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Abstract. Phylogenetic networks are models of evolution that go be-
yond trees, allowing biological operations that are not consistent with
tree-like evolution. One of the most important of these biological op-
erations is recombination between two sequences (homologous chromo-
somes). The algorithmic problem of reconstructing a history of recombi-
nations, or determining the minimum number of recombinations needed,
has been studied in a number of papers [10-12,23-25,16,13,14,6,9, 8,
18,19,15,1]. In [9,6, 10,8,1] we introduced and used “conflict graphs”
and “incompatibility graphs” to compute lower bounds on the minimum
number of recombinations needed, and to efficiently solve constrained
cases of the minimization problem. In those results, the non-trivial con-
nected components of the graphs were the key features that were used.
In this paper we more fully develop the structural importance of non-
trivial connected components of the incompatibility graph, to establish a
fundamental decomposition theorem about phylogenetic networks. The
result applies to phylogenetic networks where cycles reflect biological
phenomena other than recombination, such as recurrent mutation and
lateral gene transfer. The proof leads to an efficient O(nm?) time al-
gorithm to find the underlying maximal tree structure defined by the
decomposition, for any set of n sequences of length m each. An im-
plementation of that algorithm is available. We also report on progress
towards resolving the major open problem in this area.

1 Introduction to Phylogenetic Networks and Problems

With the growth of genomic data, much of which does not fit ideal evolutionary-
tree models, and the increasing appreciation of the genomic role of such phenom-
ena as recombination, recurrent and back mutation, horizontal gene transfer,
cross-species hybridization, gene conversion, and mobile genetic elements, there
is greater need to understand the algorithmics and combinatorics of phylogenetic
networks on which extant sequences were derived [20]. Recombination is partic-
ularly important in deriving chimeric sequences in a population of individuals of



the same species. Recombination in populations is the key element underlying
techniques that are widely hoped to locate genes influencing genetic diseases.

Formal definition of a phylogenetic network

There are four components needed to specify a phylogenetic network that
allows multiple-crossover recombination (see Figure 1).

A phylogenetic network N is built on a directed acyclic graph containing
exactly one node (the root) with no incoming edges, a set of internal nodes that
have both incoming and outgoing edges, and exactly n nodes (the leaves) with
no outgoing edges. Each node other than the root has either one or two incoming
edges. A node z with two incoming edges is called a recombination node.

Each integer (site) from 1 to m is assigned to exactly one edge in N, but for
simplicity of exposition, none are assigned to any edge entering a recombination
node. There may be additional edges that are assigned no integers. We use the
terms “column” and “site” interchangeably.

Each node in N is labeled by an m-length binary sequence, starting with
the root node which is labeled with some sequence R, called the “root” or the
“ancestral” sequence. Since N is acyclic, the nodes in N can be topologically
sorted into a list, where every node occurs in the list only after its parent(s).
Using that list, we can constructively define the sequences that label the non-root
nodes, in order of their appearance in the list, as follows:

a) For a non-recombination node v, let e be the single edge coming into v.
The sequence labeling v is obtained from the sequence labeling v’s parent by
changing the state (from 0 to 1, or from 1 to 0) of the value at site i, for every
integer i on edge e. This corresponds to a mutation at site ¢ occurring on edge
e.

b) For the recombination at node z, let Z and Z’ denote the two m-length
sequences labeling the parents of . Then the “recombinant sequence” X labeling
z can be any m-length sequence provided that at every site i, the character in
X is equal to the character at site ¢ in (at least) one of Z or 7’.

The “event” that creates X from Z and Z' is called a “multiple-crossover
recombination”. To fully specify the event, we must specify for every position 7
whether the character in X “comes from” Z or Z’. This specification is forced
when the characters in 7 and 7’ at position ¢ are different. When they are the
same, a choice must be specified. For a given event, we say that a crossover
occurs at position i if the characters at positions ¢ — 1 and ¢ come from different
parents. It is easy to determine the minimum number of crossovers needed to
create X by a recombination of Z and Z’.

The sequences labeling the leaves of N are the extant sequences, i.e., the
sequences that can be observed. We say that an (n, m)-phylogenetic network N
derives (or explains) a set of n sequences M if and only if each sequence in M
labels one of the leaves of N.

