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Aphylogenetic network is a generalization of a phylogenetic tree, allowing properties that are not tree-like.
With the growth of genomic data, much of which does not fit ideal tree models, there is greater need to

understand the algorithmics and combinatorics of phylogenetic networks (Posada and Crandall 2001, Schierup
and Hein 2000).
Wang et al. (2001) studied the problem of constructing a phylogenetic network for a set of n binary sequences

derived from the all-zero ancestral sequence, when each site in the sequence can mutate from zero to one at
most once in the network, and recombination between sequences is allowed. They showed that the problem
of minimizing the number of recombinations in such networks is NP-hard, but introduced a special case of
the problem, i.e., to determine whether the sequences could be derived on a phylogenetic network where the
recombination cycles are node-disjoint. Wang et al. (2001) provide a sufficient, but not a necessary test, for such
solutions. Gusfield et al. (2003, 2004) gave a polynomial-time algorithm that is both a necessary and sufficient
test. In this paper, we study in much more detail the fine combinatorial structure of node-disjoint cycles in
phylogenetic networks, both for purposes of insight into phylogenetic networks and to speed up parts of the
previous algorithm. We explicitly characterize all the ways in which mutations can be arranged on a disjoint
cycle, and prove a strong necessary condition for a set of mutations to be on a disjoint cycle.
The main contribution here is to show how structure in the phylogenetic network is reflected in the structure

of an efficiently-computable graph, called the conflict graph. The success of this approach suggests that additional
insight into the structure of phylogenetic networks can be obtained by exploring structural properties of the
conflict graph.
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1. Introduction and Main Results
With the growth of genomic data, much of which does
not fit ideal evolutionary-tree models, and the increas-
ing appreciation of the genomic role of such phenom-
ena as recombination, recurrent and back mutation,
horizontal gene transfer, gene conversion, and mobile
genetic elements, there is greater need to understand
the algorithmics and combinatorics of phylogenetic
networks (Posada and Crandall 2001, Schierup and
Hein 2000). Recombination is particularly important
because it is the key element needed for techniques
that are widely hoped to locate genes influencing
genetic diseases. The key to locating these genes is
to understand and use the patterns of recombination
in the genetic experiments done by nature and history.
However, very little is known about the combinatorial
structure of phylogenetic networks. A seminal paper
(Wang et al. 2001) began a focus on phylogenetic

networks in the case that the underlying cycles are
node-disjoint, and they introduced the problem of
determining if a set of sequences could be derived
on such a phylogenetic network. The algorithm given
provides a sufficient but not a necessary test for that
problem. A faster, complete (both necessary and suffi-
cient) algorithm for that problem, is given in Gusfield
et al. (2003, 2004). Other papers related to phyloge-
netic networks include Hein (1990, 1993), Song and
Hein (2003), Myers and Griffiths (2003), Kececioglu
and Gusfield (1998).

1.1. Formal Definition of a Phylogenetic Network
There are four components needed to specify a phylo-
genetic network: A directed acyclic graph (no directed
cycles, but the underlying undirected graph can have
cycles); an assignment of mutations or sites (inte-
gers) to edges; an assignment of a sequence to each
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Figure 1 A Phylogenetic Network N with Two Recombination Nodes
Note. The matrix of sequencesM that are derived by N is shown at the right.

nonrecombination node; and an assignment of a
recombination point and a sequence to each recombi-
nation node. We will define each of these components
in turn. See Figure 1 for an example of a phylogenetic
network.
An �n�m�-phylogenetic network N is built on a

directed acyclic graph containing exactly one node
(the root) with no incoming edges, a set of internal
nodes that have both incoming and outgoing edges,
and exactly n nodes (the leaves) with no outgoing
edges. Each node other than the root has either one
or two incoming edges. A node x with two incoming
edges is called a recombination node.
Each integer (site) from 1 to m is assigned to

exactly one edge in N , but for simplicity of exposition,
none are assigned to any edge entering a recombi-
nation node. There may be additional edges that are
assigned no integers. We use the terms column and site
interchangeably.
Each node in N is labeled by an m-length binary

sequence, starting with the root node, which is labeled
with the all-zero sequence. Because N is acyclic, the
nodes in N can be topologically sorted into a list,
where every node occurs in the list only after its par-
ent(s). Using that list, we can constructively define the
sequences that label the nonroot nodes, in order of
their appearance in the list, as follows:
(a) For a nonrecombination node v, let e be the

single edge coming into v. The sequence labeling v
is obtained from the sequence labeling v’s parent by
changing from zero to one the value at position i, for
every integer i assigned to edge e. This corresponds
to a mutation at site i occurring on edge e.
(b) Each recombination node x is associated with

an integer rx (denoted r when x is clear by context)
between two and m inclusive, called the recombination
point for x. For the recombination at node x, one of

the two sequences labeling the parents of x must be
designated P and the other designated S. Then the
sequence labeling x consists of the first rx − 1 charac-
ters of P , followed by the last m − rx + 1 characters
of S. Hence P contributes a prefix and S contributes
a suffix to x’s sequence. The resulting sequence that
labels x is called a recombinant sequence.
Recombinations occur in the phylogenetic network

at a recombination node and this distinguishes a
change of state due to recombination from a change
of state due to mutation.
The sequences labeling the leaves ofN are the extant

sequences, i.e., the sequences that can be observed.
Note the assumption that the ancestral sequence (at
the root node) is the all-zero sequence.
Note that in Figure 1, the node with sequence label

