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Abstract

Since the introduction of the Perfect Phylogeny Haplotyping (PPH) Problem [14] in Recomb 2002, the
problem of finding a linear-time (deterministic, worst-case) solution has remained open, despite broad interest
in the problem and a series of papers on various aspects of the PPH problem. In this paper we solve the open
problem, giving a practical, deterministic linear-time algorithm based on a simple data-structure and simple
operations on it. The method is straightforward to program and has been fully implemented. Simulations show
it is much faster in practice than prior methods.

In addition to the conceptual value of our solution, and new ideas and applications it will lead to, its practical
value can be significant. The difference in speed between our linear-time solution and prior solutions is dramatic
as the length of the sequences increase (see Sec. 6). Currently, most of the applications in human SNP data
are to intervals of under one hundred SNPs, but the full structure of haplotypes in human populations and
subpopulations is not known, and there are some genes with high linkage disequilibrium that extends over
several hundred kilobases (suggesting very long haplotype blocks with a perfect or near-perfect phylogeny
structure). There is enormous diversity in biology with very little known about haplotype structure in most
organisms or subpopulations, so it is too early to know the full range of direct application of this algorithm to
PPH problems on long sequences (see [7] for a more complete discussion). Moreover, faster algorithms are of
practical value when the PPH problem is repeatedly solved in the inner-loop of an algorithm. One example is in
studying the genotype/haplotype structure when recombination has influenced the underlying haplotypes [7],
and another example is in searching for recombination hotspots and low-recombination blocks given genotype
data [25]. In both of these cases, one finds, from every SNP site, the longest interval starting at that site for
which there is a PPH solution. When applied on a genomic scale (as is anticipated), even a ten fold increase
in speed has significant impact. Moreover, there are applications where one may examine subsets of sites,
rather than contiguous intervals of sites, to find subsets for which there is a PPH solution. This is partly due
to missing data or errors in the data, or small departures from the perfect phylogeny model, but it is also
motivated by “dispersed haplotype blocks” that are now being observed, where the sites in the haplotypes are
not contiguous, but are interlaced with other SNPs that are not part of that haplotype. The lengths of these
dispersed haplotypes are not known. When solving the PPH problem repeatedly on a huge number of subsets
of sites, efficiencies in the inner loop will be significant, even if each subset is relatively small.

* Research partially supported by grant EIA-0220154 from the National Science Foundation. Thanks to Chuck
Langley for helpful discussions.



1 Introduction

Haplotypes have recently become a key unit of
data in genetics, particularly human genetics. The
international Haplotype Map Project [20] is fo-
cussed on determining the common SNP haplo-
types in several diverse human populations. It
is widely expected that correlations between oc-
currences of specific haplotypes and specific phe-
notypes (such as certain diseases) will allow the
rapid location of genes that influence those pheno-
types, and there are already several successful ex-
amples of this strategy. However, collecting hap-
lotype data is difficult and expensive, while col-
lecting genotype data is easy and cheap. Hence,
almost all approaches collect genotype data and
then try to computationally infer haplotype pairs
from the genotype data.

1.1 Introduction to the PPH problem

In diploid organisms (such as humans) there are
two (not completely identical) “copies” of each
chromosome, and hence of each region of inter-
est. A description of the data from a single copy
is called a haplotype, while a description of the
conflated (mixed) data on the two copies is called
a genotype. In complex diseases (those affected by
more than a single gene) it is often much more
informative to have haplotype data (identifying a
set of gene alleles inherited together) than to have
only genotype data.

Today, the underlying data that forms a hap-
lotype is usually a vector of values of m single
nucleotide polymorphisms (SNP’s). A SNP is a
single nucleotide site where exactly two (of four)
different nucleotides occur in a large percentage
of the population. In general, it is not feasible to
examine the two haplotypes separately, and geno-
type data rather than haplotype data is usually
obtained. Then one tries to infer the original hap-
lotype pairs from the observed genotype data. We
represent each of the n input genotypes as vectors,
each with m sites, where each site in a vector has
value 0, 1, or 2. A site 7 in the genotype vector
g has a value of 0 (respectively 1) if site ¢ has
value 0 (or 1) on both the underlying haplotypes
that generate g. Otherwise, site ¢ in g has value
2. Note that we do not know the underlying hap-
lotype pair that generates g, but we do know g.

Given an input set of n genotype vectors of
length m, the Haplotype Inference (HI) Problem
is to find a set of n pairs of binary vectors (with
values 0 and 1), one pair for each genotype vec-
tor, such that each genotype vector is explained
(can be generated by the associated pair of hap-
lotype vectors). The ultimate goal is to compu-
tationally infer the true haplotype pairs that gen-
erated the genotypes. This would be impossible
without the implicit or explicit use of some ge-
netic model, either to assess the biological fidelity
of any proposed solution, or to guide the algo-
rithm in constructing a solution. The most pow-
erful such genetic model is the population-genetic
concept of a coalescent [24, 21]. The coalescent
model of SNP haplotype evolution says that with-
out recombination the evolutionary history of 2n
haplotypes, one from each of 2n individuals, can
be displayed as a rooted tree with 2n leaves, where
some ancestral sequence labels the root of the tree,
and where each of the m sites labels exactly one
edge of the tree. A label ¢ on an edge indicates the
(unique) point in history where a mutation at site
1 occurred. Sequences evolve down the tree, start-
ing from the ancestral sequence, changing along
a branch e by changing the state of any site that
labels edge e. The tree “generates” the resulting
sequences that appear at its leaves. In more com-
puter science terminology, the coalescent model
says that the 2n haplotype (binary) sequences fit a
perfect phylogeny. See [14] for further explanation
and justification of the perfect phylogeny haplo-
type model. Generally, most solutions to the HI
problem will not fit a perfect phylogeny, and this
leads to

The Perfect Phylogeny Haplotyping
(PPH) Problem: Given an n by m matrix S
that holds n genotypes from m sites, find n pairs
of haplotypes that generate S and fit a perfect
phylogeny.

