
Algorithms for estimating and
reconstructing recombination in

populations

Dan Gusfield
UC Davis

Different parts of this work are joint with Satish Eddhu, Charles
Langley, Dean Hickerson, Yun Song, Yufeng Wu, Z. Ding

IWBRA 2006, May 29, Reading
England

Reconstructing the Evolution of
SNP (or SFP) Sequences

• Part I: Clean mathematical and algorithmic
results: Galled-Trees, near-uniqueness, graph-
theory lower bound, and the Decomposition
theorem

• Part II: Practical computation of Lower and
Upper bounds on the number of recombinations
needed. Construction of (optimal) phylogenetic
networks; uniform sampling; haplotyping with
ARGs

• Part III: Applications
• Part IV: Extension to Gene Conversion

The Perfect Phylogeny Model for
 SNP sequences

00000
1

2

4

3

510100

10000
01011

00010

01010

12345sites
Ancestral sequence

Extant sequences at the leaves

Site mutations on edges
The tree derives the set M:
10100
10000
01011
01010
00010

Only one mutation per site
allowed.

 Classic NASC: Arrange the sequences in a
matrix. Then (with no duplicate columns),
the sequences can be generated on a unique
perfect phylogeny if and only if no two
columns (sites) contain all four pairs:

 0,0 and 0,1 and 1,0 and 1,1

 This is the 4-Gamete Test

When can a set of sequences be
derived on a perfect phylogeny?

A richer model

00000
1

2

4

3

5
10100

10000
01011

00010

01010

1234510100
10000
01011
01010
00010
10101 added

Pair 4, 5 fails the four
gamete-test. The sites 4, 5
``conflict”.
Real sequence histories often involve recombination.

M

10100 01011

5

10101

The first 4 sites come from P (Prefix) and the sites
from 5 onward come from S (Suffix).

P S

Sequence Recombination

A recombination of P and S at recombination point 5.

Single crossover recombination

Network with Recombination

00000
1

2

4

3

5
10100

10000
01011

00010

01010

1234510100
10000
01011
01010
00010
10101 new

10101

The previous tree with one
recombination event now derives
all the sequences.

5

P

S

M

A Phylogenetic Network or ARG
00000

5
2

3

3

4S
p

P
S

1

4
a:00010

b:10010
c:00100

10010

01100

d:10100

e:01100

00101

01101

f:01101

g:00101

00100

00010

If not a tree, is something very
tree like possible?

If the set of sequences M cannot be derived
on a perfect phylogeny (true tree) how
much deviation from a tree is required?

We want a network for M that uses a small
number of recombinations, and we want the
resulting network to be as ``tree-like” as
possible.

4

1

3

2 5

a: 00010

b: 10010

d: 10100

c: 00100

e: 01100

f: 01101

g: 00101

A tree-like network
for the same
 sequences generated
by the prior network.

2

4

p s

p
s

Recombination Cycles

• In a Phylogenetic Network, with a
recombination node x, if we trace two
paths backwards from x, then the paths will
eventually meet.

• The cycle specified by those two paths is
called a ``recombination cycle”.

Galled-Trees

• A phylogenetic network where no
recombination cycles share an edge is
called a galled tree.

• A cycle in a galled-tree is called a gall.
• Question: if M cannot be generated on a

true tree, can it be generated on a galled-
tree?

Results about galled-trees
• Theorem: Efficient (provably polynomial-time) algorithm

to determine whether or not any sequence set M can be
derived on a galled-tree.

• Theorem: A galled-tree (if one exists) produced by the
algorithm minimizes the number of recombinations used
over all possible phylogenetic-networks.

• Theorem: If M can be derived on a galled tree, then the
Galled-Tree is ``nearly unique”. This is important for
biological conclusions derived from the galled-tree.

Papers from 2003-3005.

 Elaboration on Near Uniqueness
Theorem: The number of arrangements (permutations) of the
sites on any gall is
at most three, and this happens only if the gall has two
sites.

If the gall has more than two sites, then the number of
arrangements is at most two.

If the gall has four or more sites, with at least two sites
on each side of the recombination point (not the side of
the gall) then the arrangement is forced and unique.