01100 is sequence S for the left recombination node,
and is sequence P for the right recombination node.
The recombination points are three and four for the
left and right recombination nodes respectively, and
are written just above the recombination nodes. In this
example, every label of an interior node also labels a
leaf, but that is not a general property of phylogenetic
networks.
Definition 1.1. An �n�m�-phylogenetic network N

derives (or explains) a set of n sequences M if and only
if each sequence in M labels exactly one of the leaves
of N .
With these definitions, a classic perfect phylogeny

is a phylogenetic network that is topologically a
directed, rooted tree, i.e., lacking any cycles in the
underlying (undirected) graph. What we have defined
here as a phylogenetic network is the digraph part
of the stochastic process called an ancestral recombi-
nation graph in the population-genetics literature (see
Norborg and Tavare 2002, for example).
The biological interpretation of a phylogenetic net-

work N that derives M is that N is a possible history
of the evolution of the sequences in M , under the
assumptions that there is a single, known ancestral
sequence (assumed to be all-zero for convenience);
that for any site in the sequences there is exactly
one point in the history (recorded on an edge) where
that state of that site mutates (due to a point muta-
tion) from 0 to 1; and that two sequences are per-
mitted to recombine (during meiosis) in a single
equal-crossover event. Each site in the sequence repre-
sents a SNP (single nucleotide polymorphism), i.e., a
site where two of the four possible nucleotides appear
in the population with a frequency above some fixed
threshold.
These biological interpretations are most realistic

when the sequences come from individuals in the
same population, and the individuals have a com-
mon ancestor in the relatively recent past. We should
note that meiotic recombination is a phenomenon that
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occurs inside a single species, while the term phy-
logeny most correctly refers to evolutionary history
involving several species. Therefore, it is not com-
pletely correct to use the term phylogenetic network
for a history of meiotic recombinations. However, in
computer-science literature (and in some parts of biol-
ogy), the term phylogeny has come to be synonymous
with evolutionary tree or evolutionary history, regard-
less of the source of the data being studied. Similarly,
the term phylogenetic network has been introduced
in earlier papers to refer to evolutionary trees with
the incorporation of recombination. We continue the
abuse of the term phylogenetic in this paper.
The strongest assumption above is that the ances-

tral sequence is known for the network. It is often pos-
sible to determine the ancestral sequence, and the root
of the network, through the use of an outgroup, i.e., an
individual who relates to the individuals under study,
through the root node of the network.
Interest in phylogenetic networks comes partly

from a desire to reconstruct the evolutionary history
of a set of molecular sequences under a model that
is more complete than is the perfect phylogeny (tree)
model. But there are also more applied uses of phy-
logenetic networks. For example, in a population of
unrelated individuals, we want to determine which
parts of the individuals’ genomes came from a com-
mon ancestor. This determination helps locate regions
in the genome associated with genes contributing to
an observable trait (for example, a disease). Recombi-
nation in the population is a key element making this
possible, and understanding the history of the recom-
binations is the key to doing this kind of mapping.

1.2. Which Phylogenetic Networks Are
Biologically Informative?

It is easy to show that, for every binary matrix M ,
there is a phylogenetic network N that derives M
using ��nm� recombination nodes, but that is not of
great interest because in most evolutionary histories
the number of recombinations is thought to be rel-
atively small (on the order of the number of muta-
tions). Hence a more biologically informative problem
is to find, for input M , a phylogenetic network that
generates M , and that either has some biologically-
motivated structure, or uses the minimum number of
recombinations.

1.2.1. Galls in Phylogenetic Networks. If M can-
not be derived on a perfect phylogeny (a phyloge-
netic network with no recombinations), some cycles in
the underlying graph will be needed, but we would
like to deviate from a tree by as little as is necessary.
Rather than having a network with a complex inter-
leaving of cycles, it is preferable (if possible) to have
a tree with some extra edges, each creating a disjoint
cycle. Here we define this more formally.

Definition 1.2. In a phylogenetic network N , let
w be a node that has two paths out of it that meet
at a recombination node x. Those two paths together
define a “recombination cycle” Q. Node w is called
the “coalescent node” of Q, and x is the recombination
node of Q. The two sides (the P side and the S side)
of the cycle can be identified by the node labeled with
sequence P , and the node labeled with sequence S.
Clearly, a phylogenetic network must contain some

recombination cycle(s) if the input sequences M can-
not be derived on a perfect phylogeny.
Definition 1.3. A recombination cycle in a phy-

logenetic network that shares no nodes with any
other recombination cycle is called a “gall” (imagine
a wasp’s gall in a tree). We say a site i “appears” on
a gall Q if i labels one of the edges of Q. We use the
term “recombination cycle” for general phylogenetic
networks.
A gall in a phylogenetic network is locally a small

deviation from a perfect phylogeny—the subnetwork
that has a recombination cycle, but not a tangle of
multiple recombination cycles.
Definition 1.4. A phylogenetic network is called a

“galled tree” if every recombination cycle is a gall. See
Figure 2.

1.3. Prior Algorithm
In Gusfield et al. (2003) we developed an efficient
algorithm (O�nm+n3�-time) that determines whether
or not a set of input sequences M can be derived on
a galled tree. We have more recently shown (Gusfield
et al. 2004) that when there is a galled tree for input
M , the algorithm creates a galled tree that uses the
minimum possible number of recombinations, over

a: 00010
b: 10010
c: 00100
d: 10100
e: 01100
f:  01101

M

g: 00101

Conflict Graph for M

1    2    3    4    5

4

3

1
00100

a: 00010

10100

SP

52

P

00100

01101

S

c: 00100

d: 10100

f: 01101

g: 00101

00101
01100

e: 01100

4

10010

b:10010 3

00000

00010

Figure 2 A Galled-Tree Deriving the Same Sequences as the
Phylogenetic Network in Figure 1

Note. Unlike the example shown here, in general the recombinant sequence
exiting a gall may be on a path that reaches another gall.
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all possible phylogenetic networks for M with the
all-zero ancestral sequence. In Gusfield (2004), we
extended these results to the case that the ancestral
sequence is not known in advance.
More generally, we showed that if a set of sites can

be arranged on a gall in some phylogenetic network,
then those sites must correspond to all the nodes in a
single connected component of a conflict graph, and that
corresponding connected component must have cer-
tain structural properties, such as being bipartite. We
also gave an algorithm to determine how those sites
can be arranged on a gall, if possible. Hence galls are a
structural feature (and essentially the only one) of phy-
logenetic networks that are fairly well understood.

