Partition-Distance:
A Problem and Class of Perfect Graphs Arising in Clustering
In Information Processing Letters, Volume 82, Issue 3, 16 May 2002, Pages 159-164

Dan Gusfield!
Department of Computer Science, University of California, Davis

Abstract

Partitioning of a set of elements into disjoint clusters is a fundamental problem that
arises in many applications. Different methods produce different partitions, so it is
useful to have a measure of the similarity, or distance, between two or more partitions.
In this paper we examine one distance measure used in a clustering application in
computational genetics. We show how to efficiently compute the distance, and how this
defines a new class of perfect graphs.

Keywords: partitioning, clustering, assignment problem, node cover, perfect graph,
genetics, graph algorithms, combinatorial problems

'"Research partially supported by grant DBI-9723346 from the National Science Foundation. email:
gusfield@cs.ucdavis.edu

1 Introduction

The problem and the graphs discussed in this
paper arise from a problem considered in [1],
where an algorithm is developed for deduc-
ing the family structure of a set of individuals
(fish actually) given particular genetic data
(the details are not central here). The output
of the algorithm is a partition of the individ-
uals into some number of clusters. The true
family structure is also a partition of the in-
dividuals, possibly the same partition.

In order to evaluate the goodness of a
partition produced by the algorithm, in cases
where the true family structure is known from
expensive laboratory work or from simula-
tions, a distance between two partitions was
defined in [1]. Then, an ezponential-time
algorithm (worst-case, as a function of the
set size) was presented to compute that dis-
tance, given any two partitions. The issue of
computing a distance (or similarity) between
two partitions is a natural one that arises in
many other clustering applications. For ex-
ample, clustering of sequence and molecular
expression data has become a huge concern
in computational biology, but many different
clustering methods are employed, and differ-
ent partitions of the same data are produced.
We need a way to measure the closeness of
those partitions, and even cluster the parti-
tions based on that measure.

In this paper, we first show how to com-
pute the distance between two partitions in
polynomial time. From a practical stand-
point, that is the main point of interest. How-
ever, the problem of computing the distance
between two (or more) partitions has a natu-
ral interpretation as a node-cover problem on
a graph derived from the partitions. Since
the distance problem for two partitions has
a polynomial-time solution (using the details
of the clusters), while the node-cover prob-
lem is NP-hard in general (given an arbitrary
graph as input), we were interested in char-

acterizing the graphs that are derived from
the partition-distance problem, to determine
if the node-cover problem can be solved in
polynomial time on these graphs (where the
original partition details are not part of the
input). We characterize the structure of those
graphs and show that they form a class of
perfect graphs, implying that the node-cover
problem on those graphs can be solved in
polynomial time [6]. We also give a polynomial-
time algorithm to determine if a graph is in
this class, and to create two partitions that
would generate the graph. Finally, we note
that the partition-distance problem is NP-
hard for three partitions.

Definitions: Given a set of elements N,
a cluster is a non-empty subset of N. A par-
tition of N is a set of mutually exclusive clus-
ters whose union is N. The number of clus-
ters is limited only by |N|. Two partitions P
and P’ of N are identical if and only if every
cluster in P is a cluster in P’ (the converse
is then forced). Given two partitions P and
P’ of N, the partition-distance, D(P, P'), be-
tween P and P’ is the minimum number of
elements that must be deleted from N, so
that the two induced partitions (P and P’ re-
stricted to the remaining elements) are iden-
tical. (See Table 1).

The partition-distance is also equal to the
minimum number of elements that must be
moved between clusters in P, so that the re-
sulting partition equals P’ (by definition, any
set that becomes empty is no longer a clus-
ter). This alternative definition may be more
meaningful in some applications. The fact
that the two definitions give the same dis-
tance is left to the reader.

2 Efficient Solution

Theorem 2.1 The partition-distance can be
computed in polynomial time.