With these definitions, the classic “perfect phylogeny” [4] is a phylogenetic
network without any recombinations. That is, each site mutates exactly once in
the evolutionary history, and these is no recombination between sequences.
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Fig. 1. A phylogenetic network that derives the set of sequences M. The two recombi-
nations shown are single-crossover recombinations, and the crossover point is written
above the recombination node. In general the recombinant sequence exiting a recom-
bination node may be on a path that reaches another recombination node, rather than
going directly to a leaf. Also, in general, not every sequence labeling a node also labels
a leaf.

There are two restricted forms of recombination that are of particular bi-
ological interest. One is where X is formed from a prefiz of one of its parent
sequences (7 or 7') followed by a suffiz of the other parent sequence. This is
called “single-crossover recombination” since it uses exactly one crossover, and
it is the definition of recombination used in [9,8]. The other case is when X is
formed from a prefix of one parent sequence, followed by an internal segment
of the other parent sequence, followed by a suffix of the first parent sequence.
This i1s a two-crossover recombination, which occurs during “gene-conversion”
in meiosis, and during some forms of “lateral gene-transfer”. Multiple-crossover
recombination allows the modeling of complex biological phenomena, and hence
the main result in this paper applies to many causes of incompatibility besides
recombination.

What we have defined here as a phylogenetic network with single-crossover
recombination is the digraph part of the stochastic process called an “ancestral
recombination graph (ARG)” in the population genetics literature.

In the context of meiotic recombination, the assumption that the sequences
are binary i1s motivated today by the importance of SNP data, where each site can
take on at most two states (alleles) [2]. In the context of macroevolution, complex
evolutionary characters are usually considered to be binary (either present or
absent)[3].

Rooted and Root-Unknown problems Problems of reconstructing phy-
logenetic networks, given an input set of binary sequences M, can be addressed
either in the rooted case, or the root-unknown case. In the rooted phylogenetic
network problem, a required root or ancestral sequence R for the network is



specified in advance. In the root-unknown phylogenetic network problem, no
ancestral sequence is specified in advance, and the algorithm must select an
ancestral sequence.

2 A Fundamental Decomposition Theory for Phylogenetic
Networks and Incompatible Characters

In this section we define and derive the main result of this paper, that for any

input M, there always is a phylogenetic network of an important, natural struc-

ture. We believe this to be a very fundamental fact about phylogenetic networks

that will have many applications. We now begin the needed definitions that lead

to the statement of the main result.

In a phylogenetic network N, let w be a node that has two paths out of
it that meet at a recombination node z. Those two paths together define a
“recombination cycle” @. Node w is called the “coalescent node” of (), and z 1s
the recombination node of @. In Figure 1, the nodes labeled 00000 and 00100
are coalescent nodes of two different recombination cycles.

If a recombination cycle in a phylogenetic network N is not isolated (a “gall”
in the terminology of [9]), it shares at least one edge with some other recom-
bination cycle. We can add another cycle to that blob if the new cycle shares
an edge with at least one cycle already on the blob. Continuing in this way, we
ultimately get a maximal set of recombination cycles in N that form a single
connected subgraph of N, and each cycle shares at least one edge with some
other cycle in the set. We call such a maximal set of cycles a “blob”.

Clearly, because of maximality, the blobs in a phylogenetic network N are
well-defined. Moreover, if we contract each blob in N to a single point, the
resulting network is a directed tree T". This follows because if the resulting graph
had a cycle (in the underlying undirected graph) that cycle would correspond to
a recombination cycle which should have been contracted. We call TV a “tree of
blobs” or a “blobbed tree”. So every phylogenetic network N can be viewed as
a blobbed tree. The edges in T” are called “tree edges” of N.

2.1 The main tools

The main tools that we used in [9,10, 1] and other papers were two graphs rep-
resenting “incompatibilities” and “conflicts” between sites. We introduce these
graphs here.

Given a set of binary sequences M, two columns 7 and j in M are said to
be incompatible if and only if there are four rows in M where columns i and j
contain all four of the ordered pairs 0,1; 1,0; 1,1; and 0,0. For example, in Figure
1 columns 1 and 3 of M are incompatible because of rows a, b, ¢, d. The test for
the existence of all four pairs is called the “four-gamete test” in the population
genetics literature. A site that is not involved in any incompatibility is called a
“compatible site”.

