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Abstract

A full Haplotype Map of the human genome will prove extremely valuable as it will be used in
large-scale screens of populations to associate specific haplotypes with specific complex genetic-
influenced diseases. A prototype Haplotype Mapping strategy is presently being finalized by
an NIH working group. The biological key to that strategy is the surprising fact that genomic
DNA can be partitioned into long blocks where genetic recombination has been rare, leading to
strikingly fewer distinct haplotypes in the population than previously expected [10, 3, 12, 4].

In this paper we explore the algorithmic implications of the no-recombination in long blocks
observation, for the problem of inferring haplotypes in populations. This assumption, together
with the standard population-genetic assumption of infinite sites, justifies a model of haplotype
evolution where the haplotypes in a population are assumed to evolve along a coalescent, which
as a rooted tree is a perfect phylogeny. We consider the following algorithmic problem, called
Perfect Phylogeny Haplotyping problem (PPH), which was introduced by Gusfield [9] - given n
genotypes, does there exist a set of at most 2n haplotypes such that each genotype is generated by
a pair of haplotypes from this set, and such that this set can be derived on a perfect phylogeny?
The approach taken in [9] to solve this problem reduces it to established, very deep, results and
algorithms from matroid and graph theory. Although that reduction is quite simple, and the
resulting algorithm nearly optimal in speed (a linear time lower bound is necessary), taken as
a whole that approach is quite involved, and in particular, challenging to program. Moreover,
anyone wishing to fully establish, by reading existing literature, the correctness of the entire
algorithm would need to read several deep and difficult papers in graph and matroid theory. A
stated open goal in [9] was to find a simpler more direct, yet still efficient, algorithm, via a self-
contained approach (not needing deep matroid or graph theorems). This paper accomplishes
that goal, for both the rooted and unrooted PPH problems. It establishes a very simple, easy
to program, O(nm2)—time algorithm that determines whether there is a PPH solution for input
genotypes, and produces a linear-space data-structure to represent all of the solutions. The
approach allows complete, although not trivial, self-contained proofs. In addition to algorithmic
simplicity, the approach here makes the representation of all solutions more intuitive than in
[9], and solves another open goal from that paper, namely to prove a non-trivial upper bound
on the number of PPH solutions, showing that that number is vastly smaller than the number
of haplotype solutions (each solution being a set of n pairs of haplotypes that can generate the
genotypes) when the perfect phylogeny requirement is not imposed.

1 Introduction

The next high-priority phase of human genomics will involve the development of a full Haplotype
Map of the human genome [10]. It will be used in large-scale screens of populations to associate
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specific haplotypes with specific complex genetic-influenced diseases. A prototype Haplotype Map-
ping strategy is presently being finalized by an NIH working-group. The biological key to that
strategy is the surprising fact that genomic DNA can be partitioned into long blocks where genetic
recombination has been rare, leading to strikingly fewer distinct haplotypes in the population than
previously expected [10, 3, 12, 4].

Mathematically, this lack of recombination (along with the infinite sites assumption) justifies a
model of haplotype evolution where the haplotypes in a population are assumed to evolve along
a coalescent, which as a rooted tree is a perfect phylogeny [14, 9]. This leads to the algorithmic
problem of determining whether unphased diploid genotype data is consistent with an evolutionary
history on a tree, and to find such a tree if one exists. That is, we must find for each of the n given
genotypes, a pair of haplotypes (binary vectors) which generate that genotype, so that the entire
set of 2n haplotypes can be derived on a perfect phylogeny.

Given haplotypes (phased data), it is easy to determine if the haplotypes could have evolved
along a perfect phylogeny. The difficult, and currently essential problem is to determine whether
unphased (i.e. genotype) data could have evolved along a perfect phylogeny. This is called the
Perfect Phylogeny Haplotyping problem (PPH problem).

The ability to solve the PPH problem is of value for many purposes, notably the ability to identify
in genotype data, blocks of DNA-SNP data where no recombination has occurred.

Gusfield [9] showed that the PPH problem can be solved in almost-linear time; that in linear
additional time 1t can be determined if the solution is unique; and if not, then in linear additional
time, one can build a linear-space data structure that represents all the solutions, so that each can
be generated in linear time. That paper also showed how to find at least one solution to an unrooted
version of the problem, or determine that it has no solutions. The approach in that paper reduces
the PPH problem to established, very deep, results and algorithms from matroid and graph theory.
Although that reduction is quite simple, and the resulting algorithm nearly optimal in speed (a linear
time lower bound is necessary), taken as a whole that approach is quite involved, and in particular,
challenging to program. Moreover, anyone wishing to fully establish, by reading existing literature,
the correctness of the entire algorithm would need to read several deep and difficult papers in graph
and matroid theory.

A stated open goal in [9] was to find a simpler more direct, yet still efficient, algorithm, via a
self-contained approach (not needing deep matroid or graph theorems). This paper accomplishes
that goal, for both the rooted and unrooted PPH problems. It establishes a very simple, easy
to program, O(nm?)-time algorithm that determines whether there is a PPH solution for input
genotypes, and produces a linear-space data-structure to represent all of the solutions. The approach
allows complete, although not trivial, self-contained proofs. In addition to algorithmic simplicity,
the approach here makes the representation of all solutions more intuitive than in [9], and solves
another open goal from that paper, namely to prove a non-trivial upper bound on the number of
PPH solutions, showing that that number is vastly smaller than the number of haplotype solutions
(each solution being a set of n pairs of haplotypes that can generate the genotypes) when the perfect
phylogeny requirement is not imposed.

1.1 Introduction to SNP’s, Genotypes and Haplotypes

In diploid organisms (such as humans) there are two (not completely identical) “copies” of each
chromosome, and hence of each region of interest. A description of the data from a single copy is
called a haplotype, while a description of the conflated (mixed) data on the two copies is called a
genotype. In complex diseases (those affected by more than a single gene) it is often much more
informative to have haplotype data (identifying a set of gene alleles inherited together) than to have
only genotype data.