Proof An instance of the classical As-

51 S2|51 S5 53
1 1 0| 1 0o 0
2 1 0| 1 0o 0
3 0 1 0o 0 1
4 1 0| 0 1 0
5 0 1 0 1 0
6 1 0| 1 0o 0

Table 1: Partition P consists of clusters .Sy
and Sy. Partition P’ consists of 57, 54 and
S%. A value of 1 indicates membership in the
cluster. D(P, P') = 2: after the removal of
elements 3 and 4, Sy and S{ become identi-
cal, Sy and S} become identical, and S% be-
comes empty and hence is no longer a cluster.

signment Problem [7, 3] consists of a matrix
of numbers M, and an assignment is a selec-
tion of cells of M such that no row or column
contains more than one selected cell. An op-
timal assignment is an assignment whose se-
lected cell values have the largest sum over
all possible assignments. An optimal assign-
ment can be computed in polynomial time as
a function of the size of M.

To solve the partition-distance problem,
create an instance M (P, P') of the assign-
ment problem with one row 7 for each cluster
S; in P and one column j for each cluster S;
in P'. Associate cell (S;, %) with the subset
S; NS} and write the number [S; N S?] in cell
(¢,7). Next, solve the assignment problem on
M (P, P") and let A(P, P') denote the value
of the assignment. We claim that D(P, P') =
|N|—A(P, P'). Moreover, the elements to re-
move from N are all those elements not asso-
ciated with any selected cells of the optimal
assignment.

We now establish correctness. The se-
lected cells in an assignment specify a one-
one mapping between some clusters in P and
an equal number of clusters in P’. After
removing the elements of N not associated

with selected cells, any two clusters (5; and
S; say) that are paired by the assignment
contain the same elements (S5; N S7), so the
two induced partitions are identical. Hence,
D(P, P") <|N| - A(P, P"). Conversely, con-
sider a selection of D(P, P') elements of N
whose removal causes the two induced parti-
tions to be identical. Call that partition P”.
By definition, each cluster Z € P" is a subset
of some cluster S; in P and a subset of some
cluster S; in P, so |Z] < [S; N S}|. Also by
definition, no elements in 5; or S} can be in
any other cluster of P”. Therefore P" defines
a one- one mapping between clusters of P
and clusters of P’, and hence an assignment
in M (P, P'). 1t follows that |[N|—D(P, P') <
A(P,P"), and so D(P,P") > |N|— A(P, P').
O

)

Matrix M (P, P') can be created in O(|N

time with the appropriate data structure. There-

after, the classical running time for the as-
signment problem is O(s?) [7, 3], where s is
the sum of the number of clusters of P and
the number of clusters of P’, no matter how
large N is.

3 A Node-Cover Interpreta-
tion

The problem of computing the partition-distance

can be cast naturally as a node-cover prob-
lem on a graph derived from the partitions.
With this view, the exponential-time method
in [1] is the standard branching algorithm
for the node-cover problem. In this section
we explore the node-cover approach to the
partition-distance problem, connecting it to
the field of perfect graphs.

Definitions: Given P and P’, define the
graph G(P, P') with one node for each ele-
ment in V; name each node by the associ-
ated element. Connect two nodes z and y
by an undirected edge if and only if z and y
are together in one cluster of either P or P,

but in a different cluster in the other parti-
tion. G(P, P') is called a partition graph. A
node-cover of a graph is a set of nodes) such
that every edge in the graph is incident with
at least one node in (). Let N(G) denote the
size of the smallest node cover of a graph G.
The problem of computing a node-cover of
minimum size is well-known to be NP- hard

[4].

Lemma 3.1 For any pair of partitions P, P’
of the same set, D(P, P') = N(G(P, P")).