Given a sequence S, two columns ¢ and j in M are said to conflict (relative
to S)if and only if columns i and j contain all three of the above four pairs that
differ from the ¢, 7 pair in S.



The classic Perfect Phylogeny Theorem (in the terminology of this paper) is
that there is a root-unknown phylogenetic network without any recombination
cycles, that derives a set of binary sequences M, if and only if there is no incom-
patible pair of columns. Similarly, there is a phylogenetic network with ancestral
sequence S, without any recombination cycles, that derives M, if and only if
there is no pair of columns that conflict relative to S. For one exposition of this
classic result, see [5].

Incompatibility and Conflict Graphs

We define the “incompatibility graph” G(M) for M as a graph containing
one node for each column (site) in M, and an edge connecting two nodes ¢ and j
if and only if columns 7 and j are incompatible. Similarly, given a sequence S, we
define the “conflict graph” Gg(M) for M (relative to S) as a graph containing
one node for each column in M, and an edge connecting two nodes ¢ and j if and
only if columns ¢ and j conflict relative to S. Figure 1 shows the conflict graph
relative to the all-zero sequence S. This conflict graph is also the incompatibility
graph for M.

A “connected component” (or “component” for short), C, of a graph is a
maximal subgraph such that for any pair of nodes in C there is at least one path
between those nodes in the subgraph. A “trivial” component has only one node,
and no edges. The conflict graph in Figure 1 has two components.

2.2 Main Result

Theorem 1. Let G(M) be the incompatibility graph for M. Then, there is a
phylogenetic network N that derives M where every blob contains all and only the
sites of a single non-trivial connected component of G(M), and every compatible
site 1s on a tree edge of N.

Stated another way, for any input M, there is a blobbed-tree that derives M,
where the blobs are in one-one correspondence with the non-trivial connected
components of G(M), and if B is the blob corresponding to component C, then
B contains all and only the sites in C'. We call a network “fully-decomposed” if
it has the structure specified in Theorem 1.

Theorem 1 is an extension of the stronger theorem proved in [9] about galled-
trees. In the case of galled-trees, every reduced galled-tree for M must be fully-
decomposed. A galled-tree is “reduced” if every recombination cycle contains
some incompatible sites. When there is a galled-tree for M, there is a reduced
galled-tree for M, and the program galledtree.pl will produce one (see Section

There 1s an analogous theorem to Theorem 1 in the case that the ancestral
sequence S is known in advance. In that case, there is a phylogenetic network NV
that derives M, with ancestral sequence S, where the blobs in N are in one-one
correspondence with the non-trivial connected components of Gg(M), and any
non-conflicting site is on a tree edge of N.



3 Proof of Theorem 1

Let C' and C” be two connected components in the incompatibility graph G(M).
Note that either C' or C’ or both may be a trivial connected component, i.e.,
consist of only a single node.

For any i € O, € C' let (X,X) and (Y,Y) be the respective bipartitions
(of the rows of M), associated with sites ¢ and i’. The two bipartitions cannot
be identical, for otherwise sites ¢ and 7' would have exactly the same incompat-
ibilities and so be in the same connected component. Each of the four subsets
X, X,Y,Y is called a “class” of the bipartition it is part of. Sites i and i’ are not
incompatible, so one class of the ¢ bipartition must strictly contain one class of
the ' bipartition, and the other class of the ¢’ bipartition must strictly contain
the other class of the i bipartition. Without loss of generality, suppose X DY
and Y O X. We say that X is the “dominant” class of i, and X is the “domi-
nated” class, with respect to the pair i, i. Similarly, Y is the dominant class of
7', and Y is the dominated class, with respect to the pair ¢, '.

Lemma 1. Let i,7,X, and Y be as above. Let j' be any site in C', and let
(Z,7) be the bipartition associated with j'. Then, the dominant class of i with
respect to the pair i,j' is the dominant class of i with respect to the pair i,1'.
That is, either X D Z or X D Z.