1.4. Main Results
Because so little about the structure of phylogenetic
networks is understood, and because phylogenetic
networks are important for a variety of biological
applications, we want to continue developing our
understanding of galls in general phylogenetic net-
works, and their relation to the conflict graph.
In this paper, through a deeper analysis of the com-

binatorial structure of galls and conflict graphs, we
strengthen the previous necessary conditions for a set
of sites to be arrangeable on a gall in some phylo-
genetic network, and we develop a faster and more
informative algorithm for arranging the sites on a
gall. In particular, the algorithm in this paper for
arranging c sites on a gall takes O�cn+ c log c� time,
compared to the prior algorithm which takes O�c2n�
time. Further, we prove that a connected component
of the conflict graph that corresponds to a gall in some
phylogenetic network must be bi-convex. It also fol-
lows that M can be derived on a galled tree only if
the conflict graph for M is bi-convex. That result also
has consequences for speeding up the solution to the
maximum site-consistency problem (Day and Sankoff
1986).

2. Combinatorial Background
We organize M into a matrix, where each row con-
tains a sequence in M , and assume there are no dupli-
cate columns, and that each column has at least one
entry that is one.

2.1. Background and Major Combinatorial Tool
Definition 2.1. Two columns (or sites) in M are

said to “conflict” if and only if the two columns con-
tain three rows with the pairs 1, 1; 0, 1; and 1, 0. A site
is called “conflicted” if it is involved in at least one
conflict, and is otherwise called “unconflicted.”
Recall that a perfect phylogeny is a phylogenetic

network without recombinations. Hence, as a graph,
it is a directed rooted tree. The following is the clas-
sic necessary and sufficient condition for the existence

of a perfect phylogeny deriving a set of sequences
M . (See Gusfield 1991, 1997; Semple and Steel 2003;
Felsenstein 2004 for discussions of this result.)

Theorem 2.1. There is a perfect phylogeny deriving M
if and only if matrix M contains no conflicted sites. Fur-
ther, if there is a perfect phylogeny for M and all columns
of M are distinct, then there is a unique perfect phylogeny
for M , and each edge is labeled by at most one site. If there
are identical columns, then the perfect phylogeny is unique
up to any ordering given to multiple sites that label the
same edge.

Hence it is the existence of conflicts in M that
require a deviation from the perfect phylogeny model,
and, in this paper, require recombinations in order to
derive a history of M .
We next define the conflict graph and its connected

components.
Definition 2.2. The conflict graph G contains one

node for each site in M . We label each node of G by
the site it represents. Two nodes i and j are connected
by an undirected edge if and only if sites i and j con-
flict. See Figure 2.
Definition 2.3. A connected component C of G is

a maximal subgraph of G such that for any pair of
nodes in C there is at least one path between those
nodes in G. A trivial connected component has only
one node, and no edges, and the site associated with
that node is unconflicted.

2.2. Prior Structural Results
The main result established in Gusfield et al. (2003,
2004) is a one-to-one correspondence between the
nontrivial connected components of G and the galls
in a galled tree. More generally, if a gall in a phyloge-
netic network for M contains a site from one (nontriv-
ial) connected component C of the conflict graph for
M , then it contains all the sites from C, and contains
no sites from another (nontrivial) connected compo-
nent. Further, no gall need to contain any uncon-
flicted sites. That is, if a gall contains an unconflicted
site, then that site can be moved off the gall to an
edge incident with the gall, without changing the
placement of any other sites on the gall. Throughout
this paper, we will assume that no gall contains any
unconflicted sites.
The algorithmic consequence of these results is that,

when constructing a galled tree for M (if there is
one), we can focus on each nontrivial connected com-
ponent separately, knowing that those sites can be
placed together on one gall, and that gall will con-
tain no other sites. If M cannot be derived on a galled
tree, but can be derived on a phylogenetic network N
that contains some galls, then the sites on any gall in
N are precisely the sites of one nontrivial connected
component. Hence, when M cannot be derived on a
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galled tree, each nontrivial connected component of
the conflict graph nonetheless contains a set of sites
that are candidates to appear together on a gall in a
phylogenetic network for M . The key task, then, is to
determine if those sites can actually appear together
on a gall and, if so, how to arrange those sites on a
gall. Therefore in this paper, we restrict attention to a
single connected component of the conflict graph and
derive a strong necessary condition for those sites to
appear on a gall, and an algorithm for determining
how they can be arranged on the gall.

2.3. Combinatorial Constraints on Galls
In Gusfield et al. (2003, 2004) we established several
technical results that we will need in this paper. We
review, without proof, those needed results.

Lemma 2.1. Let Q be a gall in a phylogenetic net-
work N and v be a node on Q. Define N ′ as the subnetwork
of N consisting of all nodes and edges reachable by directed
paths from v, not using any edges in Q. If a site i appears
on Q, then the state of site i at every node in N ′ is the
same as at node v.

Definition 2.4. Let C be a set of sites on a gall Q,
and let the matrix M�C� be matrix M restricted to the
sites in C, and let M�C� − 0 be M�C� after removal
of any all-zero sequence (if there is one) in M�C�.
Given a phylogenetic network for M , let Sv�C� denote
the sequence labeling node v, restricted to the sites
in C.
Lemma 2.1 implies the following:

Corollary 2.1. A sequence is in M�C�−0 if and only
if it is the sequence Sv�C� for some node v on Q, where v
is not the coalescent node of Q. Stated differently, the node
labels at the noncoalescent nodes on Q, restricted to sites
in C, are exactly the sequences in M�C�− 0.