It is the requirement that the haplotypes fit a
perfect phylogeny, and the fact that most solutions
to the HI problem will not, that enforce the coa-
lescent model of haplotype evolution, and make
it plausible that a solution to the PPH problem
(when there is one) is biologically meaningful.

The PPH problem was introduced in [14] along
with a solution whose worst-case running time is



O(nma(nm)), where « is the extremely slowly
growing inverse Ackerman function. This nearly-
linear-time solution is based on a linear-time re-
duction of the PPH problem to the graph re-
alization problem, a problem for which a near-
linear-time method [4] was known for over fif-
teen years. However, the near-linear-time solu-
tion to the graph realization problem is very com-
plex (only recently implemented), and is based on
other complex papers and methods, and so taken
as a whole, this approach to the PPH problem is
hard to understand, to build on, and to program.
Further, it was conjectured in [14] that a truly
linear-time (O(nm)) solution to the PPH problem
should be possible.

After the introduction of the PPH problem, a
slower variation of graph-realization approach was
implemented [6], and two simpler, but also slower
methods (based on “conflict-pairs” rather than
graph theory) were later introduced [2, 10]. All
three of these approaches have best and worst-
case running times of O(nm?). Another paper
[25] developed similar insights about conflict-pairs
without presenting an algorithm to solve the PPH
problem. The PPH problem is now well-known
(for example discussed in several surveys on hap-
lotyping methods [5, 16, 17, 15]). Related research
has examined extensions, modifications or special-
izations of the PPH problem [23, 18, 11, 8, 9, 3], or
examined the problem when the data or solutions
are assumed to have some special form [19, 12, 13].
Some of those methods run in linear time, but only
work for specializations of the full PPH problem
[12, 13], or are only correct with high probability
(with some model) [8, 9]. The problem of find-
ing a deterministic, linear-time algorithm for all
data has remained open, and a recent paper [1]
shows that conflict-pairs methods are unlikely to
be implementable in linear time.

1.2 Main Result

In this paper, we completely solve the open prob-
lem, giving a deterministic, linear-time (worst-
case) algorithm for the PPH problem, making no
assumptions about the form of the data or the so-
lution. The algorithm is graph-theoretic, based
on a simple data-structure and standard opera-
tions on it. It is relatively easy to understand, the
linear-time bound is trivially verified, and the cor-

rectness proofs are of moderate difficulty. The al-
gorithm is straightforward to implement, and has
been fully implemented (the program is available).
Tests show it to be much faster in practice as well
as in theory, compared to the other existing pro-
grams. As in some prior solutions, the method
provides an implicit representation of all the PPH
solutions. The value of a linear-time solution to
the PPH problem is partly conceptual and partly
for use in the inner-loop of algorithms for more
complex problems, where the PPH problem must
be solved repeatedly.

The algorithm builds and uses a directed,
rooted graph, called a “shadow tree”, as its pri-
mary data structure, described in the next section.

2 The Shadow Tree

There are two types of “edges” in the shadow tree:
tree edges and shadow edges, which are both di-
rected towards the root. Tree and shadow edges
are labeled by column numbers from S (with
shadow edges having bars over the labels for dis-
tinction). For each tree edge, i, there is a shadow
edge, 4, in the shadow tree. The end points of each
tree and shadow edge are called connectors, and
can be of two types: H or T connectors, corre-
sponding to the head (arrow) or tail of the edge.

The shadow tree also contains directed “links”.
From a graph theory standpoint, these are also
edges, but we reserve the word “edge” for tree and
shadow edges. Links are used to connect certain
tree and shadow edges, and are needed for linear-
time manipulation of the shadow tree. Each link is
either free or fized, and always points away from an
H connector. When we say edge E “links to” edge
E', we mean there is a link from the H connector
of E to a connector of E'.

Since links can point to either an H or a T" con-
nector, the “parent of” relationship between edges
is not the same as the “link to” relationship, and
is defined recursively. If an edge links to the root,
then its parent is the root. If an edge F links to
the T connector of an edge E,, then the parent
of E, p(E), is defined as E,. However, if E links
to the H connector of an edge E’, p(E) is defined
to be the same as p(E'). For convenience, we de-
fine the parent of a connector as the parent of the
edge that contains the connector. See Fig. 1 for
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Figure 1: Edge 1 is the parent of
edges 2 and 5. Each pair (i, 7) forms
a class. Class 2 attaches to its par-
ent class 1 by linking its class root
2H to join point 1T, and 2H to join
point 1T. As a continuing example,
edges 4 and 4 will be added later.

Figure 2: The result of flipping the
class of edges 5 and 5, and flip-
ping the class of edges 6 and 6 in
Fig. 1, followed by merging these
two classes. Free links are drawn as
dotted lines with arrows, while fixed
links as solid lines with arrows.

Figure 3: The result of flipping the
class of edges 2 and 2 in Fig. 2, fol-
lowed by merging it with the class
of edges 5 and 5. The class roots of
the merged class are 2H and 2H.

an illustration of all these elements.

Tree edges, shadow edges, and fized links are
organized into classes, which are subgraphs of the
shadow tree. Every free link connects two classes,
while each fixed link is contained in a single class.
We will see later that each class in the shadow tree
encodes a subgraph that must be contained in all
solutions to the PPH problem. In each class, if
the links are contracted, then the remaining edges
form two rooted trees (except for the root class
which has only one rooted tree), where if one sub-
tree contains a tree edge the other contains its
shadow edge. The roots of the two subtrees are
called the “class roots” of this class, and every
class root is an H connector. Each class X (except
for the root class) attaches to one other unique
“parent” class p(X) by using two free links. Each
link goes from a class root of X to a distinct con-
nector in p(X). The connectors in p(X) that are
linked to are called “join points”. As an example,
see Fig. 1.

2.1 Operations on the Shadow Tree

As the algorithm processes the matrix S, new
edges are added and information about old edges
is updated. Three operations are used to modify
the shadow tree, edge addition, class flipping, and
class merging.