Proof. The Lemma is vacuously true if C’ is a trivial connected component, so
assume C’ is non-trivial, and consider a site &’ € C’ that is incompatible with
i'. Such a site k' must exist since C’ is connected. Let (W, W) be the bipartition
defined by site &’ If X is not dominant with respect to i, k', then X is dominant
with respect to i, k', and so either X D W or X D W. Suppose that X D W, so
W D X.But then W DY since X DY, andso Y NW = 0, and ¢ and k' can’t
be incompatible, which is a contradition. Similarly, if X D W, then W O X, so
W DOY,and WNY = 0, a contradiction. So the dominant class, X, with respect
to 7,%' is the dominant class with respect to 7, k’, where k' is any site that is
incompatible with . The Lemma now follows by transitivity, because C’ is a
connected component, so from ¢’ it is possible to reach any j* € C’ by a series
of incompatibility relations. O

Lemma 1 establishes that for any i € C, one class of ¢ is dominant with
respect to all sites in C’, and symmetrically, for any ¢/ € C’ one class of ¢ is
dominant with respect to all sites in C'. So, with respect to the (C,C") pair of
connected components, each site in C'U C’ has a well-defined dominant class,
and a well-defined dominated class.

Now return focus to the sequences in M and the sites in C' and C”. For a site
i € C, the bipartition (X, X) is encoded with 0’s and 1’s, where all the rows in
X have one character at site 7 and all the rows in X have the other character
at site 4. So, with respect to the (C,C") pair of connected components, and a
specific set of sequences M | each site in C has a well-defined dominant character
(either 0 or 1). For example, in Figure 2, the dominant character is 0 in all sites
except 3, where the dominant character is 1.



For i € C, let D(i) be the rows in the dominated class with respect to
(C,C"), and similarly, for i/ € C’, let D(#') be the rows in the dominated class
with respect to (C, C’). Let D[C, C'] be the union of the rows in any dominated
class of C', with respect to (C,C"). Similarly, let D[C"’, C] be union of the rows
in any dominated class of €', with respect to (C,C").

Let M(C') and M(C") be the sequences in M, restricted to the sites in C' and
C' respectively. Then Lemma 1 implies

Theorem 2. Every row in D[C, C"] has the same sequence in M (C"). In partic-
ular, in each row of D[C, C"], every site i’ € C' has the dominant character with
respect to (C,C"). Similarly, every row in D[C', C] has the same sequence in
M (C). In particular, in each row of D[C',C], every site i € C' has the dominant
character with respect to (C,C").

Given Theorem 2, we can define the dominant sequence in M (C') with respect
to (C, C") as the sequence in M (C') where each site has the dominant character
with respect to (C, C’). Similarly, we can define the dominant sequence in M (C")
with respect to (C, C").

Corollary 1. Let C and C' be two connected components of G(M). There is
no row in M which contains both a non-dominant sequence in M(C) and a
non-dominant sequence in M (C") with respect to (C,C").

Figure 2 illustrates Lemma 1, Theorem 2 and Corollary 1. Note that a row
can have the dominant sequence in M (C') and the dominant sequence in M (C").
Row ¢ in Figure 2 is an example of this.
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Fig.2. The sites in the two connected components from Figure 1. We denote the
component with sites {1,3,4} as C, and the component with sites {2,5} as C’. The
dominant sequence for C is 010, and the dominant sequence for C’ is 00. The rows
in D[C,C"] are {a,b,d}, and the rows in D[C’, C] are {e, f,g}. Note that row c is in
neither D[C,C’'] nor D[C’, C], since row c has the dominant sequence in both its C
and C’ sides.

Lemma 1, Theorem 2 and Corollary 1 establish a structure that exists in M,
imposed by the partition of the columns of M by the connected components of
G(M), the incompatibility graph of M. We begin now to exploit that structure
to prove the main theorem. We will create a new, binary, matrix M B from



M and G(M). Let C be a connected component of G(M) and let M(C) be
the sequences in M restricted to the sites in C. Create one column in M B
for each distinct sequence in M (C'). Each such new column, associated with a
sequence S € M(C) say, encodes a bipartition of the rows of M, where one side
of the bipartition contains all the rows that have sequence S in M (C), and the
other side of the bipartition contains the remaining rows. More specifically, and
without loss of generality, in the new column we assign value 1 to each row which
contains sequence S in M (C'), and assign value 0 to each row that does not. The
new column defines a binary character derived from M and G(M). Note that if
C is a trivial connected-component, so it only contains one site, then M B will
have two columns derived from that one site, but those columns define the same
bipartition. That will cause no problems, and one can be removed for simplicity.