Corollary 2.1 is important because it says that infor-
mation about the (interior) node labels on any gall is
reflected in some sequences at the leaves, and hence
that information is contained in extant sequences.
This is a property of galls that does not generalize to
every nongall recombination cycle, and is intuitively
one of the reasons why problems concerning galls and
galled trees have efficient solutions. Because we have
assumed that the ancestral sequence is the all-zero
sequence, Sw�C� is the all-zero sequence, where w is
the coalescent node of C.
Definition 2.5. A node v on a recombination cycle

Q is called a branching node if there is a directed edge
�v�v′� where v′ is not on Q.
The following theorem from Gusfield et al. (2003,

2004) is the technical key to most of the analysis of
the combinatorial structure of galls.
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Figure 3 The Three Cases for Theorem 2.2
Note. In each case, the recombination point rx is between i and j .

Theorem 2.2. Let N be a phylogenetic network for M .
Suppose sites i and j > i are together on some gall Q (with
recombination node x) in N . Then sites i and j conflict if
and only if the following conditions hold:
(a) i < rx ≤ j .
(b) Sites i and j are arrayed on Q in one of the following

three ways (see Figure 3):
W1: Site i is on the P side and j is on the S side

of Q, and there is a branching node between i and x, and
a branching node between j and x. Note: in this case, the
i� j state pair in the recombinant sequence is 1�1.

W2: Sites i and j are both on the P side with j above i
(i.e., j mutates before i does), and there is a branching node
between j and i, and a branching node between i and x. In this
case the i� j state pair in the recombinant sequence is 1�0.

W3: Sites i and j are both on the S side with i above j ,
and there is a branching node between i and j , and a
branching node between j and x. The state pair in this case
is 0�1.

Lemma 2.2. Let C be a nontrivial connected component
of the conflict graph for M , whose sites appear on a gall Q
in a phylogenetic network for M . Then C must be bipartite,
and the bipartition is unique: the (indices of the) sites on
one side of the bipartite graph must be strictly smaller than
the sites on the other side.

Definition 2.6. Given the bipartite graph for C, we
call the side containing the smaller sites the L (left)
side, and the other side the R (right) side.
It is easy to find the bipartition and select r : let p be

the largest (by index) node in C that is connected only
to larger nodes in C, and let q be the smallest node
in C that is connected only to smaller nodes. Then r
can be chosen to be any integer strictly larger than
p and less or equal to q, and this defines L and R.
The permitted range for r is called the recombination
interval of C.

3. Arranging the Sites of C on Q
This section begins the development of the new
results in this paper. Here we look in detail at how the
sites on a connected component C can be arranged on
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the gall Q. In Gusfield et al. (2003, 2004) we showed
that, except for degenerate cases, the arrangement is
unique, and in any case, there are essentially at most
three ways to arrange the sites. In this paper we go
further, by exactly characterizing what those permit-
ted arrangements are, also obtaining a faster algo-
rithm for finding those arrangements.
Definition 3.1. Let N be a fixed phylogenetic net-

work for M , and Q be a gall in N containing the
sites on the connected component C of the conflict
graph. We define PL ⊆ L to be all the sites in L that are
together on the P side of Q, and define PR ⊆ R to be
all the sites in R that are together on the P side of Q.
Similar definitions apply for SL and SR.
Note that any one of these sets may be empty, but

at most one of PL or SL can be empty, and at most one
of PR and SR can be empty, because both L and R are
nonempty.

3.1. The Canonical Arrangement
Suppose we know the sets PL, PR, SL, and SR on Q in a
phylogenetic network N (how we identify these sets
will be discussed later). We will characterize all the
possible ways that these sites may be arranged on Q.
Here we discuss in detail the sites in PL and PR. The
case for sets SL and SR is symmetric.
Definition 3.2. For a site i, ONE�i� is the number of

ones in column i.

Lemma 3.1. Suppose set PL has at least two sites. On
Q, the mutation for a site i ∈ PL must occur before (above)
the mutation for a site i′ ∈ PL if and only if ONE(i) >
ONE(i’). Similarly, the mutation for a site j ∈ PR must
occur before the mutation for a site j ′ ∈ PR if and only if
ONE(j)> ONE(j’).

Proof. Suppose i occurs before i′ on the P side
of Q. Let v be any node on Q below mutation i,
where v is not the recombination node of Q. Let �v�v′�
be any edge where v′ is not on Q. We say that the
edge �v�v′� branches off of Q. Then both i and i′ have
state one at v′, and by Corollary 2.1, every leaf below
v′ contributes one to both ONE(i) and ONE(i’). But
because i occurs before i′, and no two columns in M
are identical, there must be a branching node between
the mutations for i and i′. Then, by Corollary 2.1,
the leaves reachable from that branch contribute to
ONE(i) but not to ONE(i’). These statements also hold
for ONE(j) and ONE(j’). Now consider the recombi-
nation node x of Q, and note that the states of both i
and i′ are one at x, and the states of both j and j ′ are
0 at x. Hence every leaf below x that contributes to
ONE(i) also contributes to ONE(i’), and none of those
leaves contribute to either ONE(j) or ONE(j’). This
proves that ONE(i) > ONE(i’). Similarly, if i′ occurs
before i on P , then ONE(i’)> ONE(i). Because i either
occurs before i′, or i′ occurs before i, the Lemma is
proved. �

Definition 3.3. The internal arrangement of PL

refers to the order in which the sites in PL occur on
gall Q, ignoring any sites of PR, and a similar defini-
tion applies for the internal arrangement of PR.
Lemma 3.1 says that, given PL, the internal arrange-

ment of PL is forced, and can be constructively deter-
mined, as can the internal arrangement of PR. Hence,
we can unambiguously refer to the kth site of PL on
Q, or the lowest k sites of PL, etc.
Definition 3.4. Let F �PL� and F �PR� be lists con-

taining the sets PL and PR ordered by their ONE counts,
largest first. These two lists specify the forced internal
arrangements of PL and of PR on Q.
Because the internal orders of PL and PR are fixed,

the arrangement of sites on the P side of Q consists
of an interleaving of the lists F �PL� and F �PR�. We next
examine how PL and PR are permitted to interleave
on Q. Note that for a pair of sites i ∈ PL and j ∈ PR, the
values ONE(i) and ONE(j) do not completely deter-
mine the relative order of sites i and j on P . In par-
ticular, it can happen that j occurs before i on P , and
yet ONE(j) < ONE(i) because the state of site j ∈ PR

becomes zero at the recombination node x of Q, and
remains at zero in the subtree rooted at x, while the
state of i remains one at and below x.
Definition 3.5. For any site j ∈ PR, let kj denote the

number of sites in PL with which site j conflicts.
In the case that at least one of PL and PR is

nonempty, we determine an arrangement (which we
call the canonical arrangement) of PL and PR on the P
side of Q as follows:
In the order that they are in F �PR�, place each site j

in PR (somewhere) below the previously placed site
from F �PR�, and immediately above the lowest kj sites
of PL. (Note that kj is at least one, by Theorem 2.2 and
the fact that every site in PR is conflicted.)
By the necessary direction of Theorem 2.2, the

canonical arrangement of PL and PR is consistent with
the conflicts with which PL and PR are involved, but
in order to comply with the sufficient direction of
Theorem 2.2, we must specify where branching nodes
and edges occur on P .

3.1.1. Adding in the Branching Nodes. By the
assumption that no two columns are identical, there
must be a branching edge between any consecutive
sites on Q that are both in PL, and similarly between
any consecutive sites that are both in PR. By construc-
tion, if a site s ∈ PR is just above a site t ∈ PL, then s
and t conflict (according to C), and so by Theorem 2.2
we need to put a branching node and edge (branch-
ing off of Q) between sites s and t. This leaves only
the case of two consecutive sites s and t where s ∈ PL

and t ∈ PR. We must determine if a branching node
and edge should be placed between these two sites.
Note that the last site t′ on the P side must be in

PL by Theorem 2.2 and the fact that every site in PR
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is conflicted. It follows that s� t, and t′ are three dis-
tinct sites arranged in that relative order on the P
side of Q. If there were a branching node and edge
between s and t, then by Corollary 2.1, there would be
a sequence in M with the �s� t� t′� state triple �1�0�0�.
Now note that the �s� t� t′� state triple is �1�1�0� at
nodes below t and above t′ on the P side; it is �1�1�1�
at the node below t′ and above x on P ; and it is
�1�0�1� at x. Therefore, we should place a branch-
ing node and edge between s and t if and only if
there is a sequence in M with the �s� t� t′� state triple
of �1�0�0�. Finally, as established in Theorem 2.2, a
branching node and edge must be placed below the
last site on the P side of Q.
The time needed to determine the branching node

and edge placements is constant unless s is in PL and
t is in PR, in which case the time is O�n� for such a
consecutive pair, and O�n�C�� for the entire gall Q.
The definition of t′ as the last site on the P side sim-
plifies the implementation and the achievement of the
claimed time bound.
Note that the above rules cover the cases where one

of PL or PR is empty. Of course, if both are empty, then
no sites or branching edges are placed on the P side
of Q.
If either of SL or SR is nonempty, then we can sim-

ilarly establish an arrangement of these sets on the
S side of Q. The only modification to the method
described for the P side, is that the roles of L and R
are reversed. Summarizing what has been established
so far, we have:

Theorem 3.1. Let C be a nontrivial connected compo-
nent of the conflict graph, and let Q be the gall containing
those sites. Assuming we know the partition of C into the
sets PL�PR�SL, and SR, the canonical arrangement of those
sets creates all and only the conflicts specified in C.

Proof. By Theorem 2.2, the canonical arrangement
places the sites, nodes, and branches on Q in a
way that creates the required conflicts between PR�PL

pairs, and between SL� SR pairs. By the assumption
that we know the sets PL�PR�SL, and SR, and the fact
that every site in C is in conflict, every PL�SR pair
must be in conflict in C, and the canonical arrange-
ment creates the conditions for those conflicts as well.
Using Theorem 2.2 and the rules of the canonical
arrangement, we see that no conflicts are created on
Q that are not specified by edges in C. �

Theorem 3.1 says that the canonical arrangement
produces the pattern of conflicts and nonconflicts
given in C. But, in general, having the same pattern
of conflicts is not a sufficient condition for creating
the needed sequences. We now address that issue.

Theorem 3.2. If there is a phylogenetic network N for
M where the sites of C appear on a gall Q, and the sites

are partitioned into the sets PL�PR�SL and SR, then there
is a phylogenetic network for M where the sites on Q are
arranged as in the canonical arrangement. Further, all other
arrangements of sites of Q that can be in a phylogenetic
network for M and use the same partition, can be cre-
ated from the canonical arrangement by one or more local
switches of neighboring sites that have no branching node
between them.