An edge is added to the shadow tree by creating
a single edge class, consisting of the edge and its

shadow edge, and then linking both edges to cer-
tain connectors in the shadow tree. Both edges of
the first class created in the algorithm are linked
to the root.

A class X can flip relative to its parent class
p(X) by switching the links that connect X to
p(X). A flip does not change any class roots or any
join points, but simply switches which of the two
class roots links to which of the two join points.
See Fig. 2 for an example.

The algorithm may choose to merge two classes
resulting in a larger class. A class X may merge
with its parent class p(X), or two classes with the
same parent may merge. No other merges are pos-
sible. In the first case, the free links connecting X
to p(X) are changed to fixed links, and the class
roots of p(X) become the class roots of the new
class. See Fig. 2 for an example. In the second
case, when two classes X and X' have same par-
ent, the links from the class roots of X become
fixed, and are changed to point to the class roots
of X' (assuming that column numbers of edges
that contain class roots of X' are smaller than
those of the class roots of X). After merging, the
class roots of X' become the class roots of the
new class. See Fig. 3 for an example of this cases.
Three or more classes can be merged by executing
consecutive merges.

The algorithm can “walk up” in the shadow tree
by following links from H connectors of tree or
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Figure 4: The final shadow tree after processing the
given genotype matrix. It’s an implicit representation
of all PPH solutions for S.

shadow edges, until the walk reaches the root. The
algorithm can efficiently find class roots and join
points of a class by walking up in the shadow tree
and checking if a link encountered is fixed or free.

2.2 Mapping the Shadow Tree to All
PPH Solutions

We say that a tree is “contained in” a shadow tree
if it can be obtained by flipping some classes in the
shadow tree followed by contracting all links and
shadow edges. The following is the KEY THEO-
REM that we establish in this paper. The proof
is given in Appendix A.

Theorem 1. Fvery PPH solution is contained
in the final shadow tree produced by the algo-
rithm. Conversely, every tree contained in the fi-
nal shadow tree is a distinct PPH solution.

For example, in Fig. 4, by flipping the class of
edges 2, 2, 3, and 3, and then doing the required
contractions, we get all PPH solutions for S, which
are root(1(2), 3) and root(1(3), 2). Note that flip-
ping the root class results in the same tree. There-
fore a final shadow tree with p classes implicitly
represents 271 PPH solutions.

2.3 Invariant Properties

The linear time PPH algorithm processes the in-
put matrix S one row at a time, starting at the
first row. At every step, the algorithm main-
tains certain properties of the shadow tree which
are necessary for the correctness and the running
time.

Theorem 2. The shadow tree has the following
invariant properties:

Property 1: For any column i in S, the edge
labeled by i is in the shadow tree if and only if the
shadow edge i is; i and i are in the same class,
and are in different subtrees of the class (except
for the root class).

Property 2: FEach class (except for the root
class) attaches to exactly one other class, and the
two join points are in different subtrees of the
parent class unless it is the root class.

Property 3: Along any directed path towards
the root the column numbers of the edges (tree or
shadow edges) strictly decrease. Also, for any two
edges E and E', if E was added to the shadow tree
while processing a row k, and E' was added when
processing a row greater than k, then E' can never
be above E on a path to the root in the shadow tree.

When each edge is added to the growing shadow
tree, the algorithm ensures that these properties
are satisfied. None of operations to the shadow
tree later changes these properties.

3 Some Definitions

We use F; to denote an edge, and C; to denote a
column number (i could be any integer between 1
and m). The “class of edge E;” is defined as the
class that contains F;. The “class root of E;” is
defined as the root of the subtree that contains F;,
in the class of F;.

We define three functions col, te, and se. Func-
tion col takes an edge or a connector as input and
returns the column number of that edge or the
column number of the edge which the connector
belongs to. Function te (or se) takes a column
number or an edge as input and returns the tree
edge (or shadow edge respectively) of that column
number or edge. If the input is the root of the
shadow tree, then function col, te, and se each re-
turns the root. The class of C; is defined as the
class that contains te(C;).

For two columns C; and Cj, C; < C; means
that column Cj is to the left of column Cj; in S.
The root is defined as smaller than any column
number.

A “2 entry C; in row k” means that the entry
at column C; and row k in S has a value 2. A
“new 2 entry C; in row k” means that there is no
2 entry at C; in rows 1 through &k — 1. An “old 2
entry C; in row k” means there is at least one 2



entry at C; in rows 1 through k — 1.

When we say “a PPH solution, restricted to the
columns in shadow tree ST”, we mean a tree ob-
tained from a PPH solution after contracting all
edges corresponding to columns not in S7. We also
say that a tree T contained in ST is “in ” a PPH
solution if T' can be obtained from a PPH solu-
tion after contracting all edges corresponding to
columns not in S7.

For any column C; in S we define the “leaf
count” of column C; as the number of 2’s in col-
umn C; plus twice the number of 1’s in column

C;.

4 Algorithm

We assume throughout the paper that the columns
of § are arranged by decreasing leaf count, with
the column containing the largest leaf count on
the left. For ease of exposition, in this section we
first describe a linear time algorithm for the PPH
problem where S is assumed to only contain en-
tries of value 0 and 2, and the all-zero sequence is
the ancestral sequence in any solution. We will re-
lax these assumptions, and solve the general PPH
problem in Sec. 5.

The algorithm processes the input matrix S one
row at at time, starting at the first row. We let
T'(k) denote the shadow tree produced after pro-
cessing the first k rows of S. For row k + 1, the
algorithm puts the column numbers of all old 2
entries in row k + 1 into a list OldEntryList, and
puts column numbers of all new 2 entries in row
k + 1 into a list NewEntryList.

The algorithm needs two observations. First, all
edges labeled with columns that have 2 entries in
row k + 1 must form two paths to the root in any
PPH solution, and no edges labeled with columns
that have 0 entries in row k + 1 can be on either
of these two paths. Second, along any path to
the root in any PPH solution, the successive edges
are labeled by columns with strictly increasing leaf
counts. These two observations are simple, but
powerful and are intuitively why we can achieve
linear time, while no such solution exists for the
general graph realization problem.

