombinant sequence. The prefix (underlined) contributed by parental
sequence 1 consists of the first three characters of sequence 1. The suffix
(underlined) contributed by parental sequence 2 consists of the last two
characters of sequence 2.

Evolution of Sequences with Mutation and Recombination

The mutation model is the infinite sites model: One mutation per
site in the history of the sequences. This is the same as in the
Perfect Phylogeny Model.

But, Not every set of binary sequences can be derived on a Perfect
Phylogeny. The NASC is known as Compatibility in the
phylogenetics world, and the Four Gametes Condition in
population genetics.

In addition to mutation, recombinations are allowed and can create
new sequences. Every set of binary sequences can be generated
this way.

Ancestral Recombination Graph (ARG)

The full evolutionary history that derives a set of sequences M,
with one mutation per site, and recombinations allowed, is
represented by an Ancestral Recombination Graph (ARG).

An ARG

10010

00100

10100

01100

01101

00101

00010

r

r

2
r

7

r

r

5
4

r

1

6

3

r

4

1

2

01100

10100

P

5

S

01101
3

00100

00010

00000

S

00100

M

4

P

10100

3

10010

01100

01101

00010

10010

00101

00101

Figure : An ARG N with two recombination nodes, each representing a
single-crossover recombination event. The matrix of sequences M that
are derived by N is shown at the right.

Rmin(M)

Given M we want an ARG that derives M using the minimum
number of recombination nodes. That minimum number is
denoted Rmin(M).

Finding Rmin(M) is NP-hard, and the fastest algorithms
guaranteed to compute Rmin(M) take Super-Exponential time.

So we want effective algorithms to computer Lower Bounds on
Rmin(M).

Lower Bounds on Rmin(M)

We have examined about fifteen lower bounds on Rmin(M). The
best (both empirically, and by some theoretical results) is based on
the History Bound created in 2002 by Myers and Griffiths.

Initially, the History Bound was only defined proceduraly – it is
what the Myers-Griffiths algorithm produces. That algorithms runs
in Ω(n!) time, for n taxa. Not satisfying.

Bafna and Bansal showed that computing the History Bound is
NP-hard, and gave an Θ(2n) time algorithm to compute it –
despite having no static, non-procedural, functional definition for
the History Bound (Amazing!).

A non-procedural definition of the History Bound?

At the meeting “The future of phylogenetic networks” at Leiden
about five years ago, at the end of my talk, I stated the open (to
me) problem of finding a non-procedural definition of the History
Bound. Leo van Iersel, Steven Kelk, Celine Scornavacca, Chris
Whidden immediately lept to their feet and declared that they
already knew it, but hadn’t written a proof or a paper.

After more than a year had passed, I asked Julia Matsieva, an MS
student then, to try to verify their ideas. She wrote a formal proof,
and developed related algorithms; and we (minus Leo) together
published the non-procedural definition, recently in TCBB.

So what is the History Bound?

I won’t discuss the procedural definition of the original
Griffiths-Myers algorithm, or the Bafna-Bansal version, but just say
that they are matrix-centric and at first do not seem to have
anything to do with networks.

Instead I will explain the non-procedural definition. First, I have to
define reticulation networks.

The most important definition

Let M be a binary matrix. A Directed Acyclic Graph (DAG) D
displays character (column) c of M if

a) There is some tree Tc embedded in D that reaches all of the
leaves of D, and

b) There is an edge e in Tc , such that the set of leaves of Tc that
are reachable from e is exactly the taxa (rows) with character c
(value 1 in column c).

The taxa with character c is called a “cluster”. So M defines a set
of clusters.

v

a

b

c

d

e

Figure : DAG D.

v

a

b

c

d

e

Figure : A subtree of D that reaches all leaves. The tree displays
{c , d , e}, and other clusters.

Reticulation Networks

Given M, a DAG that displays all of the characters of M is called a
Reticulation Network for M.

Unlike an ARG, where the maximum in-degree of any node is at
most two, in a reticulation network the in-degree is unconstrained.

Any node in a reticulation network with in-degree more than one is
called a reticulation node.

Finally, the non-procedural definition

Given M, the History Lower Bound on the minimum number of
recombinations needed in any ARG that creates M, is exactly the
minimum number of reticulation nodes needed in any reticulation
network for M.

So the minimum number of reticulation nodes needed is
computable in exponential time, even though we don’t know how
to compute Rmin(M) in exponential time.

It is easily verified that an ARG for M is also a reticulation network
for M, so it is no surprise that the minimum number of reticulation
nodes needed in a reticulation network for M is a lower bound on
Rmin(M). The surprise is that this lower bound is exactly what the
History Bound is.

OK, Now What?

Having a non-procedural, functional definition should allow us to
reason more deeply and productively about the History Bound, and
to find alternative ways to compute it.

We tried Top-Down branching, search algorithms that work well -
much faster in practice than the Θ(2n) method of Bafna and
Bansal.

And, we tried three different approaches using Integer Linear
Programming (ILP). They are all bad. I will discuss one that
illustrates a general idea.

Designing Networks with ILP

→ Constructing a reticulation network for a matrix M, using the
minimum number of reticulation nodes is very particular
network design problem.

→ The general network design problem is very related to
Multi-Commodity Network Flow problems.

→ ILP works well for Multi-Commodity flow.

→ Ergo - ILP should be good for computing an optimal
reticulation network for M.