The underlying data that forms a haplotype is either the full DNA sequence in the region, or more
commonly the values of single nucleotide polymorphisms (SNP’s) in that region. A SNP is a single



nucleotide site where exactly two (of four) different nucleotides occur in a large percentage of the
population. The SNP-based approach is the dominant one, and high density SNP maps have been
constructed across the human genome with a density of about one SNP per thousand nucleotides.

1.2 The biological problem

Because polymorphism screens will be conducted on large populations, it is not feasible to examine
the two copies of a chromosome separately, and genotype data rather than haplotype data will be
obtained, even though it is the haplotype data that will be of greatest use.

Abstractly, data from m sites (SNP’s) in n individuals is collected, where each site can have
one of two states (alleles), which we denote by 0 and 1. For each individual, we would ideally
like to describe the states of the m sites on each of the two chromosome copies separately, i.e.,
the haplotype. However, experimentally determining the haplotype pair is technically difficult or
expensive. Instead, the screen will learn the 2m states (the genotype) possessed by the individual,
without learning the two desired haplotypes for that individual. One then uses computation to
extract haplotype information from the given genotype information. Several methods have been
explored and are intensely used for this task [2, 1, 5, 13, 8, 11]. None of these methods are presently
fully satisfactory.

1.3 The Haplotype Inference (HI) problem

Given n genotype vectors, the HI problem is to find n pairs of haplotype vectors that could have
generated the genotype vectors.

More formally, we are given an n by m genotype matrix M with M[i, j] € {0, 1,2}. The i-th row
M{i, %] describes the genotype of species s;, and each location j where M[i, j] = 2 is a polymorphic
site. Each column ¢; = M|, j] is a polymorphic locus. The goal is to generate a 2n x m haplotype-
matriz M', with M'[i,j] € {0,1}. A 2n x m haplotype-matrix M’ is an ezpansion of a n x m
genotype matrix M, if the following hold.

1. Each row M[i, #] expands to two rows denoted by M'[i, x], and M'[i’, *].
2. For all j s.t. M[i,j] € {0,1}, M[i, ] = M'[i, ] = M'[#, 5).
3. For all j s.t. M'[i, 5] = 2, M'[i,§] # M'[{, 5].

Any such M’ is a feasible explanation for the origin of M. However, if each ¢ has h; polymorphic
sites, then there are IT:=72"i~1 solutions to the HI problem. Of course, given M we want to find
the “true” haplotype matrix M’ which originally gave rise to M. That goal would be impossible
without the implicit or explicit use of some genetic model, either to assess the biological fidelity of
any proposed solution, or to guide the algorithm in constructing a solution.

In this paper, we consider the genetic model where a solution to the HI problem (the n pairs
of binary vectors) is required to determine a perfect phylogeny. Below is a formal definition of a
(rooted) perfect phylogeny.

Definition Let M be an 2n by m 0-1 (binary) matrix. Let V' be an m-length binary vector,
called the ancestor vector (V is often assumed, without loss of generality, to be the all-0 vector.)

A perfect phylogeny for M and V is arooted tree T with exactly 2n leaves that obeys the following
properties:

1) Each of the 2n rows labels exactly one leaf of T', and each leaf is labeled by one row.

2) Each of the m columns labels ezactly one edge of T.

3) Every interior edge (one not touching a leaf) of T is labeled by at least one column.

4) For any row 4, the value M (¢, j) is unequal to V() if and only if j labels an edge on the unique
path from the root to the leaf labeled i. Hence, that path is a compact representation of row i.



The biological interpretation is that an edge label j indicates the point in time where a mutation
at site j occurred, and so the state of site j changes from its ancestral value to the opposite value.
The justification for the perfect phylogeny model is based on recent observations of no or little
recombination in long segments of DNA, and the standard infinite-sites assumption. See [14, 9] for
a full justification of this model.

In the rooted version of perfect phylogeny, V' is given as input. There is also an unrooted version
of perfect phylogeny, where V' is not specified. In that case, a binary matrix M is said to have a
perfect phylogeny if there exists a V such that there is a (rooted) perfect phylogeny for M and V.

Formally, the Perfect Phylogeny Haplotype (PPH) Problem is: Given M, find an expansion M’
of M which defines an unrooted perfect phylogeny.

This definition is slightly different from the one given in [9]. There the problem was to find an
expansion M’ which defines a rooted perfect phylogeny, assuming the ancestor vector V is already
known. However, the rooted and the unrooted PPH problems are equivalent, in the sense that an
algorithm for one version can be used to solve either version. For example, with an algorithm for
the unrooted version, we solve an instance of the rooted version as follows: Given both M and V,
simply add a genotype row v consisting of vector V' to M; there will be a leaf labeled with v in the
resulting perfect phylogeny for this M ; a rooted perfect phylogeny for M and V is then obtained by
making v the root. The unrooted version can also be reduced to the rooted version, but we will not
need that direction in this paper.

The solution to the perfect phylogeny problem given in [9] is based on (complex) graph theoretic
tools. Although perfect phylogeny is defined in terms of trees, there is an alternative characterization
that allows one to focus more on the matrix, and that is the approach taken in this paper.

2 An alternative characterization of the PPH problem

The following characterization of perfect phylogeny has been independently established many times,
and is described in many places. See [6, 7] for one such exposition.

Define a complete-pair-matriz as matrix with 2 columns, containing each of the rows in
{00,01,10, 11}. The classical theorem is that a 2n x m binary matrix M’ defines a unrooted perfect
phylogeny if and only if no submatrix M'[*, (j1, j2)] formed by selecting the two columns j1, j2, is a
complete-pair-matriz.