Theorem: All other features of the galled-trees for M are invariant.

A whiff of the ideas behind the
results

Incompatible Sites

A pair of sites (columns) of M that fail the
4-gametes test are said to be incompatible.

A site that is not in such a pair is compatible.

0 0 0 1 0
1 0 0 1 0
0 0 1 0 0
1 0 1 0 0
0 1 1 0 0
0 1 1 0 1
0 0 1 0 1

1 2 3 4 5
a
b
c
d
e
f
g

1 3

4

2 5

Two nodes are connected iff the pair
of sites are incompatible, i.e, fail the
 4-gamete test.

Incompatibility Graph G(M)

M

THE MAIN TOOL: We represent the pairwise
incompatibilities in a incompatibility graph.

The connected components of
G(M) are very informative

• Theorem: The number of non-trivial connected
components is a lower-bound on the number of
recombinations needed in any network.

• Theorem: When M can be derived on a galled-
tree, all the incompatible sites in a gall must
come from a single connected component C, and
that gall must contain all the sites from C.
Compatible sites need not be inside any blob.

• In a galled-tree the number of recombinations is
exactly the number of connected components in
G(M), and hence is minimum over all possible
phylogenetic networks for M.

4

1

3

2 5

a: 00010

b: 10010

d: 10100

c: 00100

e: 01100

f: 01101

g: 00101

2

4

p s

p
s

1 3

4

2 5

Incompatibility Graph

Generalizing beyond Galled-
Trees

When M cannot be generated on a true tree or
a galled-tree, what then?

What role for the connected components of
G(M) in general?

What is the most tree-like network for M?
Can we minimize the number of

recombinations needed to generate M?

A maximal set of intersecting
cycles forms a Blob

00000

5
2

3

3

4S
p

P
S

1

4

10010

01100
00101

01101

00100

00010

Blobs generalize Galls

• In any phylogenetic network a maximal set of
intersecting cycles is called a blob. A blob with
only one cycle is a gall.

• Contracting each blob results in a directed, rooted
tree, otherwise one of the “blobs” was not
maximal. Simple, but key insight.

• So every phylogenetic network can be viewed as
a directed tree of blobs - a blobbed-tree.

 The blobs are the non-tree-like parts of the network.

Ugly tangled
network inside
the blob.

Every network is a
tree of blobs.

 A network
where every blob is a
single cycle is a
Galled-Tree.

The Decomposition Theorem
(Recomb, April 2005)

 Theorem: For any set of sequences M, there is a
phylogenetic

network that derives M, where each blob contains
all and only the sites in one non-trivial connected
component of G(M). The compatible sites can
always be put on edges outside of any blob. This
is the finest network decomposition possible and
the most ``tree-like” network for M.

However, while such networks always exist,
they are not guaranteed to minimize the number of
recombinations (Y. Song, Aug. 2005)

 Minimizing recombinations in
unconstrained networks

• When a galled-tree exists it minimizes the
number of recombinations used over all possible
phylogenetic networks for M. But a galled-tree is
not always possible.

• Problem: given a set of sequences M, find a
phylogenetic network generating M, minimizing
the number of recombinations used to generate M.

Minimization is an NP-hard
Problem

 There is no known efficient
 solution to this problem and there likely will never be one.

What we do:
Solve small data-sets optimally with
algorithms that are not provably efficient but work well in
practice;

Efficiently compute lower and upper bounds on the number of
needed recombinations.

Part II: Constructing optimal
phylogenetic networks in general

Computing close lower and upper bounds on
the minimum number of recombinations

needed to derive M. (ISMB 2005)

The grandfather of all lower
bounds - HK 1985

• Arrange the nodes of the incompatibility graph on the line
in order that the sites appear in the sequence. This bound
requires a linear order.

• The HK bound is the minimum number of vertical lines
needed to cut every edge in the incompatibility graph.
Weak bound, but widely used - not only to bound the
number of recombinations, but also to suggest their
locations.

Justification for HK

If two sites are incompatible, there must have
been some recombination where the
crossover point is between the two sites.