The algorithm processes a row &+ 1 using three
procedures. In the first procedure, OldEntries, it
tries to create two directed paths to the root of

T(k) that contain all the tree edges in T'(k) cor-
responding to columns in OldEntryList. Those
two paths may also contain some shadow edges.
The subgraph defined by those two directed paths
is called a “hyperpath”. The process of creating
a hyperpath may involve flipping some classes,
and may also identify classes that need to be
merged, fixing the relative position of the edges
in the merged class in all PPH solutions. In the
second procedure, FizTree, the algorithm locates
any additional class merges that are required. In
the third procedure, NewEntries, the algorithm
adds the tree and shadow edges corresponding to
the columns in NewEntryList, and may do addi-
tional class merges. The resulting shadow tree is
T(k+1).

Procedure OldEntries

Procedure OldEntries is divided into two proce-
dures, FirstPath followed by SecondPath. Pro-
cedure FirstPath constructs a path (called First-
Path) to the root that consists of tree edges
of some column numbers in OldEntryList. The
shadow tree produced after this procedure is de-
noted by Trp(k).

4.1

Procedure FirstPath: Assume that column
numbers in OldEntryList (and lists used later) are
ordered decreasingly, with the largest one, C;, at
the head of the list. The algorithm does a front to
back scan of OldEntryList, starting from C;, and a
parallel walk up in 7'(k), starting from edge te(C;).
Let C; denote the next entry in OldEntryList, and
let E, be the parent of te(C;) in T'(k). If E, and
te(C;) are not in the same class, then let £, denote
the resulting parent of te(C;) if we flip the class
of C;. If E, is a tree edge and col(E,) < col(E}),
then the algorithm will flip the class of C; and set
E, to E, (it can be proven that if E, is a shadow
tree, then col(E,) > col(Ej})). This class flipping
is done to simplify the exposition in the paper and
proofs of correctness of the algorithm.

The ideal case is that E), is the tree edge te(C}),
in which case we can move to the next entry in
OldEntryList, and simultaneously move up one
edge in T'(k). The ideal case continues as long
as the next entries in OldEntryList correspond to
the parent edges encountered in the shadow tree,
and those edges are tree edges. The procedure
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Figure 5: The shadow tree after processing the first
two rows of this genotype matrix is shown in Fig. 1.
The shadow tree at the end of Procedure FirstPath for
row 3 is shown in Fig. 2. Lists shown are for row 3.

ends when there is no entry left in OldEntryList,
and we move to the root of the shadow tree.
However, there are three cases, besides the ideal
case, that can happen. One case is that E, is a
shadow edge, which can only happen when te(Cj;)
and E, are in the same class. Then we simply
walk past E, (i.e. let E, = p(E,)), without mov-
ing past entry C; in OldEntryList. A second case
is that E, is a tree edge, but col(E,) < C;. This
indicates that te(C;) and te(C;) can never be on
the same path to the root, and the algorithm adds
C; to the head of a list called CheckList, to be
processed in Procedure SecondPath. The third
case is that E, is a tree edge, but col(E,) > C;
(and hence col(E,) has a 0 entry in row k + 1).
This indicates that edges te(C;) and E, must be
on different paths to the root of T'(k + 1), and
the algorithm flips the class that contains te(C;)
to avoid edge Ej,. In that case, the algorithm will
also merge the classes containing te(C;) and E,
to fix the relative position of those edges in any
PPH solution. However, if te(C;) and E, are in
the same class when this case occurs, then even
flipping the class of te(C;) won’t avoid the prob-
lem, and hence the algorithm reports that no PPH
solution exists. O

As an example, see Fig. 5. Procedure First-
Path performs a flip/merge-class in the third case.
Let T"(k) denote the shadow tree T'(k) after that
flip/merge, and note that as a result, 7"(k) con-
tains some, but not all, trees contained in T'(k).
Then, a tree T' contained in T'(k) is not contained
in T'(k) only if T' is not in any PPH solution. This
is proven as Lemma 3 in Appendix A. The algo-
rithm also puts column number C; into CheckList
in the second case during processing C;, which in-

dicates that te(C;) and te(C;) cannot be on the
same path to the root in any PPH solution. This
is proven as Lemma 4 in Appendix A. Lemmas
3 and 4 together essentially say that when Pro-
cedure FirstPath takes any “non-obvious” action,
either flipping and merging classes or putting a
column number into Checklist, it is “forced” to do
so. The algorithm may perform other class flips
and merges in other procedures described later.
The correctness of those actions can be proven by
lemmas similar to Lemma 3 and 4.

At the end of Procedure FirstPath, any columns
in OldEntryList, whose corresponding tree edges
are not on FirstPath, have been placed into Check-
List. Procedure SecondPath tries to construct a
second path (called SecondPath) to the root that
contains all the tree edges in T'(k) corresponding
to columns in CheckList. The shadow tree pro-
duced after this procedure is denoted by Tsp(k),
and it contains a hyperpath for row &k + 1.

Procedure SecondPath: Let C; be the
largest column number in CheckList, and let C}
denote the next entry in CheckList. The algorithm
does a front to back scan of CheckList, starting
from column Cj, and a parallel walk up in Trp(k),
starting from edge te(C;). The parent of te(C;) in
Trp(k), denoted as E,, is obtained in the same
way as in Procedure FirstPath.

The rest of the algorithm is similar to Procedure
FirstPath, with two major differences. First, the
second case in Procedure FirstPath (when E,, is a
tree edge, col(E,) < C;) now causes the algorithm
to determine that no PPH solution exists.