Matrix M B is defined by the columns described above, over the set of all
connected components in M (G). We call a character (column, site) of MB a
“super-character”. We want to use these super-characters to build a tree that
will prove Theorem 1. We start by showing

Lemma 2. No pair of super-characters are incompatible.

Proof. Let p and ¢ be super-characters in M B, and let (P, P) and (Q, Q) be
the bipartitions associated with p and ¢. If p and ¢ originate from the same
connected component C' in G(M), then without loss of generality, the rows in
P all have the same sequence in M (C'), and the rows in @ all have the same
sequence in M (C), and those two sequences are different. Hence, PNQ = @, and
so p and ¢ are not incompatible.

Now suppose p and ¢ originate from two different connected components C'
and C’ in G(M). If p and ¢ both originate from non-dominant sequences of C
and C’, then Corollary 1 guarantees that there is no row with 1,1 in columns p
and ¢, and so p and ¢ cannot be incompatible. Symmetrically, if p and ¢ both
originate from dominant sequences in C' and C’, then there is no row with 0,0 in
columns p and q. If p originates from the dominant sequence of C' and q originates
from a non-dominant sequence of C’, then there can be no 0, 1 in columns p and
q. The remaining case is symmetric. O

Hence, by the Perfect Phylogeny Theorem, there is a unique perfect phylogeny
T where each super-character labels an edge in T, and each edge is labeled by
one or more super-characters?®.

We now develop the structure of 7' to both complete the proof of Theorem 1,
and to constructively show how to build a network N for M from T. A “split of
edge €” is defined as the bipartition of the leaves resulting from the removal of
edge e from T'. Note that all the splits of the edges in T are distinct. The removal
of any edge e in T creates two connected subtrees, whose leaves correspond to

%It is of independent interest to note that we have established that the super-
characters defined by the connected components of G(M) generalize the standard
(tree) characters and play a role in the theory of phylogenetic networks, that tree
characters play in the theory of phylogenetic trees.



the two classes of the split of edge e. If e is labeled by super-character C'| we
define the “1-side” of e as the subtree of T'— e that contains the leaves for rows
in M B that have value 1 for super-character C. The other side is called the
“0-side” of the split.

Lemma 3. In T, there is a node ve such that all the edges labeled by super-
characters that originate from the same connected component C' in G(M) are
incident with ve. That 1s, these edges form a star around a single central node
ve. Further, ve 1s on the 0-side of each split defined by every super-character
that originates from C.

Proof. First, the Lemma is trivialy true if C' is a trivial component. Note, how-
ever, that any non-trivial connected component has at least four distinct super-
characters. Consider such a connected component C' and any three of its super-
chars, and let ey, e, es be the three edges in T labeled with those super-chars.
Note that every row in M B has value 1 in exactly one column of M B(C), so
every leaf of T is on the 1-side of exactly one edge labeled by a super-character
that derives from C. Hence, no leaf in T can be on the 1-side of two of the edges
€1, €9, €3.

If e; and es are incident with each other, sharing a node v, then there must
be another edge incident with node v, and hence there must be a leaf [, that
is reachable from v without going through e; or ey. If this were not true, then
e1 and ey would define the same splits in T, which is not possible. If e; and e
are not incident with each other, then there is a unique shortest path P from an
endpoint of e; to an endpoint of e;. Clearly, path P does not contain edge e
or es. There must be a node v on P and a leaf [, that is reachable from v via a
path that does not go through e; or ey. If this were not true, then again there
would be two adjacent edges that define the same splits in 7.

Now we claim that node [, must be on the 0-side of both e; and e5. We have
already established that it cannot be on the 1-side of both, since no leaf can
be on the 1-side of two splits derived from the super-characters of C'. However,
suppose without loss of generality, that [, is on the 1-side of e; and the 0-side of
eo. Then consider the endpoint u of e; that is on the 1-side of ey, and consider
a leaf [, that is reachable from u without going through es. Leaf [, would be
on the 1-side of both e; and ey, which is not possible. Hence the 1-sides of both
e; and ey point “away” from each other. It also follows that path P cannot go
through edge es. If it did, then some leaf on the 1-side of e3 would also be on
the 1-side of e; or es.