1 2 3 4 5

HK Lower Bound

1 2 3 4 5

HK Lower Bound = 1

More general view of HK
Given a set of intervals on the line, and for each interval I, a
number N(I), define the composite problem: Find the minimum
number of vertical lines so that every interval I intersects at
least N(I) of the vertical lines.

In HK, each incompatibility defines an interval I where N(I) = 1.

The composite problem is easy to solve by a left-to-right myopic
placement of vertical lines.

The Composite Method (Myers & Griffiths 2003)

M

1. Given a set of intervals, and

Composite Problem: Find the minimum number of vertical
lines so that every I intersects at least N(I) vertical lines.

2
1

2

2
2

31

2. for each interval I, a number N(I)

8

This general approach is called the Composite Method
(Simon Myers 2002).

If each N(I) is a ``local” lower bound on the number of
recombinations needed in interval I, then the solution to
the composite problem is a valid lower bound for the
full sequences. The resulting bound is called the composite
bound given the local bounds.

Haplotype Bound (Simon Myers)
• Rh = Number of distinct sequences (rows) - Number of

distinct sites (columns) -1 <= minimum number of
recombinations needed (folklore)

• Before computing Rh, remove any site that is compatible
with all other sites. A valid lower bound results -
generally increases the bound.

• Generally Rh is really bad bound, often negative, when
used on large intervals, but Very Good when used as local
bounds in the Composite Interval Method, and other
methods.

Composite Subset Method
(Myers)

• Let S be subset of sites, and Rh(S) be the
haplotype bound for subset S. If the
leftmost site in S is L and the rightmost site
in S is R, then use Rh(S) as a local bound
N(I) for interval I = [S,L].

• Compute Rh(S) on many subsets, and then
solve the composite problem to find a
composite bound.

RecMin (Myers)

• Computes Rh on subsets of sites, but limits the
size and the span of the subsets. Default
parameters are s = 6, w = 15 (s = size, w = span).

• Generally, impractical to set s and w large, so
generally one doesn’t know if increasing the
parameters would increase the bound.

• Still, RecMin often gives a bound more than three
times the HK bound. Example LPL data: HK
gives 22, RecMin gives 75.

Optimal RecMin Bound (ORB)

• The Optimal RecMin Bound is the lower bound
that RecMin would produce if both parameters
were set to their maximum possible values.

• In general, RecMin cannot compute (in practical
time) the ORB.

• We have developed a practical program,
HAPBOUND, based on integer linear
programming that guarantees to compute the
ORB, and have incorporated ideas that lead to
even higher lower bounds than the ORB.

HapBound vs. RecMin on LPL
from Clark et al.

1643s78HapBound -S

31s75HapBound ORB

5 daysNo resultRecMin –s 48 –w 48

7944s75RecMin –s 25 –w 25

3s59RecMin (default)

TimeLower BoundProgram

2 Ghz PC

Example where RecMin has
difficulity in Finding the ORB on a

25 by 376 Data Matrix

39m 30s48HapBound -S
2m 59s44HapBound
10h 20m 59s43RecMin –s 45 –w 45
2h 9m 4s43RecMin –s 40 –w 40
24m 2s43RecMin –s 35 –w 35
3m 25s42RecMin –s 30 –w 30
1s36RecMin default
TimeBoundProgram

Constructing Optimal
Phylogenetic Networks in

General
Optimal = minimum number of recombinations.

Called Min ARG.

 The method is based on the coalescent
viewpoint of sequence evolution. We build
 the network backwards in time.

 Definition: A column is non-informative if
all entries are the same, or all but one are
the same.

The key tool

• Given a set of rows A and a single row r,
define w(r | A - r) as the minimum number
of recombinations needed to create r from
A-r (well defined in our application).

• w(r | A-r) can be computed efficiently by a
greedy-type algorithm.

Upper Bound Algorithm
1) Set W = 0
2) Collapse identical rows together, and remove non-informative

columns. Repeat until neither is possible.
3) Let A be the data at this point. If A is empty, stop, else remove

some row r from A, and set W = W + W(r | A-r). Go to step 2).

Note that the choice of r is arbitrary in Step 3), so the resulting W can
vary.