In these terms, the PPH problem is to find an expansion M’ of M which does not contain a
complete-pair-matrix. This definition of the PPH problem avoids any explicit mention of trees and
allows a more matrix-oriented solution. We now begin to develop the tools needed for that solution.

Proposition 1: Consider a sub-matrix M[x, (j1, j2)] of a genotype matrix M.
1. All rows not of the form 22 have a unique expansion in any haplotype matrix M.

2. If this expansion contains a complete-pair-matrix, no PPH is possible for M.

Definition: We denote a pair of columns j1, j2 as a pph-pair if the non 22 rows in M [, (j1, j2)] do
not expand to include a complete-pair-matrix.

In (binary) haplotype data, blocks of SNP/DNA where recombination has not occurred are
frequently identified by checking for the absence of a complete-pair-matrix. For example see [2, 14].
This is called the “four-gamate test” in the biological literature. The ability to solve the PPH
problem is of great value because it allows one to identify these no-recombination blocks using
genotype data instead of haplotype data.

Unlike the problem of inferring a Perfect Phylogeny on a binary matrix, we note that there are
no simple characterizations of the existence of a solution to the PPH problem. We might ask, for
instance, does every pair of columns being pph-pair guarantee the existence of a solution? Or, if
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Figure 1: Consider the above instance of the PPH problem with rows 1,145,723 and columns
J1,J2, 73, Ja. This instance is such that every pair of columns is a pph-pair; furthermore, every triple
of columns can be expanded so that the result does not contain a complete submatrix. However,
this PPH instance does not have a solution.

every triple of columns can be expanded so that the triple has no complete submatrix, then does
the PPH instance have a solution? The example in Figure 1 shows that both of these conjectures
are false.

Definition: Columns ji, j» in a genotype matrix M are companions, if there exists a row i such
that M[i,j1] = M]Ji,j2] = 2. Row i is a companion row for ji, and j3. Let M’ be a PPH of M,
and 7 be a companion row for columns j1, jo. Row i equates j; and jo in M’ if M'[i,j1] = M'[i, jo]
(and, consequently M'[',j1] = M'[¥’, j2]). Otherwise, row i negates j1, and ja. Given M', define
an indicator function £ on companion rows and companion columns as follows - £(3, ji1, j2) = 0 if
companion row i equates companion columns ji, and ja, and £(i,j1,j2) = 1 if companion row ¢
negates companion columns j; and js.

From the above definition of £ it follows that, for row ¢ that is a companion row for companion
columns j; and ja, £(4, j1, j2) = M'[i, j1]® M'[i, j2], where @ denotes the EXCLUSIVE-OR operator;
recall that for boolean values @ and b, a® b =1 iff a # b.

Lemma 2: Consider a set of columns J = {j1, ja, . .., Ji} of a genotype matrix M, with a companion
row i (i.e. M[i,1] = M[i,j2] = ... = M[i,5]] = 2). Let M’ be a solution to the PPH problem. Then

g(i7jx:jz) = 5(27]1:7.71/) @g(ivjwjz) ijajyvjz eJ

Proof: As M[i, j,] = M[i, j,] = M[i, j.] = 2, we have that M'[¢, jo] = (4, jaz, jy) ® M'[1, j,], and
M'li, j.] = M'[i,jy] ® £(1, jy, jz). Also by definition,&(4, jz, j.) = M'[t, jo) ® M'[i, j.]. Expanding,
5(21.71‘1.72) :g(zajl‘ajy)@g(zajyajz) *

Lemma 3: If rows ¢; and iy are companion rows for columns ji, ja, then (i1, ji1, j2) = E(i2, j1, j2)-

Proof: Assume to the contrary. Then, the sub-matrix of M’ formed by rows iy, },1s,1%, and
columns ji, js is a complete-pair-matriz, a contradiction. &

Therefore, in the following, we can speak of companion columns ji, jo being equated, or negated,
without reference to a row. Sometimes, two columns are forced to be equated or negated to avoid
the complete pair-matrix. For companion columns ji, j2, consider the unique expansion of the non
22 rows in M[*, (j1, j2)]. If this expansion contains the rows 00 and 11, then columns j; and jz must
be equated in any PPH M’. Likewise, if the expansion contains the rows 01 and 10, columns j; and
J2 must be negated in any PPH M’. Two rows {M[i1, (j1,J2)], M [i2, (j1, j2)]} form a forcing-pattern
for columns ji, jo, if they do not contain 22, and their unique expansion either contains both 00,
and 11, or 01, and 10. The following lemma will be used extensively later.

Lemma 4: Consider companion columns ji,j; in M. Then, {22,2y} is a forcing-pattern for

M{*, (j1,j2)] for all z,y € {0,1}.



Note that any M’ that solves the PPH problem for M also defines a single corresponding indicator
function &(j1, j2) for all companion columns ji, j2. It is easy to establish that two distinct solutions
to an instance of the PPH problem produce two distinct indicator functions.

We now present the major theorem that is the organizing idea behind the PPH solution developed
in this paper.

Theorem 5: Consider a genotype matrix M, such that every pair of columns is a pph-pair. There
exists a solution M’ to the PPH problem if and only if there is a 0-1 valued indicator function &
defined on companion columns ji, j» with the following properties:

1. If companion columns jq, j2 have a forcing pattern that equates j; and ja, then £(j1, j2) = 0.
If the forcing pattern negates ji, and ja, then £(j1, j2) = 1.

2. E(JorJz) = E(Gwrdy) B EUy, J2) Ve, dy, J= st. M1, jo] = M[i, jy] = M1, j;] = 2 for some 1.

Proof: Lemmas 2 and 3 show that if a PPH solution exists, then we can define an indicator
function that satisfies the stated two properties.