Proof Clearly, if elements z and y are
together in one cluster of P (or P’) but not
together in any cluster of P’ (or P), then at
least one of those elements must be removed
in order to create identical induced parti-
tions. Hence the removed elements form a
node-cover of G(P, P'). Conversely, consider
a node-cover C' of G(P, P'), remove the as-
sociated elements from N, and suppose that
the induced partitions are not identical. That
is, for some remaining element z, the induced
cluster of P containing z and the induced
cluster of P’ containing z are not equal sets.
Hence there is some element y contained in
exactly one of those two induced clusters.
But each induced cluster is a subset of a clus-
ter in P or P’ respectively, so y must be to-
gether in exactly one cluster with z in P and
P’, and hence (z,y) is an edge in G(P, P').
Therefore, if both z and y remain, C' could
not be a node-cover of G(P, P'), and hence
any node-cover of G(P, P') defines a set of
elements of N whose removal causes the two
induced partitions to be identical. O

Since the node-cover problem is NP-hard
in general, but the partition-distance can be
computed in polynomial time, it is natural
to ask if the node-cover problem can be com-
puted efficiently when restricted to partition
graphs. We next show that the answer is yes,
by first characterizing the structure of parti-
tion graphs.

3.1 The structure of partition graphs

Let S;, 53, ..., 5 be the clusters of partition
P, and let 57, 53, ..., S be the clusters of P'.
Figure 1 displays two partitions P and P’ of
set N in a rectangular “array”. One “row”
is allocated to each cluster of partition P,
and one “column” is allocated to each clus-
ter of partition P'. Each “cell” (7,7) in the
array contains the elements of 5; N S;'. Since
each element is in a unique cluster of P and
a unique cluster of P’, each element is in a
unique cell of the array.

p
S S2 S3
S 10 40 60
20 50
30
p
S2 70 80
90
010 012
S3 110 130

Figure 1: Partitions P and P’ in arrayed lay-
out.

We finish the construction of G(P, P') by
turning each element into a node and adding
the edges. There is no edge between any pair
of nodes that are in the same cell, since they
are together in the same cluster of PP and of
P'. However, every node in a cell (i,j) of
G(P, P) is adjacent to every node in row ¢ or
column j outside of that cell (see Figure 2).
These two types of edges (row and column
edges) are the only edges in G, for any other
edge would connect two nodes correspond-
ing to two elements which are in different
clusters of P and also in different clusters of
P', contradicting the construction rules for
G(P,P'). Hence, every row of a partition
graph is a complete multi-partite graph. By
symmetry, this is also true of each column.
This layout of G(P, P') is called an arrayed
layout. Note that although every partition

graph G(P, P') has an arrayed layout, since nodes neighboring z in G is identical to the
P and P’ are not given as input, the arrayed set of nodes neighboring y in G, but x and
layout cannot be constructed as in the above 1y are in different cells of the layout. Then

existence proof.

P’
S1 S» S3
S1
P
S2
S3)

Figure 2: Partition-distance graph G(P,)
in arrayed layout.

Now, suppose a graph G has an arrayed
layout, i.e. G can be laid out into “rows”
and “columns” so that each row is a complete
multi-partite graph, as is each column, and
each level in a multi-partite graph consists
of the nodes of one cell of the layout. Then
G = G(P, P') for some partitions P and P’
of a set NV constructed as follows: N consists
of one element for each node in (G; each set .5;
of partition P consists of the elements from
row i; and each set S’ of partition I consists
the elements from column j. Hence,

Theorem 3.1 A graph G is a partition graph

if and only if it has an arrayed layout.

3.2 Efficient construction of an ar-
rayed layout

Given a partition graph G(P, P') without know-

ing P and P’, how can an arrayed-layout of
G (P, P') be efficiently constructed? In an
arrayed layout of (G, any two nodes in any
single cell of the layout have the same set
of neighbors in G. Conversely, consider an
arrayed layout of GG, and suppose the set of

moving z to the cell containing y again re-
sults in an arrayed layout of G. Hence, if
there is an arrayed layout of (&, there is one
where two nodes of G are in the same cell of
the layout if and only if they have the same
set, of neighbors in G.