An execution gives an upper bound W and specifies how to construct a
network that derives the sequences using exactly W recombinations.

Each step 2 corresponds to a mutation or a coalescent event; each step 3
corresponds to a recombination event.

 We can find the lowest possible W with this approach in
O(2^n) time by using Dynamic Programming, and build
the Min ARG at the same time.

 In practice, we can use branch and bound to speed up the
computation, and we have also found that branching on the

best local choice, or randomizing quickly builds near-
optimal ARGs.

Program: SHRUB

Kreitman’s 1983 ADH Data

• 11 sequences, 43 segregating sites

• Both HapBound and SHRUB took only a fraction of a
second to analyze this data.

• Both produced 7 for the number of detected
recombination events

 Therefore, independently of all other methods, our lower
and upper bound methods together imply that 7 is the
minimum number of recombination events.

A Min ARG for Kreitman’s data

ARG created by
SHRUB

The Human LPL Data (Nickerson et al. 1998)

Our new lower
and upper
bounds

Optimal
RecMin Bounds

(We ignored insertion/deletion, unphased sites, and sites with missing data.)

(88 Sequences, 88 sites)

Study on simulated data:
Exact-Match frequency for varying parameters

• θ = Scaled mutation rate
• ρ = Scaled recombination rate
• n = Number of sequences

n = 25

For θ, ρ < 5, our lower and upper bounds match more than
95% of the time.

 Used Hudson’s MS to
generate1000 simulated datasets
for each pair of θ and ρ.

n = 15

Part III: Applications

Uniform Sampling of Min
ARGs

• Sampling of ARGs: useful in statistical applications,
but thought to be very challenging computationally.
How to sample uniformly over the set of Min ARGs?

• All-visible ARGs: A special type of ARG
– Built with only the input sequences
– An all-visible ARG is a Min ARG

• We have an O(2n) algorithm to sample uniformly
from the all-visible ARGs.
– Practical when the number of sites is small

• We have heuristics to sample Min ARGs when there
is no all-visible ARG.

Application: Association
Mapping

• Given case-control data M, uniformly sample the
minimum ARGs (in practice for small windows of
fixed number of SNPs)

• Build the ``marginal” tree for each interval between
adjacent recombination points in the ARG

• Look for non-random clustering of cases in the tree;
accumulate statistics over the trees to find the best
mutation explaining the partition into cases and
controls.

Input Data

00101
10001
10011
11111
10000
00110

Seqs 0-2: cases
Seqs 3-5: controls

sample

One Min ARG for the data

Input Data

00101
10001
10011
11111
10000
00110

Seqs 0-2: cases
Seqs 3-5: controls

Tree

The marginal tree for the
interval past both breakpoints

Cases

Experimental results on Cystic Fibrosis data.

Disease mutation is at 885kb. Our estimate is at

844kb.

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25

Marker indices

A
v

e
ra

g
e

 C
h

i-
s

q
u

a
re

 v
a

lu
e

Haplotyping (Phasing)
genotypic data using a Min

ARG

Minimizing Recombinations
for Genotype Data

• Haplotyping (phasing genotypic data) via a
Min ARG: attractive but difficult

• We have a branch and bound algorithm that
builds a Min ARG for deduced haplotypes
that generate the given genotypes. Works for
genotype data with a small number of sites,
but a larger number of genotypes.

Application: Detecting
Recombination Hotspots with

Genotype Data
• Bafna and Bansel (2005) uses recombination lower

bounds to detect recombination hotspots with
haplotype data.

• We apply our program on the genotype data
– Compute the minimum number of recombinations for all

small windows with fixed number of SNPs
– Plot a graph showing the minimum level of recombinations

normalized by physical distance
– Initial results shows this approach can give good estimates

of the locations of the recombination hotspots

Recombination Hotspots on
Jeffreys, et al (2001) Data

Jeffery et al (2001) data. Slide window size = 5

-1

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250

Result from Bafna and Bansel
(2005), haplotype data

Our result on genotype data

Accuracy%missing#Sites#Seq

94 %30 %2050
96 %10 %2050
97 %5 %2050
94 %30 %3232
96 %10 %3232
97 %5 %3232
93 %30 %5020
95 %10 %5020
96 %5 %5020

Accuracy%missing#Sites#Seq

95 %30 %20100
96 %10 %20100
97 %5 %20100
96 %30 %4545
97 %10 %4545
98 %5 %4545
93 %30 %10020
95 %10 %10020
95 %5 %10020

Datasets with about 1,000 entries Dataets with about 10,000 entries

Application: Missing Data Imputation by
Constructing near-optimal ARGsFor ρ = 5.