Now, suppose there exists an indicator function &£ defined on companion columns that has the
two stated properties. We will show that we can derive a solution to the PPH problem using £.
Consider the haplotype matrix M’ constructed according to Algorithm £2M , which is described in
Figure 2. This algorithm uses the properties of the indicator function £ to set the values of entries
in M'. Clearly, the haplotype matrix M’ is an expansion of the genotype matrix M.

We next establish the following consistency claim (which also shows that the choice of index k
in step b of the algorithm has no effect on the resulting expansion): For any column j, if there
exists companion columns k and k' where k' < k < j, such that M[i, k'] = M[i, k] = M[i, j] = 2,
then M'[i, k"] ® E(K',j) = M'[i, k] ® £(k, 7). The claim is trivially true for j = 2. Assume it is true
up to some value of j, and consider the next j. Again, if there is at most one index [ < j where
M]Ji,l] = MJi, j] = 2, then the claim is trivially true. Otherwise, consider indices k' < k < j where
MIi, k') = MJi, k] = MJi,j] = 2, By induction, M'[i, k] = M'[i, k'] ® E(k', k) (even if &’ is not the
column used by the algorithm when setting M'[7,k]), and so using a property of the & operator,
E(k' k) = M'[i, k] ® M'[i, k']. Now the consistency claim, M'[i, k'] ® E(k',j) = M'[i, k] ® E(k, j), is
equivalent to (M'[i, k') ® E(K', 7)) ® (M'[i, k] ® £(k, 7)) = 0, which is what we will prove. Observe
that

(M'li, Kl E(K', 7)) & (M'[i, k] & E(k, )
= '[Z T M'li, k) & (E(K, 5) ® E(k, 5))
= (E(kE))®(EE,j)®E(k,]))) (from above)
= (E(k,E)) @ (E(K, k) (from property 2 of the Theorem statement)

= 0

We now use this consistency to show that M’ is a solution to the PPH problem by showing that
it does not contain a complete-pair submatrix. Assume it does contain one, denoted S, and let ji, js,
where j; < j2, be the columns of S.

Let R (possibly empty) be the submatrix of S consisting of the rows of S which were expanded
from companion rows for ji, j». If R is empty, then S contains a complete submatrix only if columns
j1 and jy are not pph, contradicting the condition of the theorem. So we assume that R is not
empty. Let A = {00,11} and B = {01,10}. By the consistency proved above, either every row of R
is from set A, or every row of R is from set B. Without loss of generality, assume that the rows of
R are from set A (the case when they are from B is symmetric). That means that £(j1, j2) = 0.

Now since the rows of R cannot contain the rows specified in B, if S contains a complete
submatrix, there must be two rows of S not in R which contain exactly the two rows in B. But since
these rows are not companion rows for j; and j;, the rows will contain {01, 10} in every expansion
of j1,j2. Hence j; and j; are forced to be negated in £, i.e., they force £(j1, j2) = 1, a contradiction.



Input: A genotype matrix M, and indicator function &£ defined on companion columns
Output: A haplotype matrix M’ which is an expansion of M

Algorithm £2M:
For each of the m columns j,1 < j7 < m in turn, do the following

1. For each row ¢,
(a) if M[i,j] = z € {0,1}, set M'[i, ] = M'[{', ]] = .
(b) Otherwise, if 3k < j such that M[i,{] = 2, let £ < j be any index less than j such
that M[i, k] = 2, and set M'[i,j] = M'[i, k] ®E(j, k), and M'[i', 5] = 1 — M[:, 5]
(c) If no such index k exists, set M'[i,j] =1, and M'[i’, ] = 0.

Figure 2: Algorithm £2M takes an indicator function and a genotype matrix M as input, and
produces a haplotype matrix M’

Therefore £ can be used to construct a haplotype matrix M’ from M.

&

Theorem 5 gives us an alternative characterization of the PPH problem in terms of setting
an appropriate indicator function. Note that the indicator function is only defined on companion
column pairs.

In addition to finding one PPH solution, we want efficient methods to find and count all the
solutions. For that purpose, we need the following Lemma.

Lemma 6: Let M{ and M} be solutions to the PPH problem for genotype matrix M. Furthermore,
let M{ be generated by the indicator function & and M} be generated by the indicator function &,.
Then M{ = Mé if 51 = ((,'2.

Proof:  Suppose M{ # M}. Recall that any submatrix M[i, (j1,j2)] where M[i, j1] and M[i, ja)
are not both equal to 2, has a unique expansion in any haplotype matrix. Thus, M{ # M} implies
that there is a row 7 that is a companion row for columns j; and j; and for which the submatrices in
M and M}, that are generated by the expansion of the submatrix M[i, (j1, j2)], are different. Since
MTi, j1] = M[i, j2] = 2, these submatrices will be [(00)(11)] in one (say M7) and [(01)(10)] in the
other (say M3). Thus, in M{, we have that & (ji1,j2) = 0 and in M}, we have that &3(j1,j2) = 1.
This implies that & # &s. &

The converse of this Lemma is also true, but will not be needed.

We can see at this point that if M contains a column j with no 2 entry, then column j can be
removed since it is not in any companion pair. There will be a PPH solution for M if and only if
there is a PPH solution on the remaining columns, and all pairs of columns in M are pph-pairs.
Hence, we assume from this point that every column contains at least one 2 entry.

3 An Algorithm for the PPH problem: Connected Compo-
nents

Definition: For a genotype matrix M, define an associated genotype graph Gar(J, Ey U E,,) (abbre-
viated (G) as follows: The vertex set J = {j1,...,Jn} is the set of columns in M. There are two sets
of edges. A column pair (j,j') € Ey if and only if there is a forcing pattern in M[*, j, j'] and j, j/
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Figure 3: A submatrix describing a path j1, j, j’, j2 in Gar(J, Ef UE,) containing (7, j') € E,. Either
(j1,§') € Ey UE, or (j,j2) € Ef U Ey.

are companion columns. Correspondingly, a column pair (7, j') € F, if j, j/ are companion columns,
but M{[*, j, j'] does not have a forcing pattern. We use Gpr(J, Ef) to denote the graph with the
same sets of nodes, but with edge set restricted to Fy.