So edges €1 and ey are either incident with each other, or there is an edge e
which is incident with e; on path P, where e is not labeled by a super-character
from C'. We will show that such an edge e cannot exist. All internal edges in T are
labeled by some super-character, so suppose e exists and is labeled by a super-
character that derives from a connected component C’. Let v be the common
endpoint of e; and e. As above, there must be a leaf [, that is reachable from v
without going through either edge e or e, for otherwise e and e; define the same
split and should not be separate edges in 7. Recall that each super-character
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and each split in T that derives from C or C’ corresponds to a sequence in M (C)
or M(C"), and with respect to the pair (C,C"), there is a dominant sequence
S in M(C) and a dominant sequence S’ in M(C"). Let ¢(S) be the edge in T
labeled by the super-character for S, and let e(S’) be the edge in T labeled by
the super-chararacter for S’. Now ey is either ¢(S) or not, and e is either e(S")
or not, so we have four cases to consider.

Case 1: Suppose € is €(S) and e is e(S’). We know that [(v) is on the 0-side
of €1, so it must be on the 1-side of e to obey Corollary 1. But then, all leaves on
the 1-side of e will be on the 0-side of both e and €7, which contradicts Corollary
1. The other cases are similar. So e cannot exist, and hence e; and ey are incident
with each other. The three other cases are similar and omitted.

Since e; and ey were arbitrary edges labeled by super-characters derived from
connected component C, every pair of edges labeled by super-characters from C'
must be incident with each other. But in a tree, that is only possible if all those
edges share exactly one endpoint, and so form a star around a single center.
That endpoint is the claimed node ve. Also, we established that if there are two
distinct edges labeled with super-characters derived from C, then the 1-sides of
these edges point away from each other. This holds for any pair of edges labeled
with super-characters derived from C', so v is on the 0-side of every such edge.

O

To finish the proof of Theorem 1, we first arbitrarily select a leaf in T to
act as the root node, and we direct every edge away from that leaf. This also
defines an ancestral sequence for the phylogenetic network we will construct.
Next, we need to inflate each node ve in T that is the central node of the star
associated with the super-characters of a non-trivial connected component of
M (G). We can identify such central-star nodes by the fact that for some non-
trivial connected component C', all of the edges labeled by the super-characters
that derive from C' are incident with a node v, and hence that node must be
ve. Each such edge may also be labeled with the super-character that derives
from another connected component or with a compatible character. However,
every leaf is on the 1-side of exactly one super-character that derives from C,
and ve is on the 0-side of each such super-character, so there can be no no edge
e = (vc,v') in T that is labeled only by a compatible site. If there was such an
edge, then a leaf reached from the v’ without going through v¢ would not be on
the 1-side of any super-character that derives from C'.

Note that each central-star node v¢ has exactly one edge directed into it. We
call the sequence in M (C) on that edge the “ancestral sequence” of ve. Now,
any sequence in M (C') can be derived from the ancestral sequence of v using
at most one mutation per site, if enough recombinations are allowed. So, each
central-star node v can be inflated into a blob B, containing one node labeled
by each distinct sequence in M (C) (and other nodes if needed). Then for each
distinct sequence in M (C') we connect the node in B, labeled with that sequence
to the edge (incident with vc) that is labeled by the super-character for that
sequence in M (C).
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After inflating each central-star node in T', the end result is a phylogenetic
network N where each blob contains all and only the sites from one connected
component of G(M). Every compatible site labels a tree edge of N. This com-
pletes the proof of Theorem 1.

Uniqueness We leave the proof to the reader, but it is also true that if N
is a fully-decomposed network and 7" is created by contracting each blob of N
to a single node, then after the directed edges in 7" are made undirected, the
resulting tree is necessarily 7. So T is the invariant underlying structure of any
fully-decomposed phylogenetic network for M.

Programs The above proof of the existence of T' can be converted into an
efficient, constructive method?* for finding T from any input M. The program
galledtree.pl, available at wwwecsif.cs.ucdavis.edu/~gusfield/ takes in a set of se-
quences M and tries to build a galled-tree for M. If it succeeds, then it has
produced a complete phylogenetic network for M where each blob is a single
cycle, and the cycles are node disjoint. Hence, the program produces a fully-
decomposed phylogenetic network for M. If the program determines that there
is no galled-tree for M, then it outputs the tree T for M. The running time for
the program is O(nm? + m?), but the time used to build 7T is just O(nm?).