Using the above observation, the first step
in creating an arrayed layout of GG is to sort
the rows of the adjacency matrix of G, to
form blocks of identical rows. FEach such
block identifies the nodes of a single cell of
the layout. Considering each row as a binary
number, the sorting can be done in O(n?)
time by radix sort, where G has n nodes.
Since each node in a cell has the same set of
neighbors, we can ignore all but one repre-
sentative node in each cell, and first find an
arrayed layout of these. This simplifies the
exposition, and we assume that each cell has
only a single node.

Permuting the rows and columns of an
arrayed layout still results in an arrayed lay-
out, so we can arbitrarily choose any node
v to be in the “upper left” cell. The other
nodes in the first row and column of the lay-
out are neighbors of node v. To divide those
neighbors into row nodes and column nodes,
let w be any neighbor of v in GG, and find the
set I of nodes that are neighbors of both u
and v. Then the first row of the layout can
be v followed by u, followed by the nodes in I
in any order. The first column of the layout
can be v followed by the neighbors of v not
in {I Uu}. This part of the layout can be
determined in O(n) time.

To finish the layout, successively consider
each unplaced node w and determine the row
and column to place w. To determine the
row, pick a node u in each non-empty row
¢ and check if u is adjacent to w in G. If
there is such a row 7, then w goes into row ;
otherwise w goes into a new row. Do a simi-

lar computation to determine which existing
column w goes into, or to place w in a new
column. The time to place a single new node
is O(n), so O(n?) overall. Finally, add in the
duplicate nodes for each cell, duplicate the
required edges, and check that the resulting
(node labeled) graph is G. In summary,

Theorem 3.2 In O(n?) time, we can deter-
mine if a graph G has an arrayed layout, and
construct one, if there is one.

Theorem 3.3 If G is a partition graph cre-
ated from partitions P and P', then the opti-
mal node cover of G can be found in polyno-
mial time, even if P and P’ are not known.

Proof By Theorems 3.1 and 3.2,if G is a
partition graph, then it has an arrayed layout
which can be constructed in polynomial time.
From that layout, we can construct two par-
titions, @ and @’ of set N, so that G =
G(Q,Q"), and use those to set up and solve
the assignment problem on matrix M (Q, Q).
By Lemma 3.1 and Theorem 2.1, an optimal
node cover of (G is determined by the optimal
assignment in M(Q,Q’). Note that since the
arrayed layout of GG is not unique, the par-
titions) and ' are not unique either, but
the value of the optimal assignment will be
the same for any such pair of partitions, since
the optimal node cover of GG is not affected
by the specific layout chosen. O

To actually solve the node-cover problem
on G, we short-circuit the procedure sug-
gested above: Once the representative nodes
are placed in an arrayed layout of G, con-
struct the matrix M by setting M (7, j) equal
to the full number of nodes that would go in
cell (7,7) of the layout, and solve the assign-
ment problem on M.

3.3 Perfect Graphs

Definitions: A cligue in a graph is a sub-
set of nodes which are pairwise adjacent; let

K (G) be the size of the largest clique in graph
G. An independent set of nodes is a set of
nodes where no two of the nodes are adja-
cent; let /(G) be the size of the largest in-
dependent set in graph G. A clique cover
of a graph is a node-disjoint set of cliques
that contain every node in the graph; let
C(G) be the number of cliques in the clique
cover of G with the fewest cliques. Clearly,
K(G) > I1(G) for any graph G. A graph ¢
is called perfect if K(G') = I(G’) for every
vertez-induced subgraph G’ of G.

See [5, 2] for a general introduction to
perfect graphs. Perfect graphs are of inter-
est because it is known that several NP-hard
problems, node cover, clique cover, maximum
clique, minimum coloring, and independent
set, can all be solved in polynomial-time when
restricted to perfect graphs [6, 2, 3]. We have
established that node cover can be solved
in polynomial time on partition graphs, but
that is not a sufficient condition for a graph
to be perfect.

Theorem 3.4 Any partition graph is per-
fect.