Second, the third case in Procedure FirstPath
(when E, is a tree edge, col(Ep) > C}), now indi-
cates two possible subcases. In the first subcase, if
col(Ep) has a 0 entry in row k + 1, then as in Pro-
cedure FirstPath, the algorithm determines that
edges te(C;) and E, must be on different paths to
the root of T'(k+1), and it does a flip/merge-class
as in Procedure FirstPath. In the second subcase,
if col(Ey) is in OldEntryList, but not in CheckList,
then it must be that E, is on FirstPath. Second-
Path is about to use a tree edge that is already on
FirstPath, and hence some action must be taken
to avoid this conflict. In this case, there is a direct
way to complete the construction of SecondPath.
The algorithm calls Procedure DirectSecondPath,



and ends Procedure SecondPath. O

When SecondPath is about to use a tree edge,
E,, that is on FirstPath, Procedure DirectSecond-
Path is called to decide whether F, must stay on
FirstPath, or whether it must be on SecondPath,
or if it can be on either path to root (it can be
shown that only these three cases yield valid PPH
solutions). The algorithm also performs the ap-
propriate class flips and merges to ensure that E,
stays on the path chosen by the algorithm regard-
less of later class flips, in the first two cases, or
that FirstPath and SecondPath have no tree edge
in common, in the third case.

Procedure DirectSecondPath: Recall that
te(C;) is the tree edge on SecondPath whose par-
ent edge is E,. Let Ej denote the tree edge on
FirstPath whose parent edge is E}, at the end of
Procedure FirstPath. The following tests deter-
mine which path to put E, on.

Test1: If after flipping the class of C; and the
class of Ej, E, is either on both FirstPath and
SecondPath, or on none of them, then no hyper-
path exists for row k£ + 1, and hence no solution
exists for the PPH problem.

Test2: If F, is in the same class as Ej (respec-
tively te(C;)), then E, must be on FirstPath (re-
spectively SecondPath).

Test3: If after flipping the class of C; and the
class of Ej, so that E, is on FirstPath (respectively
SecondPath), but not on SecondPath (respectively
FirstPath), and there doesn’t exist a hyperpath in
the shadow tree after the flip, then E, must be on
SecondPath (respectively FirstPath).

If the test results indicate that E, must be on
both FirstPath and SecondPath, then no hyper-
path exists for row k£ + 1, and hence no solution
exists for the PPH problem.

If the test results indicate that E, must be on
FirstPath (respectively SecondPath), then flip the
class of C; and the class of Ej so that E, is on
FirstPath (respectively SecondPath), but not on
SecondPath (respectively FirstPath), and merge
the classes of E,, C;, and Ej.

If the test results show that E, can be on either
path, then for concreteness, flip one of the class of
C; and the class of E}, so that E, is on FirstPath,
but not on SecondPath, and merge the class of C;
with the class of Ej. O

As an example, the shadow tree at the end of
Procedure SecondPath for row 3 of the matrix in
Fig. 5 is shown in Fig. 3. In this example the
algorithm determines that tree edge 1 can be on
either FirstPath or SecondPath.

4.2 Procedure FixTree

Procedure FixTree finds and merges more classes,
if necessary, to remove trees contained in Tsp(k)
that are not in any PPH solutions. It first ex-
tends SecondPath with shadow edges whose col-
umn numbers are in OldEntryList of row k + 1.
The subgraph defined by FirstPath and the ex-
tended SecondPath is call an “extended hyper-
path”; it contains the hyperpath found earlier. By
utilizing the extended hyperpath the algorithm
can determine which additional classes need to be
merged. The shadow tree produced after this pro-
cedure is denoted by Trr(k).

Procedure FixTree: Let E; denote the tree
edge of the largest column number in OldEn-
tryList, i.e., the lowest edge of FirstPath. Let Fs
denote the tree edge of the largest column number
in OldEntryList whose tree edge is not on First-
Path, i.e., the lowest edge of SecondPath.

Find a maximal path from FE5, towards the
leaves in Tsp(k), consisting of shadow edges whose
column numbers are in OldEntryList. It can
proven that such a maximal path is unique. Let E},
denote the edge that is the lower end of the max-
imal path; if the path doesn’t contain any edge,
then let EY be the same as Fo.

Repeat the following process until either F; and
E! are in the same class, or F) is the parent of
the class root of se(FEj): if the column number of
the edge containing the class root of F; is larger
than the column number of the edge containing
the class root of Ey, then merge the class of F;
with its attaching class, otherwise merge the class
of Fy with its attaching class. O

As an example, see Fig. 6.

4.3 Procedure NewEntries

Procedure NewEntries creates and adds edges cor-
responding to columns in NewEntryList of row
kE+ 1 to Tpr(k). Ideally it tries to attach new
edges to the two ends of the extended hyperpath
constructed in Procedure FixTree. If some new
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Figure 6: The shadow tree at the end of Procedure
FixTree for row 3 of the matrix in Fig. 5. In Procedure
FixTree for this example, Ey = 6, Ej) = E; = 3, the
class of edge 3 is merged with the class of edge 2. The
class roots of the merged class are 2H and 2H.

edges cannot be added in this way, the algorithm
finds places to attach them. It then merges more
classes, if necessary, so that there are two directed
paths to the root in T'(k + 1) containing all the
tree edges corresponding to the columns that have
2 entries in row k + 1, no matter how any classes
are flipped.

Procedure NewEntries: If NewEntryList is
empty, then exit this procedure. Otherwise ar-
range column numbers in NewEntryList from left
to right increasingly, with the largest one on the
right end of the list.

Create edges te(C;) and se(C;) for each C; in
NewEntryList. Create two free links pointing from
the H connector of te(C;) (respectively se(C;)) to
the T' connector of te(C;) (respectively se(Cj)),
for each C; and its left neighbor C; in NewEn-
tryList.

At this point, each new edge is attached, using a
free link, to one other edge, except for te(Cj) and
se(Ch). The algorithm attaches them according
to two cases. Let F1, Fs, and E} be the same as
in Procedure FixTree. Let C}, denote the smallest
column number in NewEntryList.

In the first case, when col(E;) < Cy, te(Ch)
and se(C}) are attached to the two ends of the
extended hyperpath. It creates a free link pointing
from the H connector of te(C},) to the T' connector
of E;. It creates a free link pointing from the H
connector of se(C}) to the T' connector of EY, if E,
is in the class of F1, and otherwise to a connector

in the class of E; whose parent is Fl.