4 What is the “most tree-like” phylogenetic network?

When a set of sequences M fails the four-gametes test and hence cannot be
generated on a perfect phylogeny, one would still like to derive the sequences
on a phylogenetic network that is the “most tree-like”. There is no accepted
definition of “treeness”, and under many natural definitions, the problem of
finding the most tree-like network would likely be computationally difficult. In
this section, we introduce a measure of treeness and relate it to Theorem 1.

Given a phylogenetic network N we first modify N so that no two blobs share
anode. The only way that two blobs can share a node v is if v is the “root” of one
of the blobs, so we can always add a new edge to separate the two blobs. We can
also assume that NV has no node with in and out-degrees that are both one. Then
if each blob is contracted to a single node, the number of edges in the resulting
directed tree measures the “treeness” of N. In other words, the “treeness” of N
is measured by the size of the tree in the underlying tree structure of N. For
example, if all the sites in M are in a single blob in N, then N 1is less tree-like
than a network where the sites are distributed between several blobs, connected
by several edges in a tree structure.

With the above definition of “treeness”, we claim that a phylogenetic net-
work N is “the most tree-like” if and only if T is the resulting undirected tree,
after the blobs of NV are contracted, and all the edges are made undirected. This
follows from Theorem 1 and that fact that all the sites in a single non-trivial con-

* Tt may seem that T can be obtained by simply building a perfect phylogeny T using
one site from each connected component of G(M). This does not work because the
edge structure of 7' may be very different from that of T. For example, in the tree
T created from sites 1 and 2 in Figure 1, the two edges labeled with those sites are
adjacent, while they are not adjacent in 7.
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nected component of G(M) must be together in a single blob in any phylogenetic
network. This second fact is proven in [9].

This definition of “most tree-like” is somewhat crude because it does not
consider any details inside of a blob, but it has the advantage of being easy
to compute and allowing a clear identification of the most tree-like networks.
Further, it seems reasonable that any other natural definition of “most tree-like”
would identify a subset of the networks identified by the definition considered
here.

5 Alternative Proofs of Theorem 1

We believe that Theorem 1 has not previously been stated in any published
literature, but Mike Steel has pointed out that Theorem 1 can be proven by
using Buneman graphs [21], and the details of this approach have been worked
out by Yufeng Wu at UC Davis. However, it takes exponential time in worst case
to build a Buneman graph from M, and so this is not an efficient constructive
approach. Andreas Dress and Hiroshi Hirai have also pointed out that Theorem 1
can be derived from the framework of block-decompositions in T-theory. Finally,
Daniel Huson and Mike Steel have (subsequent to the development of Theorem
1) recently developed a related decomposition theory for splits graphs, where
the input to the problem is not a set of sequences, but a set of trees that must
be subtrees in a constructed phylogenetic network. Problems of that type have

been studied in [19, 15].

6 Theorem 1 Applies in Diverse Biological Contexts
Theorem 1 was proven in the context of multiple crossover recombination when
explicit binary sequences are given as input. This is most directly motivated
by the evolution of sequences of SNPs (single nucleotide polymorphisms). SNP
sequences evolve in a population by site mutation and by (meiotic) recombina-
tion of homologous chromosomes (single crossover recombination), and by gene
conversion (a specific kind of two crossover recombination). However, multiple
crossover recombination can be considered as a mathematical operation on bi-
nary sequences, rather than a biological event, and can be used to model biolog-
ical events that don’t explicitly involve recombination. As a consequence, The-
orem 1 holds in many biological contexts where diverse biological events cause
incompatibility between sites (or more generally, incompatibility between binary
evolutionary “characters”). Three such biological events are “back-mutation”,
“recurrent-mutation”, and “lateral gene transfer”, and we consider the first two
of those below.