In the following, we will show that the edges from E,, have many restricting properties.

Lemma 7: Consider a triangle in Gy = (J, Ef U E,,) formed by columns ji, jo, j3 in M. If the
edge formed by any pair is in E,,, there exists a row ¢ with M[i, j1] = M[i, jo] = M[i, js] = 2.

Proof:  Assume otherwise. W.l.o.g, let (j1,j3) € En. Since all pairs are companions (by defini-
tion), there must exist rows i1, 19, i3 with the following properties:

1. M[il,jl]:M[i17j2]:2¢M[i11j3]
2. M[ig,j3]:M[i2,j2]:2¢M[i1aJ.1]
3. Mlis, j1] = M[is, j3] = 2 # M[i1, jo]

Then, from Lemma 4, the submatrix M[x, (j1,js)] contains the forcing pattern {z2,2y}, where
z,y € {0,1}, a contradiction &

The following is the key theorem describing the edges from E, in Gpr. It says that while Gy
can have cycles of arbitrary length containing only edges from Ey, cycles of length greater than 3
containing edges from FE,, must have chords in them.

Theorem 8: (Weak Triangulation) In G'ar(J, Ef U E,), every cycle of length greater than 3 that
has an edge from FE,,, contains a chord.

Proof:  Assume to the contrary. Let (j,j') € F,, be an edge in a chordless cycle of length & > 3.
Let j1 be adjacent to j, and j» be adjacent to j' in the cycle. As (j1,7), (4,5), (', j2) are companion
columns, there exist rows i1 such that M[i1, j1] = M[i1, j] = 2, i3 such that M[is, j'] = M[is, j2] = 2,
and 7 such that M[i, j] = M[i, j'] = 2. Note that z # 2 as there is no edge (chord) between j; and
J'. Likewise y # 2. See figure 3. Thus M|, j, j'] contains the pattern {z2,2y} with =,y € {0, 1}.
By Lemma 4, (j,j') € E¢, a contradiction. &

Corollary 9: In Gu(J,Ef U Ey), consider a cycle of length 3 or more that contains nodes
J1,J2, -y Jr. Let edge (j1,jk) € En. Then, either (j1,jx—1) € Ef U Ey,, or (j2,jk) € Ef U E,.

Theorem 10: Consider a genotype matrix M which has at least one PPH solution. Let M’ be an
any of the PPH solutions for M, and £a4: be the indicator function defined by M’. Let C be any
single connected component of Gar(J, Ef). Then Algorithm PPH-CC (described in Figure 4) sets
an & value for each edge in C', and those values are precisely the values of Eaq:.

Proof:  We first show that the algorithm sets an £ value for each edge in C'. Clearly, it does so for
each edge in Ey. Next we show that as long as £ is not set for all edges in F,, there exists a triple



Algorithm PPH-CC:

Input: An n x m genotype matrix M, where all pairs are pph, and a single connected component C

of G(J, Ey).

Output: 0-1 valued functions & defined on each companion pair of columns ji1, 72 whose associated
nodes are in C.

Algorithm:
Set:
1. For each edge £(j2, j2) € C, set £(J1,J2) = 0 if there is a forcing pattern that equates
J1,J2- Set £(j1, j2) = 1 if there is a forcing pattern that negates ji, jo.
2. Until unable, iteratively find three columns ji, 72,73 in C such that £(j1,j2), and
&(J2, Js) are set, but £(71, 73) is not and j1, js are companions; set £(j1, ja) = £(J1, J2)P
E(51,2)
Output: Output £ for the edges in C

Figure 4: Algorithm PPH-CC takes as input an n x m Genotype matrix M, and a single component
C of G(J, E¢), and outputs an indicator function & for the edges in C.

Jzs Jy, - that are pairwise companions such that £(jz,jy) and &(jy, j.) have been set but £(jz, j.)
is not set. To see this, let E/ D E} contain the set of edges from E; U E,, whose values have been
set. Consider the graph G(J, E'). Since the edges of E¢ by themselves connect all the nodes in C,
and E; C E’, there is a path in G(J, E’) between the endpoints of any edge in C. Let (jz,j.) € C
be such that £(j;, j;) is not set, and the path in G(.J, E') between its endpoints has as few edges as
any path in G(J, E') between the endpoints of an edge in C' whose value has not yet been set. We
claim that the path between j, and j, in G(J, E') is of length two. If it is larger than two, then let j
and j’ respectively denote the neighbors of j; and j, on that path. By Corollary 9, either (j,j.) or
(7', 7z) is an edge in C. If the £ value of that edge has been set, then the path in G(J, E') between
Jjz and j, is of length two as claimed. If it is not set, then that edge is in C' and has a shorter path
in G(J, E') between its endpoints than does (jz,j.), a contradiction. Hence, £(j;,j;) can be set,
and the algorithm does set the indicator function for each edge in C.