In the second case, when col(E;) > Cj, by
Property 3 of Theorem 2, none of te(Cp) and
se(Cp,) can attach to Ey. If col(Ey) > Cp, then no
PPH solution exists no matter where new edges
are attached; otherwise the algorithm finds two
edges (Ep1 and Fpy) to attach te(Cp,) and se(Ch),
as follows.

Let Ep1 denote the tree edge of the largest col-
umn number in OldEntryList that is less than C},.
Let Epy denote the tree edge of the largest column
number in OldEntryList that is less than C}j, and
not on the path from FEp; to the root. If Ej; or
E}5 doesn’t exist, then let it be the root.

Similar to Procedure FixTree, the algorithm
finds a maximal path from Eps toward the leaves
in Trr(k), consisting of shadow edges whose col-
umn numbers are in OldEntryList and less than
C},. Let Epy denote the edge that is at the lower
end of the maximal path.

If Ep; is on the path from E; (respectively EY)
to the root, then create a free link pointing from
the H connector of se(Cp) (respectively te(Ch))
to the T' connector of F}j;, and create a free link
pointing from the H connector of te(C},) (respec-
tively se(Ch)) to the T connector of Epg if Epor
is in the class of E};, otherwise to a connector in
the class of Ep; whose parent is Epor.

If there are column numbers in NewEntryList
that are larger than col(E1), then let C; denote the
smallest one among them (C), < col(E1) < Cy).
se(Cy) is a new edge that has been attached to
an edge by the algorithm. As a special case, the
algorithm changes the link from the H connector
of se(C}) to point to the T' connector of Ej.

All new edges are added to Tpr(k) according
to case 1 and 2. The algorithm then merges the
class of C}, with the classes of column numbers
in NewEntryList that are less than col(F;), and
merges the class of C}, with the classes of column
numbers in OldEntryList that are larger than Cj,.
O

See Fig. 7 for an example. The shadow tree T’
shown in Fig. 7 is produced by the algorithm after
processing the first three rows of the matrix S in
Fig. 5. It is also the final shadow tree for S. It can
be verified that the KEY THEOREM holds for S
and T. The following lemma establishes that our
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Figure 7: The shadow tree at the end of Procedure
NewEntries for row 3 of the matrix in Fig. 5. In Proce-
dure NewEntries for this example, By =6, E), = Ey =
3,Ch=4,C, =7, Ep =3, Epg =1, Epy = 3. Note
that edge 7 links to edge 6 instead of 4. The class of
edge 4 is merged with the class of edge 2.

algorithm accomplishes the first observation made
at the beginning of Sec. 4.

Lemma 1. In every tree contained in T'(k + 1),
there are two paths to the root with no edge in
common that pass through edges corresponding to
all columns that have a 2 entry in row k + 1.

4.4 Correctness and Efficiency

Due to space limitations we cannot include proofs
for all lemmas and theorems. We give the proofs
of two lemmas, and the proof of the KEY THE-
OREM in Appendix A. An implementation of the
linear time algorithm in pseudo code is given in
Appendix B. For each row of S, the algorithm does
a fixed number of scans of the entries in that row,
and a fixed number of parallel walk ups in the
shadow tree. There are some steps in the algo-
rithm that require a traversal of the shadow tree
(finding a maximal path from an edge, for exam-
ple), but such operations happen at most once in
each procedure, and hence at most once in the pro-
cessing of each row. However, they can actually
be implemented efficiently without traversing the
shadow tree (we omit the details). It takes con-
stant time to scan one entry in S, or to walk up one
edge in the shadow tree. Each flip and/or merge
is associated with an edge in a walk, and each flip
or merge is implemented in constant time. Hence,

the time for each row is O(m), and the total time
bound is O(nm), where n and m are the number
of rows and the number of columns in S.

5 General PPH Problem

Now we solve the general PPH problem for geno-
type matrix S with entries of value 0, 1, and 2.
We assume that the rows of S are arranged by the
position of rightmost 1 entry in each row decreas-
ingly, with the first row containing the rightmost
1 entry in S. The following lemma is immediate:

Lemma 2. If there exists any PPH solution for
S, then entries of value 1 are to the left of entries
of value 2 in each row of S.

To solve the general PPH problem, we need to
first build an “initial perfect phylogeny” T; for S.
The initial perfect phylogeny is described in detail
in [14], and is built as follows. Let C; (respectively
R;1) denotes the set of columns (respectively rows)
in S that each contain at least one entry of value
1. We build T; by first creating, for each row ¢ in
R, an ordered path to the root consisting of edges
labeled by columns that have entries of value 1 in
row %, with the edge of the smallest column label
attaching to the root. We can then simply merge
the identical initial segments of all these paths to
create T;. As shown in [14], T; can be built in
linear time, and must be in every PPH solution
for S.

We build an “initial shadow tree” ST; based on
T; by changing each edge in T; into a tree edge in
ST;, creating an H connector and a T' connector
for each tree edge in ST;, and creating a fixed
link pointing from the H connector of each tree
edge, corresponding to an edge E in T;, to the
T connector of the tree edge whose corresponding
edge in T; is the parent of . There is no shadow
edges in ST;, and the tree edges in ST; form one
class.

5.1 Algorithm with Entries of Value 1

The underlying idea of the algorithm is that in
any PPH solution for S, all the edges labeled with
columns that have entries of value 2 in row k4 1j
must form two paths toward an edge in the initial
tree. From that edge, there is a path to the root



consisting of edges labeled with columns that have
entries of value 1 in row k + 1.

The algorithm for the PPH problem with entries
of value 1, denoted as the algorithm with 1 entries,
is very similar to the algorithm in Sec. 4. There
are three differences. First, the algorithm with
1 entries builds and uses an initial shadow tree
ST;. Second, we now call an entry C; an “old 2
entry C; in row k+17 if there is at least one entry
of either value 2 or 1 at C; in rows 1 through k.
The third difference is the most important one. In
the algorithm with 1 entries, whenever we use the
term “root” during the processing of row k+ 1, we
mean the root for row k+1. The root for row £+ 1
is defined as the T' connector of the tree edge in
the initial shadow tree ST; whose column number
has the rightmost 1 entry in row k + 1. If there is
no entry with value 1 in row k41, then the root for
row k+ 1 is defined as the root of ST;. Every new
edge attached to the root for row k& + 1 becomes
part of the same class as the root of ST;. This
is a simple generalization of the earlier algorithm,
since earlier, the root for each row is the root of
the whole shadow tree.