Proof. Note that most details of the canoni-
cal arrangement are forced by Theorem 2.2 and
Lemma 3.1. Those forced details must be the same
as in the assumed arrangement of Q in N . The only
nonforced aspect of the canonical arrangement occurs
if there is a consecutive s� t pair of sites (with s ∈ PL

and t ∈ PR) with no branching node between them. In
that case, we can interchange the positions of s and
t to create another arrangement that keeps the same
pattern of conflicts and nonconflicts, and generates
exactly the same sequence labels on the nodes of Q.
Further, this interchange is the only change from the
canonical arrangement in which either s or t can par-
ticipate. To see this, note that by the rules for placing
branching nodes and edges, either s is the first site
on the P side, or there must be a branching node and
edge just above s in the canonical arrangement. Sim-
ilarly, there must be a node and branching edge just
below t. So, only the canonical arrangement and the
arrangements created from the canonical arrangement
by these local switches (if any) are consistent with the
pattern of conflicts in C, and the fixed partition of
sites into sets PL�PR�SL, and SR. Moreover, all these
arrangements produce the same sequence labels at the
nodes of Q. It follows that, if there is a phylogenetic
network for M containing a gall with the partition
PL�PR�SL, and SR in Q, then there is a phylogenetic
network for M where the sites on Q are arranged
as in the canonical arrangement. Further, this gives
a characterization of all the possible arrangements
of those sites on Q, given the partition PL�PR�SL,
and SR. �

In most cases, if there is no branching node and
edge between two consecutive sites (one in L and one
in R), the specific ordering of those two sites cannot
be known and we often consider that two sites on the
same edge appear unordered. With that viewpoint,
we conclude:

Corollary 3.1. If multiple sites on the same edge are
considered unordered, then a fixed partition of L and R into
sets PL�PR�SL, and SR (along with M), forces the arrange-
ment of sites on Q.

3.2. Identifying the Permitted Partitions
Definition 3.6. An arrangement of the sites on Q

is called permitted if it occurs in some phylogenetic
network N for M . A partition of the sites in L and
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in R into sets PL�SL�PR, and SR is called permitted if
it occurs in some permitted arrangement of the sites
on Q.
Above, we assumed we knew how the sites were

partitioned into sets PL�PR�SL, and SR, and showed
how to arrange those sites on Q. Now we focus on
how to identify permitted partitions.
To begin, we establish that for any pair of sites i� i′

in L, either i and i′ are on the same side of Q in all
permitted arrangements of Q, or they are on opposite
sides of Q in all permitted arrangements. Moreover,
we can determine efficiently which of the two cases
hold. Similar statements are true for R.

Lemma 3.2. A pair of sites i� i′ in L must be on the
same side of Q in all permitted arrangements of Q if and
only if there is a row in M that has a one for both i and i′.

Proof. Suppose i and i′ are on the same side of
Q, and without loss of generality, suppose mutation i
occurs before mutation i′. By Theorem 2.2, there must
be a branching edge off Q below the last conflicted
site on both sides of Q. At that branching node both
sites i and i′ are set to one. By Corollary 2.1, there will
be a sequence in M where the �i� i′� state pair is 1,1.
Conversely, if i and i′ are on opposite sides of Q,

then at the recombination node x of Q, one parent
node of x has �i� i′� state pair of �0�1� and the other
parent has state pair �1�0�. Because both i and i′ are
in L, the recombination point does not occur between
i and i′ and hence at the recombinant node x the �i� i′�
state pair must be equal to what it is at the parent of
x on the P side of Q. Therefore, the nodes labels on
Q will contain only the �i� i′� state pairs �0�0�� �1�0�,
and �0�1�, and so by Corollary 2.1, no row in M will
have a one for both i and i′. Hence, if there is a row
in M where both sites i and i′ have value one, then
both i and i′ must be on the same side of Q. �

Therefore, in O�n� time, we can determine if i and
i′ must be together on one side of Q or on separate
sides of Q in any permitted arrangement of Q. By
fixing a single site in L as a reference, �L� − 1 such
checks determine that all of L must be together on
one side of Q (in which case we assign L to L1), or
to partition L into two sets (L1 and L2) that must be
on opposite sides of Q. So in O�n�L�� time, we can
uniquely partition the elements of L into sets L1 and
L2. Similarly, we can examine and uniquely partition
the elements of R, in O�n�R�� time into sets R1 and R2.
Note that by convention, L1 and R1 are never empty,

but L2 and R2 might be empty.
In each component C, the time to partition L and R

into sets L1�L2�R1 and R2 is O�n�C��.
3.3. Assigning L1�L2�R1, and R2 to PL�PR�SL,

and SR

Now we develop an efficient algorithm to find all
the ways in which L1�L2�R1 and R2 can be assigned
to PL�SL�PR and SR, and hence all the permitted

partitions of L and R. The analysis is broken into a
number of cases, depending on whether L2 or R2 are
nonempty, and whether any of the four sets has only
one element. We start with two needed definitions.
Definition 3.7. We let f �L1� be the site in L1 whose

ONE count is largest over all sites in L1, and define
l�L1� to be the site in L1 whose ONE count is smallest
over all sites in L1. Analogous definitions and facts
hold for sites f �L2�, f �R1�, f �R2�, as well as for l�L2�,
l�R1�, and l�R2�.
Note that all of these defined sites (if they exist) can

be efficiently identified. By Lemma 3.1, f �L1� must be
placed on Q before any other site in L1, and site l�L1�
must be placed on Q after all other sites in L1.

Definition 3.8. For a given set PL, we let f �PL� be
the first site (topmost in Q) in PL, and let l�PL� be the
last site (lowest) in PL. Analogous definitions hold for
f �PR�, l�PR�, f �SL�, l�SL�, f �SR�, and l�SR�.
By Lemma 3.1, these are all well defined (if they

exist).

3.3.1.
Case 1. �L1�, �R1�, �L2�, and �R2� ≥ 1.

On the assumption that the sites in C appear on a
gall in a phylogenetic network N for M , and that each
site in C is conflicted, we know from Theorem 2.2
that every site in PR conflicts with some site in PL

and no other sites; similarly, every site in SL conflicts
with some site in SR and no other sites. Further, every
site in PL conflicts with every site in SR, and no site
in PR conflicts with any site in SL. Therefore, we can
find the sets PR and SL as follows: For each of the
four combinations of p and q, where each p and q is
either one or two, take any site i in Lp and any site j
in Rq , and determine whether site i conflicts with no
sites in Rq , and j conflicts with no sites in Lp. By the
above argument, this will be true for exactly one of
the four p� q combinations, and for that combination,
PR = Rq and SL = Lp. Knowing which set is PR and
which set is SL also determines which set is PL and
which is SR because L1 and L2 must be on opposite
sides of Q, and R1 and R2 must also be on opposite
sides.
Note that in Case 1, the time needed to determine

the partition is O�n�.