Let & be the indicator function set by algorithm PPH-CC. We next show that, V(jz, jy) € EfUE,,
gM’(]xa]y) = g(]m]y)

The proof is by induction on the number of £ values set by the algorithm. Clearly, for each
(jo,Jz) € Ef, we have &(jz,j.) = Em(jz,j:). Inductively, assume that for every (ji,j2) € En
already set by the algorithm, £(ji1,j2) = Emr(j1,j2). Consider edge (jz,j:) where E(jz,j:) is
to be set. Let column j, be picked by the algorithm such that both £(j,jy) and £(jy,j.) are
already set; using the induction hypothesis, &(jz,jy) = Em(Jo.dy) and E(jy, jz) = Enr(dy, Jz)-
Now, Lemma 7 establishes there exists a row 7 with M7, jz;] = M[i, j,] = M4, j.] = 2. Hence, since
the indicator function &3 1s defined by a PPH solution, Lemma 2 can be applied, establishing
that gM’(jxajz) = gM’(Jxa]y) @ gM’(.jyajz)§ thus, g(]xa]z) = g(]xa]y) @ g(]ya]z) = gM’(]xa]y) @
gM’(jyvjz):gM’(jx7jz)~ &

Corollary 11: In any single connected component C' of G(J, Ef) the £ values of the edges in C
are invariant over all PPH solutions, and these values are completely determined by the & values
on the edges of E; in C'. This also shows that the non-determinism in algorithm PPH-CC is of no
consequence.

Corollary 12: If each connected component of Gar(J, Ef U Ey) is a connected component of
G(J, Ey), then the solution is unique if there is one. Moreover, that solution will be found by
applying algorithm PPH-CC to each connected component.
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We can now state a very useful special case where the solution is unique, if one exists. In practical
haplotyping problems, it is valuable to have unique solutions, so easy identification of uniqueness is
important.

Theorem 13: If every column of M contains at least one 0 and one 1 entry, then there is either
no PPH solution for M, or there is exactly one solution.

Proof: Assume that every pair of columns is a pph-pair (if not then M has no PPH solution).
We prove that every connected component of Gar(J, Ef UE,) is a connected component of G(J, Ey).
We show that by showing that in (G, every companion pair of columns where each has a 0 and a 1
are either forced equated or forced negated.

Consider a companion pair of columns j,j'. If all 0’s in j are opposite 0’s in 7 and all 1’s in
j are opposite 1’s in j/, then j and j' are forced equated. So w.l.o.g assume that some 0 in j is
opposite either a 1 or a 2 in j' (the other case is symmetric). Therefore, there will be a 01 row in
every expansion of j,j’. Now consider the 0’s in j/. If any 0 in j’ is opposite a 1 or a 2 in j, then
every expansion of j, 7/ will have a 10 row and a 01 row, so j, 7/ will be forced negated. Hence every
0 in j/ is opposite a 0 in j. So, we now know that there is a 01 row and a 00 row in every expansion
of 7,7'. Now consider a 1 entry in column j. If it is opposite a 1 in j/, then j and j' are forced
equated. If it is opposite a 0 in j/, then j and j’ are forced negated, and if it is opposite a 2, then
there is a complete-pair submatrix in j, j’, a contradiction. The theorem now follows by applying

Corollary 12. &

The rooted version of Theorem 13 was established in [9]. Using methods discussed there, the
unique PPH solution can be found in O(nm) time, when either version of this theorem applies.

4 Algorithm for PPH: setting indicator values across con-
nected components

In the previous section, we showed that the £ value for any edge inside a connected component of
G(J, Ey) is invariant over all PPH solutions. Hence the only variability in the PPH solutions are
in the & values of edges that cross components of G(J, E¢). It follows also that if there is more
than one connected component of G (J, Ef U E,), then each of those components can be solved
independently of the others. So, assume from this point that G (J, Ef UE,,) has only one connected
component and that component contains more than one component of G(J, Ey).

Conceptually, shrink each component of G(J, Ef) to a single node, creating a (multi-)graph
denoted H. Note that each edge in H is in F,. Choose an arbitrary spanning tree T of H, and let
E7 be the edges in T. Note that if an edge e is one of several parallel edges in H, and e is in Ep,
then none of the other edges parallel to e are in Ep.

Theorem 14: Consider a genotype matrix M which has at least one PPH solution. Let M’ be an
any of the PPH solutions for M, and £xq: be the indicator function defined by M’. Then the &y
values for the edges in Ep determine the x4 values for all the edges of H in G (J, Ef U Ey).

Proof:  First, consider an edge (j,j') of Er and a row ¢ in M such that j and j' are companion
columns for i. Row 7 expands to two rows in M’, each only containing 0’s and 1’s. If we append those
two binary rows to M, and to M’, then the new M’ is a PPH solution to the new M. Further, every
pair that was previously in £; remains in the new F; with the same forced £ value. However, the
pair (7, j') which had previously been in E, is now in E, and the forced £(j, j') value is determined
by whether j and j' are equated or negated in M’. The key point is that now all the nodes in G are
in a single connected component of the new G(J, E¢), and so the conditions of Corollary 11 apply,
and the Theorem follows from that application. &

11



Corollary 15: Let » < m be the number of edges in E7. Then the number of solutions to the
PPH problem is at most 27.

Proof: Each solution M’ determines exactly one indicator function, and those indicator values
are invariant except for edges of H. Since the setting of the r edges in Er determine the other
settings, there can be at most 2" indicator functions determined by PPH solutions, and hence at
most 2" PPH solutions. &

Theorem 16: For an instance M, either there are no solutions to the PPH problem for M, or
any arbitrary setting of the £ values for the edges in Ep defines a PPH solution. Hence there are
exactly 27 PPH solutions, if there are any.

Proof: Assume M has a PPH solution. Let M’ be an any PPH solution for M, and £xq: be the
indicator function defined by M’. Let e be any edge in E7, and let F. be the subset of edges of H
that cross the cut created by removing edge e from tree 7. Note that e is in F, and that all edges
mn EF, arein H.