5.2 Remaining Issues

Identical Columns: We use an example to
demonstrate how to deal with identical columns.
Suppose that after arranging columns of the ma-
trix S by decreasing leaf count, columns 5, 6, 7 are
identical. We first remove columns 6, 7 from S,
and obtain a new matrix S’ with distinct columns.
Note that we use the same column indices of S to
label columns in §’, i.e., column 5 of S’ has a col-
umn label 5, but column 6 of S” has a column label
8. Then we solve the PPH problem on S’ by using
our previous algorithm. Once a final shadow tree
T’ for S’ is constructed, we can get a final shadow
tree T for S according to two cases.

In the first case the class of column 5 in 7" con-
sists of just edge 5 and 5, i.e., this class has never
been merged with other classes. We then split
tree edge 5 into three tree edges 5, 6, 7, and split
shadow edge 5 into 5, 6, 7 in 7. The result is
equivalent to saying that 7T free links to 6H, 6T
free links to 5H, and the links that link to 5H in
T' now link to 7H in T. The same idea holds for
shadow edges.

In the second case, the class of column 5 in T”
consists of edges other than 5 and 5. Then we
want 7T to link to 6H with a fixed link, and 6T
to fix link to 5H, and the links that link to 5H in
T' now link to 7H in T'. The same idea holds for
shadow edges.

Unknown Ancestral Sequence: As men-
tioned in [14], the PPH problem with unknown
ancestral sequence can be solved by using magjority
sequence as the root sequence, and then applying
our algorithm. See [14] for more details.

6 Results

We have implemented our algorithm for the gen-
eral PPH problem in C, and compared it with
existing programs for the PPH problems. Pro-
gram DPPH [2] was previously established as the
fastest of the existing programs [7] (about two
times faster than HPPH [10] and three times
faster than GPPH [6]). Some representative ex-
amples are shown in the table below. In the
case of m = 2000,n = 1000, our program is
about 250 times faster than DPPH, and the lin-
ear behavior of its running time is clear. This
result is an average of 10 test cases. As in [7],
our test data is generated by the program ms
[22]. That program is the widely-used standard
for generating sequences that reflect the coales-
cent model of SNP sequence evolution. The cases
of 50 and 100 sites and 1000 individuals are in-
cluded because they reflect the sizes of subprob-
lems that are of current interest in larger ge-
nomic scans. In those applications, there may be
a huge number of such subproblems that will be
examined. Our program can be downloaded at
http://wwwecsif.cs.ucdavis.edu/~gusfield /lpph/.

Average Running
Time (seconds)
Sites | Indivi- | # test | DPPH Our
(m) | duals (n) | cases program
50 1000 20 0.20 0.07
100 1000 20 1.06 0.11
300 150 30 1.07 0.05
500 250 30 5.72 0.13
1000 500 30 45.85 0.48
1000 1000 10 92.20 0.95
2000 1000 10 467.18 1.89

10
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Appendix A: Proofs

Appendix A: Proofs

Space doesn’t allow all lemmas and their proofs
to be presented, but we want to present proofs
of Lemma 3 and 4 and of the Key Theorem, to
introduce some of the main ideas that are used in
all of the proofs.

Lemma 3. Assume that every PPH solution, re-
stricted to the columns in the shadow tree T(k),
is contained in T(k). Suppose the algorithm per-
forms a flip/merge-class in Procedure FirstPath
for row k + 1. Any tree contained in T(k) that is
lost by doing the flip/merge is not in any solution
to the PPH problem.

Proof. When the flip/merge-class occurs in Pro-
cedure FirstPath, column C; has a 2 entry in row
k+1, while col(F,) has a 0 entry in row £+ 1. So
E, can’t be on the path from te(C;) to the root
in any PP tree that explains S. However, before
doing the flip/merge-class, E, is on the path from
te(C;) to the root in the shadow tree. So any tree
contained in T'(k) that does not first flip the class
of C; relative to the class of E,, will not be in any
PPH solution. It follows that any tree contained
in T'(k) that is lost by doing the flip/merge-class
is not in any PPH solution. O

Lemma 4. Assume that every PPH solution, re-
stricted to the columns in the shadow tree T(k),
is contained in T(k). If the algorithm puts a col-
umn number C; into CheckList when processing
column C; in Procedure FirstPath for row k + 1,
then te(C;) and te(C;) cannot be on the same path
to the root in any solution to the PPH problem.

Proof. By assumption of the lemma, every PPH
solution, restricted to the columns in the shadow
tree T(k), can be obtained by flipping classes in
T(k) and then contracting all links and shadow
edges. Hence it suffices to prove that no matter
how the classes of T'(k) are flipped, edges te(C;)
and te(C;) are never on the same path to the root
in T'(k). Since each class in the shadow tree at-
taches to one unique class, the parent of te(C;)
is either edge F, or edge E';) no matter how the
classes in T'(k) are flipped (E, and E;, are defined
in Procedure FirstPath). Hence te(C}) can never
be the parent of te(C;) in any way that the classes

of T(k) are flipped. But by Property 3 of Theo-
rem 2, and the fact that col(E;) < col(E,) and
col(Ep) < Cj, te(Cj) can’t be above Ej or Ej,.
Similarly, since C; < Cj, te(C;) cannot be be-
low te(C;) in any way that the classes of T'(k) are
flipped. Hence, te(C;) and te(C;) cannot be on
the same path to the root in any solution to the
PPH problem. O

Theorem. 1. FEvery PPH solution is contained
in the final shadow tree produced by the algo-
rithm. Conversely, every tree contained in the fi-
nal shadow tree is a distinct PPH solution.