Haplotyping genotype data
via a minimum ARG

• Compare to program PHASE, speed and accuracy:
comparable for certain range of data

• Experience shows PHASE may give solutions whose
recombination is close to the minimum
– Example: In all solutions of PHASE for three sets of

case/control data from Steven Orzack, recombinatons are
minimized.

– Simulation results: PHASE’s solution minimizes
recombination in 57 of 100 data (20 rows and 5 sites).

Algorithms to Distinguish the
Role of Gene-Conversion from

Single-Crossover Recombination
in Populations

Y. Song, Z. Ding, D. Gusfield, C.
Langley, Y. Wu

U.C. Davis

Reconstructing the Evolution of
SNP (binary) Sequences

 Ancestral sequence all-zeros. Three types of changes in a binary
sequence:

1) Mutation: state 0 changes to state1 at a single site. At most
one mutation per site in the history of the sequences.
(Infinite Sites Model)

2) Single-Crossover (SC) recombination between two sequences.

3) Gene-Conversion (GC) between two sequences.

Gene Conversion

two-crossovers; two breakpoints

conversion tract

Gene Conversion (GC)
• ``Gene Conversion” is a short two cross-over recombination that

occurs in meiosis; length of the conversion tract 300 - 2000 bp.

• The extent of gene-conversion is only now being understood, due to
prior lack of fine-scale molecular data, and lack of algorithmic tools.
But more common than single-crossover recombination.

• Gene Conversion may be the Achilles heel of fine-scale association
(LD) mapping methods. Those methods rely on monotonic decay of
LD with distance, but with GC the change of LD is non-monotonic.

GC a problem for LD-mapping?

“Standard population genetics models of
recombination generally ignore gene conversion,
even though crossovers and gene conversions
have different effects on the structure of LD.” J.
D. Wall

See also, Hein, Schierup and Wiuf p. 211 showing
non-monotonicity.

Focus on Gene-Conversion

We want algorithms that identify the signatures of
gene-conversion in SNP sequences in
populations; that can quantify the extent of gene-
conversion; that can distinguish GC signatures
from SC signatures.

 The methods parallel earlier work on networks with
SC recombination, but introduce additional
technical challenges.

Three types of results
• Algs. to compute lower bounds on the minimum

total number of recombinations (SC + GC) needed
to generate a set of sequences (with bounded and
unbounded tract-length).

• Algs. to construct networks that generate the
sequences with the minimum total number of
recombinations, or to upper bound the min.

• Tests to distinguish the role of SC from GC.

Applications First

 Assume we can compute reasonably close
upper and lower bounds. How are

 they used?

(Naïve) Approach to Distinguish
GC from SC

For a given set of sequences, let B(t) be the bound (lower or
upper) on the minimum total number of recombination
(SC + GC), when the tract-length is at most t.

So B(0) is the case when only single-crossovers are allowed.

Note that B(t) <= B(0) and B(t) “decreases” with t.

Define D(t) = B(0) - B(t). D(t) “increases” with t.

We expect that D(t) will be larger and will grow faster when
the sequences are generated using gene-conversion and
crossovers compared to when they are generated with
crossovers only.

And we expect that D(t) will be convex in simulations where
GC tract-length is chosen from a geometric

 distribution - at some point past the mean tract length,
larger t does not help reduce B(t).

t

D(t) sequences generated
with SC + GC

 sequences generated
 with SC only

Naïve expectation

D(t) = B(0) - B(t)

 Actually, we compute the minimum number of GCs, call it
GC(t), among all solutions that use B(t) total
recombinations. Then we take the ratio GC(t)/B(t). The
ratio indicates the

 relative importance of GCs in the bound.