Now modify Eaq: by reversing the setting of every edge in F.. We claim that this gives values for
the indicator function which satisfy Theorem 5, and hence define another PPH solution. First, since
all edges in E, are in H, the setting for every edge in E; is unchanged. Next consider a triangle
Jos Jys J= In G such that M[i, j;] = M[i, j,] = M[i, j.] = 2 for some 7. If none of those edges are
in E., then the indicator setting for them is unchanged, and the second condition of Theorem 5 is
satisfied, since it was in Eaq:. Otherwise, the triangle must contain exactly two edges from £, since
those edges form a cycle that crosses a cut. Focus on the edge €’ in the triangle that is not in E.. If
e’ is set to 1 in x4/, then exactly one of the other two edges is set to 1 and the other to 0. If ¢ is
set to 0 in Exqr, then either both of the other edges are set to 0, or both are set to 1. In all of these
cases, the second condition of Theorem 5 is satisfied after the change in indicator function is made.

Hence there is a PPH solution corresponding to the new setting of the indicator function. This
proves the theorem, since any arbitrary setting of the indicator function for the edges in Er can be
created by successive edge changes, and by the above argument, each such change leads to a PPH
solution. &

Given Theorem 16, the best we can conclude in terms of m is that the PPH problem has at most
2m=1 solutions. We now prove a bound that frequently will be smaller for real data. This bound is
of interest both because it reduces the number of solutions, and because it can be trivially computed
in practice by hand.

Theorem 17: If M has k columns that each contain both a 0 and a 1 (and a 2 by prior assumption),
then M has at most 2("=5=1) PPH solutions.

Proof: By the proof of Theorem 13, the columns of M which each contain both a 0 and a 1, are
partitioned into disconnected components of G'ar(J, Ef U Ey,), and each is a connected component
of G(J, Ef). Hence, there are no edges of Ep which touch any node representing such a column.
Therefore, the r edges in Ep form a spanning tree that can contain at most m — k nodes, and hence
r<m-—k—1. &

For the rooted PPH problem with input M and V, this theorem specializes to the following: if
k' is the number of columns containing an entry which is opposite to the ancestral state for that
column, then the number of PPH solutions rooted at V is at most 2% ~1.

Theorem 18: Algorithm PPH correctly finds a PPH solution, if there is one.

Proof: From Corollary 12, it follows that the algorithm sets the indicator function correctly
on the edges in each component of G(J, Ef). Assume w.lo.g. that Ga(J, B, U Ef) has a single
component. Now, the process of setting the indicator function value on the edges in E7 to 0 can be

12



Algorithm PPH:
Input: An n X m genotype matrix M
Output: 0-1 valued functions £ defined on each companion pair of columns 71, j2.

Algorithm:

Set:
1. Using algorithm PPH-CC, set each edge in FE,, that is within a connected component
of G(J, Ey).
2. Select a set of edges Er for the spanning tree T' of H, and set the £ value for each one
to zero.

3. For each triple column ji, j2, j3 such that £(j1, 52), and £(J2, Js) are set, but £(j1, J3)
is not and 71, 73 are companions, set £(j1, j3) = £(J1,J2)  E(J1, J2)-

Output: Output &£

Figure 5: Algorithm PPH takes as input an n x m Genotype matrix M and outputs an indicator
function &.

thought of as moving these edges from E, to E;. The resulting graph G’ has a single component
when restricted to the new E; set. From Corollary 12, if there is a solution for G’, the algorithm
correctly finds it. Also, from Theorem 16, it follows that if a solution does not exist for this setting
of the edges from E7, then no other setting of the indicator function on the edges from Er works
either, and thus no solution exists. &

5 Efficient Implementation of Algorithm PPH

In this section, we discuss implementation issues with respect to setting the edges and validating the
output haplotype matrix M’. First, note that validating that an n x m binary matrix M’ satisfies a
perfect phylogeny can be done O(nm) time [6, 7]. The critical components of Algorithm MAIN_PPH
are the procedures BuildGraph and SetEdges, which are described below. The pseudo-code descrip-
tion is given in Figure 6 and Figure 7.

The procedure BuildGraph (see Figure 6) constructs the genotype graph Gar(J, Ef U E,,) from
the input genotype matrix M. Every pair of columns is checked to see if it is a pph-pair. Note that
if there is a pair that is not a pph-pair, then no solution exists. For companion pairs j’, j, the edge
(4',7) € Ey if the rows that are not companion rows for j’, j, expand to produce either {00, 11} or
{01,10}; for companion pairs j',j, (j',j) € E, otherwise. If the edge is in Ey, then its &£ value is
set 1 or 0 appropriately. BuildGraph runs in O(nm?).

The procedure SetEdges sets the £ values for the edges in E,. It operates on each connected
component of Gy separately. Each connected component contains components of G = (J, Ef) as
subgraphs and thus can be handled using the observations made in Section 4. SetEdges is a Depth-
First-Search (DFS) like procedure that traverses Gys using only the edges in E;. Since the traversal
is done using only edges in Ey, unlike traditional DFS trees, our DFS tree can have both back edges
and cross edges; a back edge is in Fy U E, whereas a cross edge is in F,.

Let C' denote the set of nodes visited so far in the current connected component of G being
processed and P denote the current path in the DFS tree for this component. We use set Ep to
denote the set of edges that putatively belong to the spanning tree 7' of H (where H is defined as
in Section 4). For a node v, we use prev[v] to denote the parent of v in the DFS tree and nexzt[v] to
denote the child of v in the current path P of the DFS tree. In our DFS traversal procedure, at the
end of visiting a node v, we will have set the £ value of every edge (v,u) € E, where u € C.
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Suppose we are at a node v in the DFS tree. Then we add v to both C' and P. We first process
all (v,u) € E, before processing (v, u) € E¢. For each neighbor u of v, we check to see if (v,u) € E,
is a back edge (i.e u € P) or a cross edge (i.e. u ¢ P but v € C). If u has not been seen before (i.e.
u ¢ C), then (u,v) is neither and is added to Er; thus Ep contains edges such that one node of the
edge is not currently in the component C'.