6.1 Back and Recurrent Mutation ) ) )
“Back-mutation” occurs when the state of a site mutates back from its derived

state to its ancestral state. “Recurrent-mutation” occurs when the state of a site
is permitted to mutate from its ancestral state more than once in an evolutionary
history. Because there is no explicit recombination, the underlying graph of a
network with back or recurrent mutation is a tree. Generally, when back or
recurrent mutation is the cause of incompatibility, we seek an evolutionary tree
that derives a given set of sequences using as few back or recurrent mutations as
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possible. Such a tree is called a “maximum parsimony tree” and it is a solution
to the maximum parsimony problem [3,21].

While biologically unrelated to recombination, each occurrence of back-mutation
or recurrent-mutation of a site ¢ in a sequence S can be modeled as a two-crossover
recombination between S and some appropriate sequence, in the intervals ¢ — 1,1
and 7,7+ 1. Modeling back and recurrent mutations in this way explicitly cre-
ates recombination cycles and blobs, and shows explicitly how Theorem 1 ap-
plies when back-mutation and/or recurrent mutation cause incompatibilities.
The consequence is that one can derive M using a separate tree for the sites in
each non-trivial connected component C' of G(M). The tree for each C' derives
the sequences in M (C) using recurrent and/or back mutation if needed, and the
separate trees can be connected using 7.

Note that when back or recurrent-mutation is modeled in this way, each
recombination only changes a single site, so the linear order of the site has no
impact on the permitted recombinations, and the ordering of the sites can be
arbitrary. This allows Theorem 1 to apply to (binary) “evolutionary characters”
which may experience back and/or recurrent mutation, but have no natural
order.

7 Open Question and Conjecture

The main open question related to Theorem 1 is the following

Decomposition Optimality Conjecture: For any M, there is always
a fully-decomposed phylogenetic network for M that minimizes the num-
ber of recombinations used, over all possible phylogenetic networks for

M.

Note, that the conjecture does not say that the minimum number of recom-
binations is equal to ). ec(C'), where ce(C) is the minimum number of recom-
binations needed in a phylogenetic network for M (C'). Such a stronger claim has
been shown to be false [22]. The difficulty is that the separate solutions may
choose ancestral sequences that cannot be combined into a single network.

The Decomposition Optimality Conjecture can be proven when the recom-
binations model recurrent and back mutations, as discussed earlier (one proof is
based on the Buneman graph of M). Because of this result, when incompatibili-
ties are caused by recurrent and/or back mutation, one can solve the parsimony
problem separately for each connected component of M (G), and then connect
the trees as specified by T'. Since the parsimony problem is itself NP-hard, and
the only known methods to solve it take exponential time in worst-case, decom-
posing the problem into several smaller problems may allow larger problems to
be solved in practice.

If the Decomposition Optimality Conjecture is true in general (for any multiple-
crossover recombinations), we could follow a similar approach to finding phylo-
genetic networks that minimize the number of recombinations. It is easiest to
exploit the conjecture (if proved) in the case that an ancestral sequence A is
given. In that case, we know the root of 7' and hence the ancestral sequence for
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each of the blobs in the network for M. Hence we could solve a single (rooted)
problem for each component of G 4(M). When no ancestral sequence is known in
advance, this approach would need to be repeated for each choice of root position
in T. If the conjecture is true, it would also follow that we could compute lower
bounds on the number of needed recombinations by computing bounds sepa-
rately for the sites on each connected component of M(G), and then add these
bounds together for a correct overall bound. This would be correct no matter
what lower bound method is used. This approach has been proven correct for
two specific lower bounds [1], strengthening the belief that the above conjecture
is true.

Progress on Proving the Conjecture We have recently proven [7] a
weaker version of the Decomposition Optimality Conjecture. We say that a node
v in a phylogenetic network N for M is “visible” if the sequence labeling node
v in N is a sequence in M.

Theorem 3. If every node v in N is wvisible, then there is a fully-decomposed
network for M which uses the same number of recombinations, or fewer, than
does N .

The theorem can be proven with somewhat weaker conditions than the visi-
bility of all nodes in N. Also, a sufficient (but not necessary) condition for the
visibility of all nodes is that the “haplotype lower bound” [16] on the minimum
number of recombinations equals the true minimum. Simon Myers has shown
[17] that under the neutral coalescent model with recombination, the expected
difference between the haplotype bound and the true minimum is bounded by a
constant as the number of sequences goes to infinity. Thus, there may be optimal
phylogenetic networks where all nodes are visible, more often than might at first
be assumed.
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