How to design a reticulation network D using network
flow, and ILP

Start with a Super-Network H that contains all the edges, and
more, that might be in the optimal network D.

A super-network H: If M has n taxa and m characters, then the
following graph works: Create a complete graph with m + n
“internal” nodes, i.e., where there is an edge between each pair of
nodes; then add a root node r and a directed edge from r to each
of the internal nodes; then add n leaves corresponding to the n
input taxa in M, and add a directed edge from each of the internal
nodes to each of the leaves.

Then, the network design problem is to choose a subset of the
edges of H for D. For each edge (i , j) in H we use a binary ILP
variable X (i , j), where we choose (i , j) for D, if and only if the
value of X (i , j) is set to 1.

How to satisfy the first requirement for D

Recall: A DAG D displays character c of M if
a) There is some tree Tc embedded in D that reaches all of the
leaves of D,
and b)

To satisfy a) we think of the all-zero node in H as a source with n
units of commodity c ; and think of each node in H that is labeled
by a taxon in M as a sink, with a demand for one unit of
commodity c . Each other node in H must satisfy the normal
Kirkoff flow conservation constraint. Implementing flow as an ILP
is standard.

A flow Fc from the source to the sinks selects a subset of edges of
H that almost satisfies a) for character c. But Fc must specify a
tree (which also forces the flow to be integral). For that, we add
constraints that for any node v in H, at most one edge into v has
flow in Fc . How to do that?

Xc(i , j) is a binary ILP variable indicating whether the directed
edge (i , j) is used in the tree Tc , and Tc(j) is a binary variable that
records whether node j is a non-root node in Tc . Specifically, we
have for c and (i , j): Xc(i , j) ≤ Fc(i , j),

Fc(i , j)− n × Xc(i , j) ≤ 0,

Tc(j) =
∑
i 6=j

Xc(i , j) ≤ 1.

Of course, we create these inequalities for each c and edge (i , j).
The result is a set of chosen edges that satisfies requirement a) for
each character c. Then D is the superposition of those trees. D is
specified by the X (i , j) variables, where for each edge (i , j) in H:

X (i , j) ≤
∑
c

Xc(i , j)

∑
c

Xc(i , j)−m × X (i , j) ≤ 0

Actually

We can replace ∑
c

Xc(i , j)−m × X (i , j) ≤ 0

with

X (i , j) ≥ Xc(i , j)

Or

Fc(i , j)− n × X (i , j) ≤ 0

for each c .
Is one way better than the other? That is an empirical question.

How to minimize the number of reticulation nodes?

R(j) is a binary ILP variable indicating whether node j is a
reticulation node in D. Then, for each node j :∑

i 6=j

X (i , j)−m × R(j) ≤ 1

and we have the objective function:

min
∑
j

R(j)

Now how do we incorporate requirement b)?

This is trickier.

We think of a new source outside of H, that specifies exactly one
node v in Tc , not the all-zero node of H, as the “root of the
cluster tree” for character c . Then, the unique edge in tree Tc into
v is the edge e needed in requirement b).

To specify the root of the cluster tree for c , we use one binary
variable RCTc(i), for each node i not the root of H.

We also have binary variables CTc(i) indicating whether or not
node i is in the cluster tree for c. Then requirement b) is achieved
with the inequalities that follow:

Forward Inequalities for Requirement b)

RCTc(i) ≤ Tc(i)

Meaning: Node i can be chosen as the root of the cluster tree for
c , only if i is in tree Tc . ∑

i∈H, and not the root of H

RCTc(i) = 1

Meaning: Exactly one root of the cluster tree for c is chosen, and
it isn’t the root of H.

RCTc(i) ≤ CTc(i)

Meaning: If i is the chosen root of the cluster tree for c , then i is
in the cluster tree for c - duh!

Continuing

Further,
For any node i that is not a node representing a taxon with
character c , and any edge (i , j) in H, we want

If CTc(i) AND Xc(i , j) then CTc(j), which is implemented as:

CTc(i) + Xc(i , j)− CTc(j) ≤ 1

Then for a leaf j which has character c ,

CTc(j) = 1,

and for a leaf j which does not have character c ,

CTc(j) = 0.

We Conclude

For each c , the forward inequalities above will select a proper
subtree of Tc , consisting of a root i and every node that is
reachable from i using edges in Tc . The variable CTc(j) will be set
to 1, if node j is one such node, and since CTc(j) = 0 for leaves
which do not have character c , none of those leaves will be in the
subtree.

So the subtree contains every leaf representing a taxon that has
character c, and is reachable from i , and it does not reach any
other leaves.

However, it is not necessarilly true that every leaf with character c
is reached, so we need the backward (converse) inequalities also.

Backward Inequalities

We need to implement the requirement that CTc(j) is set to 1,
only if RCTc(j) = 1, OR for some i 6= j , CTc(i) = 1 AND Xc(i , j).
For that, we have a new binary variable Zc(i , j) for each i 6= j .
This variable will be set to one only if the AND clause is satisfied
with node i :

2× Zc(i , j)− CTc(i)− Xc(i , j) ≤ 0

and

CTc(j)−
∑
i 6=j

Zc(i , j)− RCTc(j) ≤ 0.

Finis

The above ILP formulation is a bit different from what we have
implemented, but is (hopefully) mathematically correct. What we
implemented takes too long to solve - using Gurobi or Cplex. So,
finding a better ILP formulation is an open question.