Consider the case when (v, u) € F, is a back edge and £(v, u) has not been set. Note that there
is a cycle in Gy containing the edge (v,u) € E,. From Corollary 9, either (prev[v],u) € Ef U E,
or (v,next[u]) € Ey U E,. If it is the former, then &(prev[v], u) is already set as we visited prev[v]
before v. Thus, £(v,u) = E(prev[v], u) @ (v, prev(v]). If it is the later and £(v, next[u]) has not
been set yet, then we push u onto a stack S, and set u = next[u]. In this way, we traverse the path
P starting at u, till we reach a u for which either £(v, u) is set or (prev[v],u) € E; U E,,. Once this
happens, then S is repeatedly popped (say u denotes the element that is popped) and &£ (v, u) is set
to E(v, next[u]) @ &£ (u, next[u]). Also, every time the £ value is set for an edge, this edge is removed
from Ep (if it is present in Er).

The case when (v, u) € E, is a cross edge is also handled in a similar fashion using the observation
of Corollary 9 and a similar stack data structure. In this manner, every edge from F, that goes
between two nodes of the same component in G = (J, E¢) can handled. Once such a component is
processed, then we pick some edge (v,u) from Er, and set £(v,u) = 0. Note that v and v belong
to different components in G = (J, Ef). Suppose we have just processed the component containing
v. In order for the DFS algorithm to process the component of G = (J, E¢) containing u, we assign
(v,u) to be in Ey, and proceed to consider the back edges and cross edges as above.

The complete pseudo-code description is given in Figure 7. Note that every node and edge in
Gr i1s visited at most a constant number of times. Furthermore, it is possible to implement the
push, pop, and remove operations for Ep in constant time for each edge using a combination of an
adjacency matrix and a doubly linked list. Thus the total time for SetEdges is O(m + |Ef U E,|);
this is O(m?). Consequently, the running time of Algorithm PPH’ is bounded by O(nm?).

6 Conclusions and Future Work

We have described an algorithm for SNP haplotyping that is simple to implement and efficient.
As building the graph is now the computational bottleneck, the obvious open technical problem is
whether it can be built in o(nm?) time. We conjecture that O(nm) is achievable for this algorithm.

There are many HI algorithms in the literature (See [2, 13] for examples) which work well in
practice, but give no guarantees about the resulting haplotype matrix. In practice, people use one
or more of these algorithms and then test to see if the resulting haplotype matrix forms a perfect
phylogeny. Our solution attempts to turn this around by first testing to see if a prefect phylogeny
solution is possible. If none is, we can resort to inferring haplotypes using other methods.
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Main Algorithm MAIN_PPH(M)
Gwm(J, E; U E,)= BuildGraph(M)

Set Er = ¢ # Putative Fdges from spanning tree T'
Set C = ¢ # Current Connected Component
Set P=¢ # Current DFS Path

for all v € J search[v]=FALSE
for all (u,v) € E, set £(u,v) = *
forall ve J
if (search[v]=FALSE) #Step (i)
SetEdges(v)
while (E7.notEmpty())
(u,v) = Er.pop()
E(u,v) =0
Add (u,v) to Ey; Remove (u,v) from E,
if u € C, SetEdges(v) else SetEdges(u)
end while
end if
end for
Set M’ = £2M (M, &)
if Valid(M’) return M’ else return error ¢

Procedure BuildGraph(M)
Set J = ¢; Set Ey = ¢; Set E,, = ¢
for y=1...m
J=J+{5}
for j'=1...5—-1
fori=1...n
it M[i, (5", j)] = 22, Set 1s22(j",j)=TRUE
else
if M[i, (5, 7)] expands to 00, Set Is00
if M[i, (5, 7)] expands to 01, Set IsO1
[7, (', 7)] expands to 10, Set Is10
(i, (4", 9)

expands to 11, Set Is11

)

Pt i e Rt

if M, (5,7
if M, (5,7
end if
end for
if (Is00(j,j’) && 1s01(j,j’) && 1s10(j,j’) && 1s11(j,j"))

PG

)

i’j)=TRUE
i’j)=TRUE
i’j)=TRUE
i’j)=TRUE

Return ¢ and exit # Complete Pair Submaltriz

else if(1s00(j,j’) && Is11(j,j) && 1s22(3,}"))
Ey = Er +{(s,7)}

E(7',5)=0
else if(Is01(j,}’) && 1s10(j,i") && 1s22(3,"))
Ey = Er +{(s,7)} () =1

else if(1s22(j,j’))
E. = Bu+1{(7,3)}
end if
end for
end for

Figure 6: An O(nm?) implementation of Algorithm PPH
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Procedure SetEdges(vertex v)
P.add(v); C.add(v)
search[v]=TRUE
for all u s.t. (v,u) € B, && (E(u,v) == *)
if ((u€P)) # Back Fdge
Stack S = ¢
while (£(v,u) == %) && ((prev[v],u) € Ey U Ey,)
S.push(u)
u=next[u]
end while
if (E(v, u) == *)
E(v, u) = E(prev[v], u) & E(v, prev[v])
while(S.notEmpty())
u = S.pop()
E(v, u) = £(v, next[u]) G £(u, next{u])
Er.remove((v,u))
end while
else if ((u € C)) # Cross Edge
Stack S = ¢
while (£(v,u) == %) && ((prev[v],u) € Ey U Ey,)
S.push(u)
u=prev[u]
end while
if (E(v, u) == %)
E(v, u) = E(prev[v], u) & E(v, prev[v])
while (S.notEmpty())
u = S.pop()
E(v, u) = E(v, next[u]) G £(u, next{u])
Er.remove((v,u))
end while
else # Putative edge from Er
Er.push((v, u))
end if
end for
for all u s.t. (v,u) € Ey && (search[u] == FALSE) # Tree Edge
next[v]=u; prev[u]=v
SetEdges(u)
end for
P.remove(v)

Figure 7: An O(m?) implementation of Procedure SetEdges
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