 Results for average GC(t)/B(t):
 1) Little change (as a function of t) for sequences

generated with SC only.
 2) Ratio increase with t for sequences generated with GC

also, and the difference is greater when more GCs were
used to generate the sequences.

!

"(t) = E[#(M,t) /$ (M,t) | $ (M,0) % 0]

&(t) = E['$(M,t) /$(M,0) | $(M,0) % 0]

Take-home message

 The upper and lower bound algorithms
cannot ``make-up” gene-conversions.

The ability to use GCs in computing upper
and lower bounds doesn’t help much
unless the sequences were actually
generated with GCs.

Gene-Conversion Presence Test

 The results just shown are averages.
Unfortunately, the variance is large, so we need a

different test on any single data set. The simplest
is whether GC(t) > 0 for a given t.

That is, in order for the algorithm to get the best
bound it can, are some GC’s needed? GC(t) can
be based either on upper or lower bounds or we
can require both be non-zero - which is what we
do.

It works, pretty well. Extreme
examples

1. Recombination rate, 5; no gene-conversion,
percent of data passing test 9.6 % (false positive).

• Recombination rate 5, gene-conversion ratio f =
10 (high gene conversion), percent of simulated
data passing test 95.8%.

• Both test use upper and lower bounds.

Gene-Conversions in Arabidopsis thaliana
• 96 samples, broken up into 1338 fragments (Plagnol,

Norberg et al., Genetics, in press)
• Each fragment is between 500 and 600 bps.
• Plagnol et al. identified four fragments as containing

clear signals for gene-conversion.
 Essentially, they found fragments where exactly one

recombination is needed, but it must be a GC.
• In contrast, 22 fragments passed our test: GC(t) > 0.
• Of these 22 fragments, three coincided with those

found by Plagnol et al.

Lower Bounds: Review of
composite methods for SC (S.

Myers, 2003)
• Compute local lower bounds in (small)

overlapping intervals. Many types of local
bounds are possible.

• Compose the local bounds to obtain a
global lower bound on the full data.

Example: Haplotype Local
Bound (Myers 2003)

• Rh = Number of distinct sequences (rows) - Number of
distinct sites (columns) -1 <= minimum number of
recombinations (SC) needed.

• The key to proving that Rh is a lower bound, is that each
recombination can create at most one new sequence. This
holds for both SC and GC.

The better Local Bounds

• haplotype, connected component, history, ILP bounds, galled-tree,
many other variants.

• Each of the better local bounds for SC also hold for both SC and GC.
Different justifications for different bounds.

• Some of the local bounds are bad, even negative, when used on large
intervals, but good when used as on small intervals, leading to very
good global lower bounds, with a sufficient number of sites.

Composition of local bounds
Given a set of intervals on the line, and for each interval I, a
local bound N(I), define the composite problem: Find the minimum
number of vertical lines so that every interval I intersects at
least N(I) of the vertical lines. The result is a valid global
lower bound for the full data.

The composite problem is easy to solve by a left-to-right myopic
placement of vertical lines.

The Composite Method (Myers & Griffiths 2003)

M

1. Given a set of intervals, and

Composite Problem: Find the minimum number of vertical
lines so that every I intersects at least N(I) vertical lines.

2
1

2

2
2

31

2. for each interval I, a number N(I)

8

Trivial composite bound on SC
+ GC

 If L(SC) is a global lower bound on the
number of SC recombinations needed,
obtained using the composite method, then
the total number of SC + GC
recombinations is at least L(SC)/2.

Can we get higher lower bounds for SC + GC
using the composition approach?

Extending the Composite
Method to Gene-Conversion

• All previous methods for local bounds also
provide lower bounds on the number of SC
+ GC recombinations in an interval.

• Problem: How to compose local bounds to
get a global lower bound for SC + GC?

How composition with GC
differs from SC

 A single gene-conversion counts as a
recombination in every interval containing
a breakpoint of the gene-conversion.

4
6

 local bounds

3

(4) 3
(6) 5

 (old) and new requirements

 (3) 2

So one gene-conversion can sometimes
 act like two single-crossover
recombinations:

However …

gene conversion

 A GC never counts as two recombinations
in any single interval, even if it contains
both breakpoints.