Proof Let G(P, P') be a partition graph
created from partitions P and P’. The sub-
graph of G(P, P') induced by a subset of nodes
S is just the partition graph created from the
partitions P and P’ restricted to S. There-
fore every vertex-induced subgraph of a par-
tition graph is itself a partition graph, and
we only need to show that I(G(P,P')) =
C(G(P, P') for any partition graph G(P, P').

Let M be a matrix of non-negative inte-
gers, and let A(M) denote the value of the
optimal assignment in M. It is a classic re-
sult in matching theory [7] (following from
linear programming duality), that non- neg-
ative integers R(¢) and C'(j) can be found for
each row 7 and each column j, respectively
of M, so that a) 3=, R(i)+ >, C(j) = A(M),
and b) R(7) + C(j) > M(4,j), for any cell

(¢,7) in M. Call this the assignment duality
theorem.

Consider an arrayed layout of G(P, P').
We have seen above that I(G(P, P)) =
A(P, P"), the optimal assignment value in
matrix M (P, P'). To find a clique-cover of
equal size, consider the subgraph induced by
selecting exactly one node from each non-
empty cell in a row ¢ of the layout. Since
each row is a complete multi-partite graph,
that subgraph is a clique. Hence if we form
R(7) such cliques in each row ¢, and C'(j)
such cliques in each column j of the layout,
cell (4,7) will have nodes in R(7) + C'(j) >
M(i,7) cliques. By assigning each node in
each cell (7, j) to at least one of these R(7)+
C'(7) cliques, we see that these cliques form a
clique cover of G(P, P'). By the assignment
duality theorem, this clique cover has ex-
actly A(P, P') cliques, and since A(P, P') =
I(G(P, P")), the theorem is proved. O

4 Generalizations

Definition: Given k partitions of N, the
distance between (or similarity of) these par-
titions is defined as the minimum number of
elements of N to remove so that all the &
induced partitions are identical.

Let G be a graph on |N| nodes associ-
ated with the elements of N. Two nodes are
adjacent if and only if the two nodes are to-
gether in the same cluster in at least one par-
tition, but not together in the same cluster
in all k£ partitions. By essentially the same
proof of Lemma 3.1, the distance between
the partitions is given by the optimal node
cover of G. However, in the case of three or
more partitions, the problem of computing
that distance is NP-hard (an easy reduction
from 3-D matching [4]).

Another natural generalization is to at-
tach a weight to each element v in N reflect-
ing the reliability of the information concern-
ing v. The weighted distance between two

partitions P and P’ of N is then the small-
est sum of weights of any subset of N whose
removal causes the two induced partitions to
be identical. The problem of computing the
weighted distance is also cast as an assign-
ment problem, by setting M (4, 7) to the total
weight of the elements in S; N .S7.

5 Acknowledgement

[would like to thank Jennifer Beyer for bring-
ing the paper [1] to my attention, and to the
referees for their thoughtful comments.

References

[1] A. Almudevar and C. Field. Estima-
tion of single generation sibling relation-
ships based on DNA markers. J. Agricul-
tural, biological and environmental statis-

tics, 4:136-165, 1999.

A. Brandstadt, V.B. Le, and J.P. Spin-
rad. Graph Classes - A survey. SIAM
Monographs on Discrete Math and Ap-
plications, 1999.

W. Cook, W. Cunningham, W. Pulley-
blank, and A. Schrijver. Combinatorial
Optimization. Wiley-Interscience Publi-
cations, 1998.

M. Garey and D. Johnson. Computers
and intractability. Freeman, San Fran-
cisco, 1979.

M. C. Golumbic. Algorithmic Graph The-
ory and Perfect Graphs. Academic Press,
New York, 1980.

M. Grotschel, L. Lovasz, and A. Schri-
jver. The ellipsoid method and its con-

sequences in combinatorial optimization.
Combinatorica, pages 169-197, 1981.

[7] E. L. Lawler. Combinatorial Optimiza-
tion: Networks and Matroids. Holt, Rine-
hart and Winston, New York, USA, 1976.