3.3.2.
Case 2. �L2� = 0 and �L1�� �R1�� �R2� ≥ 1.

By Theorem 2.2, the only way that sites in both R1
and R2 can be in conflict is for L1 to be PL. We must
determine whether R1 is PR or SR.

3.3.3.
Case 2a.

We consider first the subcase where �L1� ≥ 2. We
claim that R1 = PR if and only if there is a sequence
in M that has 1,1,0 for the sites f �L1�� l�R1�� l�L1�,
respectively.
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To prove this, suppose first that R1 = PR. Note that
l�PR� must be above l�PL� and there must be a branch-
ing node between them for site l�PR� to be conflicted.
There must also be a branching node between f �PL�
and l�PL� because otherwise their columns would
be identical in M . Now l�PR� may or may not be
above f �PL�, but in either case, at the branching
node just below the lower of those two sites the
�f �PL�� l�PR�� l�PL�� state triple will be 1,1,0, and by
Corollary 2.1, there will be a sequence in M with that
state triple. However f �PL� is f �L1� and l�PL� is l�L1�,
and on the assumption that R1 = PR, l�PR� is l�R1�, so
this part of the proof is complete.
Conversely, if R1 = SR, then f �L1� and l�R1� can both

have state one only at the recombination node for Q,
where l�L1� also has state one. So by Corollary 2.1,
there will be no sequence in M with the required state
triple.
Note that the time needed to implement Case 2a is

O�n�.

3.3.4.
Case 2b.

Now consider the subcase where �L1� = 1. Clearly,
every site in R conflicts with the single site in PL, and
by Theorem 2.2, all sites in PR must be above the sin-
gle site in PL. In this case, either set R1 or R2 could be
assigned to PR, and the other set assigned to SR. That
is, the data at the conflicted sites in C do not exclude
either possibility. In this case, there are two permitted
partitions of R into PR and SR. The time to find these
is constant.

3.3.5.
Case 3. �R2� = 0 and �R1�� �L1�� �L2� ≥ 1.

This is symmetric to Case 2, and left to the reader.

3.3.6.
Case 4. �L2� = �R2� = 0 and �L1�� �R1� ≥ 1.

By Theorem 2.2 and Corollary 3.1, L1 and R1 can be
assigned in only three possible ways, as follows:
(i) L1 = PL and R1 = PR (interleaved on the P side

as in the canonical arrangement).
(ii) L1 = SL and R1 = SR (interleaved on the S side

as in the canonical arrangement).
(iii) L1 = PL and R1 = SR.
We will show now that when both L1 and R1 have

at least two sites, only one of these three assignments
is possible and we can efficiently determine which
one. However, if one of the sets has a single site and
the other has at least two sites, then at most two
assignments are possible, and if both sets have only a
single site, then all three assignments are possible.

3.3.7.
Case 4a.

�L1� and �R1� ≥ 2. Arrangement (i) implies that there is
a sequence in M where sites l�R1� and f �L1� are both

one, but site l�L1� is zero. However, such a sequence
could not exist if the sites are assigned as in (ii) or
(iii). To exclude (ii), note that l�SL� must appear before
l�SR� because l�SL� is conflicted, so l�SL� cannot be zero
while l�SR� is one except at the recombination node.
But at the recombination node, both f �SL� and l�SL�
will be zero. To exclude (iii), note that f �SR� and f �PL�
can be only at the recombination node, where l�PL�
must also be one. So, under the assumption that the
sites of C appear on a gall Q, L1 and R1 must be
assigned as in assignment (i) if and only if there is
such a sequence in M .
Symmetrically, L1 and R1 must be assigned as in

assignment (ii) if and only if there is a sequence in M
where l�L1� and f �R1� are both one, but l�R1� is zero.
If neither such sequence is in M , then L1 and R1

must be assigned as in assignment (iii). Note that the
time to determine the assignment is O�n�.

3.3.8.
Case 4b.

�L1� = 1 but �R1� ≥ 2.
Only assignment (ii) is possible if there is a

sequence in M that has 1,1,0 for L1� f �R1�� l�R1�. Oth-
erwise, assignments (i) and (iii) are both possible. The
time for this case is O�n�.
The case when �L1� ≥ 2 but �R1� = 1 is symmetric.

3.3.9.
Case 5.

�L1� = �R1� = 1. In this case, the data from the sites in C
do not exclude any of the three assignments detailed
in Theorem 2.2.
Because neither L1 nor R1 is empty, we have cov-

ered all the possibilities, and have detailed all the
ways in which the sites of C can be partitioned into
the sets PL�SL�PR, and SR. In summary, we have estab-
lished the following:

Theorem 3.3. If the sites in C can be arranged on a gall
in a phylogenetic network, there are at most three permitted
partitions of L and R into sets PL�SL�PR, and SR, and we
can find these partitions in O�n� time.

Proof. The partition of L into two sets L1 and L2
was forced, except for the names of the two sets. The
same holds for the partition of R into R1 and R2. The
analysis of how L1�L2�R1, and R2 could be assigned
to PL�SL�PR, and SR showed that there were at most
three possible assignments. �

Theorem 3.3 bounds the number of permitted
arrangements from above, but it doesn’t establish that
each of the partitions discussed in the five cases above
(when the case applies) actually leads to a permitted
arrangement, if there is one.We now establish that fact.