(4) 3
(6) 5

 (old) and new requirements

(3) 2, not 1

The reason depends on the particular local bound.

The reasons depend on the specific
local bound. For example, the haplotype
bound for SC is based on the fact that
a single crossover in an interval can create
one new sequence. However, two
crossovers in the interval,
from the same GC, can also only create
one new sequence.

Composition Problem with GC

 Definition: A point p covers an interval I if p is
contained in I. A line segment, s, covers I if one
or both of the endpoints of s are contained in I.

 Problem: Given intervals I with local bounds N(I),
 find the minimum number of points, P, and line

segments S, so that each I is covered at least N(I)
times by P U I. The result is a lower bound on the
minimum number of SC + GC.

The Hope

 Because of combinatorial constraints, we
hope(d) that not every GC could replace
two SC recombinations, so that the
resulting global bound would be greater
than the trivial L(SC)/2.

Unfortunately …

 Theorem: If L(SC) is the lower bound obtained by the
composite method for SC only, and the tract length of
a GC is unconstrained, then it is always possible to
cover the intervals with exactly

 Max [L(SC)/2, max I N(I)] points and line segments.

 So, with unconstrained tract length, we essentially can
only get trivial lower bounds (wrt L(SC)) using the
composite method, but those bounds can be
computed efficiently.

2
1

2

2
2

31 8

Four gene-conversions suffice in place of 8 SCs.
The breakpoints of the GCs align with the SCs.

How to beat the trivial bounds

• Constrain the tract length. Biologically realistic,
but then the composition problem is
computationally hard. It can be effectively solved
by a simple ILP formulation.

• Encode combinatorial constraints that come from
GC but not SC.

Lower Bounds with bounded
tract length t

• Solve the composition problem with ILP.
Simple formulation with one variable
K(p,q) for every pair of sites p,q with the
permitted length bound. K(p,q) indicates
how many GCs with breakpoints p,q will
be selected.

• For each interval I,
 Σ [k(p,q)] >= N(I), for p or q in I

“Four-Gamete” Constraints on
Composition

 a b c All three intervals [a,b], [a,c]
 0 0 0 and [b,c] have (haplotype) local
 0 0 1 bound of 1, and a single GC
 1 1 0 covers these local bounds.
 1 0 1 But the pair a,c have all four
 binary combinations, and no single GC with both

breakpoints in [a,c]
 can generate those four combinations. So more constraints

can be added to the ILP that raise the lower bound. New
constraints for every “incompatible” pair of sites.

Constructing Optimal
Phylogenetic Networks

Optimal = minimum number of recombinations. Called Min
ARG.

 The method is based on the coalescent
viewpoint of sequence evolution. We build
 the network backwards in time.

 Definition: A column is non-informative if
all entries are the same, or all but one are
the same.

The key tool

• Given a set of rows A and a single row r,
define w(r | A - r) as the minimum number
of recombinations needed to create r from
A-r (well defined in our application).

• w(r | A-r) can be computed in polynomial
time by an algorithm recently published by
N. Mabrouk et al.

Upper Bound Algorithm
1) Set W = 0
2) Collapse identical rows together, and remove non-informative columns.

Repeat until neither is possible.
3) Let A be the data at this point. If A is empty, stop, else remove some row r

from A, and set W = W + W(r | A-r). Go to step 2).

Note that the choice of r is arbitrary in Step 3), so the resulting W can vary.

An execution gives an upper bound W and specifies how to construct a network
that derives the sequences using exactly W recombinations.

Each step 2 corresponds to a mutation or a coalescent event; each step 3
corresponds to a recombination event.

 We can find the lowest possible W with this approach in
O(2^n) time by using Dynamic Programming, and build
the Min ARG at the same time.

 In practice, we can use branch and bound to speed up the
computation, and we have also found that branching on the

best local choice, or randomizing quickly builds near-
optimal ARGs.

Program: SHRUB-GC

Papers and
Software on wwwcsif.cs.ucdavis.edu/~gusfield