Theorem 3.4. Let C be a connected component of the
conflict graph. If there is a phylogenetic network N for M
where the sites of C appear on a gall, then each partition
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enumerated in the five cases is a permitted partition, i.e.,
when the appropriate case applies, the partition detailed in
that case can be used to create a permitted arrangement of
the sites on Q.

Proof. The claim is trivially true when the parti-
tion is forced, as in cases 1, 2a, 3, and 4a. However in
cases 2b, 4b, and 5, the partition is not forced, and we
must show that each partition enumerated in those
cases is a permitted partition. We will prove this for
Case 2b in detail. The other cases are similar, and left
to the reader.
Suppose Case 2b applies, and suppose that in the

arrangement of conflicted sites on Q, the sites in R1
are above the single L1 site on the P side of Q, and
the sites in R2 are on the S side. Let v be the branch-
ing node just below the L1 site, and let A denote the
directed subnetwork hanging off of Q at node v. Let
B denote the subnetwork hanging off the recombina-
tion node x of Q. If we now move the L1 site to below
the R2 sites, but above the last branching node on the
S side, and reassign that side to be the P side (and
the other side the S side), and we exchange the sub-
networks A and B (i.e., hanging A off of x, and B
off of the node just below L1), the resulting network
will again be a phylogenetic network for M . In the
new arrangement, set R2 is above the L1 site on the
P side, and set R1 is on the S side. Thus, there is a
phylogenetic network for both assignments enumer-
ated in Case 2b. By symmetry, the transformation can
be made in the opposite direction as well, and hence
the theorem is proved when Case 2b applies. �

Theorem 3.5. If the c sites on a connected component
C can be arranged on a gall in a phylogenetic network, then
as long as multiple sites on the same edge are unordered,
the sites can be arranged in at most three ways, and we
can find those arrangements in O�cn+ c log c� time.

Proof. Corollary 3.1 established that the canonical
arrangement of the sites on Q was forced given the
partition of sites into sets PL�SL�PR, and SR. The time
to implement the canonical arrangement is O�cn�.
Theorem 3.3 established that L and R can be parti-
tioned in at most three ways. The time to establish the
partitions is O�n�. Both tasks assumed that the sites in
L and R were respectively sorted by their ONE counts.
That requires O�c log c� time, although in a practical
implementation we would sort all the sites of M first
to get a better overall time bound for arranging all
the galls. �

4. Bi-Convexity
We now establish a strong necessary structure that a
connected component of the conflict graph must have
in order for its sites to be arranged on a gall in a
phylogenetic network.

Definition 4.1. A bipartite graph with node sets A
and B is called convex for B if the nodes of B can be
ordered so that, for each node i ∈A, the set of nodes
in B to which i is adjacent form a closed interval in B.
That is, i is adjacent to j and j ′ > j in B if and only if
i is adjacent to all nodes in the closed interval %j� j ′&.
A bipartite graph is called bi-convex if sets A and B
can be ordered so that it is simultaneously convex for
A and convex for B.
Bi-convex graphs are perfect graphs and are a sub-

set of the chordal bipartite graphs (Dragan 2000),
which have structure that can be exploited to develop
particularly efficient algorithms for problems that are
otherwise NP-hard. We are interested in bi-convex
graphs partly because of such speed-ups, but mostly
because we are interested in how structures in the
conflict graph influence structures in a phylogenetic
network.

Theorem 4.1. Let G be a conflict graph for a matrix M
that can be derived on a galled tree. Then any connected
component C in G is bi-convex, and so G is also bi-convex.
More generally, if C is a connected component of G and the
sites on C appear on a gall in some phylogenetic network
for M , then C must be bi-convex.

Proof. Let Q be the gall corresponding to a compo-
nent C. The pairwise conflicts created by the canoni-
cal arrangement of sites on Q are exactly the conflicts
specified by the edges in C, so we can use the canon-
ical arrangement to prove the theorem. As already
noted, C must be bipartite, with nodes in L = PL ∪ SL

on one side and R= PR ∪ SR on the other side of C.
Let BC be the bipartite graph obtained from C

by ordering the nodes of C as follows. In each set
PL�PR�SL, and SR that is nonempty, order the nodes
according to their ONE values, largest first; then place
the nodes of SR before the nodes of PR, and place the
nodes of PL before the nodes of SL. In the canonical
arrangement of sites on Q, each site i in PL conflicts
with every site in SR, and with every site in PR that
is above it in the canonical arrangement. Therefore
node i in SL is adjacent to every node in SR, and some
initial interval of nodes in PR, so the set of nodes adja-
cent to i form a closed interval of nodes. Similarly,
each node i′ in SL is adjacent to some ending interval
of nodes in SR and to no nodes in PR, so the set of
nodes adjacent to i′ form a closed interval. Hence BC
is convex for R. Each node j in PR is adjacent to some
ending interval of nodes in PL and to no others; and
each node j ′ in SR is adjacent to every node in PL and
to an initial interval of nodes in SL, so BC is convex
for S. Hence, C is bi-convex. �

4.1. Site Consistency
A node cover of a graph is a set of nodes V such that
every edge in the graph touches at least one node
in V . A minimum node cover is a node cover with the
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fewest nodes. It is easy to see that the minimum num-
ber of columns to remove from M so that no conflicts
remain is given by a minimum node cover of the con-
flict graph. This is called the site-consistency problem,
and it is NP-hard in general (Day and Sankoff 1986).
However, the node cover problem can be solved in
polynomial time (by network flow) on any bipartite
graph, and in linear time when the graph is chordal
bipartite, given some additional information about
the graph (Dragan 2000). This approach gives a solu-
tion to the site-consistency problem that is faster than
by network flow, for chordal bipartite graphs, and we
conjecture that the problem can be solved in linear
time, when M can be derived on a galled tree.
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