Proof. The theorem has two parts. We prove the
second part first.

All new edges corresponding to new entries in
row ¢ + 1 are attached to leaves of T'(). Any tree
contained in T'(7 + 1), restricted to the columns
in T'(7), is contained in 7'(¢). By Lemma 1, in
every tree contained in T'(i + 1), there are two
paths to the root with no edge in common, that
pass through edges corresponding to all columns
that have a 2 entry in row ¢ + 1. Thus in every
tree contained in the final shadow tree, there are
two paths for each row to the root with no edge
in common that pass through edges correspond-
ing to all columns that have a 2 entry in that row.
In addition, by Property 3 of Theorem 2 and the
fact above, along any directed path towards the
root in every tree contained in the final shadow
tree, the successive edges are labeled by columns
with strictly increasing leaf counts. Therefore ev-
ery tree contained in the final shadow tree is a
solution to the PPH problem. Since each distinct
choice of class flips, followed by the required edge
and link contractions, leads to a distinct tree, the
second part of the theorem is proven.

Next we prove the first part of the theorem by
induction.

We first prove that every PPH solution, re-
stricted to the columns in the shadow tree T'(1), is
contained in T'(1). All 2 entries in the first row of
S are new entries. Procedure NewEntries runs the
simplest case: create a path to the root that con-
sists of tree edges of columns that have 2 entries
in this row, and create a path to the root that
consists of shadow edges of these columns. All
links between edges are free links. In every PPH



Appendix A: Proofs

solution, restricted to the columns in 7T'(1), there
must be two paths to the root that pass through
edges corresponding to all new entries in the first
row. It is easy to verify that 7'(1) contains all pos-
sible trees that satisfy this constraint. Therefore
every PPH solution, restricted to the columns in
the shadow tree 7'(1), is contained in 7'(1).
Assume that every PPH solution, restricted to
the columns in the shadow tree 7'(3), is contained
in T'(i). To complete the induction we next prove
that every PPH solution, restricted to the columns
in the shadow tree T'(i+1), is contained in T'(i+1).
Three operations that modify the shadow tree
in the algorithm are class flipping, class merging,
and edge addition. Class flipping doesn’t change
the set of trees contained in the shadow tree. By
adding new edges and corresponding new classes
to T'(i), the number of choices of class flipping
increases, i.e. the number of trees contained in
the shadow tree increases. KEvery time a new
tree edge and its corresponding shadow edge are
added to T'(), a new class is created, and hence
the number of trees contained in the shadow tree
is doubled. The increase of the number of trees
contained in the shadow tree by class addition is
larger than or equal to the maximum possible in-
crease of the number of PPH solutions, restricted
to the columns in 7'(7), to the number of solutions
restricted to the columns in 7'(¢ + 1). Thus, all
needed solutions have been included. Class merg-
ing removes some trees from the set of trees con-
tained in the shadow tree. However by Lemma 3
and similar lemmas not shown here, any tree con-
tained in the shadow tree that is lost by doing the
flip/merge-class in the algorithm for row ¢ + 1 is
not in any solution to the PPH problem. Thus
no PPH solution, restricted to the columns in the
shadow tree T'(i + 1), is lost from T'(i + 1) by
class merging. Based on the analysis above and
Lemma 1 we can conclude that every PPH solu-
tion, restricted to the columns in the shadow tree
T(i+ 1), is contained in T'(7 + 1). This completes
the induction. O
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Appendix B: Pseudo Code for the Linear Time Algorithm

Procedure PPH(S):

Fork=1ton{
Put column numbers of all old 2 entries in row k into OldEntryList;
Put column numbers of all new 2 entries in row k into NewEntryList;
Call Procedure FirstPath;
Call Procedure SecondPath;
Call Procedure FixTree;
Call Procedure NewEntries;
} O

Procedure FirstPath:

While there are entries in OldEntryList not processed in this procedure, do the following {

Let C; be the largest unprocessed column index in OldEntryList, and let C); denote the second
largest unprocessed entry in OldEntryList, if C; is the only unprocessed entry in OldEntryList, then
let C; = root.

Let E, = te(C;).

Repeat until encountering an “Exit” statement {

If E, and p(E,) are in the same class, then {
If p(E,) is a shadow edge, then let E, = p(F,), and run the repeat loop again;
Else (p(E,) is a tree edge), then {
Let TE, = p(E;).
If col(TE,) == Cj, then record that te(C;) is below T'E,, on FirstPath, mark C; as processed
by this procedure, and Exit repeat loop;
Else if col(TE,) < C}, then {

We claim in this case te(C}) and te(C;) can’t be on the same path to the root. As a result,
we put C; into CheckList, and mark C) as processed by this procedure. Then we let C; denote the
second largest unprocessed entry in OldEntryList, if C; is the only unprocessed entry in OldEntryList,
then let C; = root. Run repeat loop again. }

Else (C; < col(TEy)), then {
We claim no valid PPH solution exists, Report failure and Exit Algorithm.

}

} (end else p(E;) is a tree edge)
}
Else (E, and p(E,) are in different classes), then {

Let root; be the class root of te(C;), and let rooty be the class root of se(C;). Compare the
parent edges of root; and rooty. If p(rooty) is a shadow edge, then flip the class of C;. If both p(root;)
and p(roota) are tree edges, and col(p(root1)) < col(p(roots)), then flip the class of C;.

By the property of the shadow tree (not stated here) and the operations in the previous step,
p(rooty) is a tree edge now, and col(p(rooti)) > col(p(roots)). We use TE, to denote p(root;).

If col(TE,) == Cj, then record that te(C;) is below T'E, on FirstPath, mark C; as processed
by this procedure, and Exit repeat loop;

Else if col(TE,) < Cj, then {

We put C; into CheckList, and mark C; as processed by this procedure. Then we let Cj
denote the second largest unprocessed entry in OldEntryList, if C; is the only unprocessed entry in
OldEntryList, then let C; = root. Run repeat loop again.

}

Else (C; < col(TEp)), then {
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Flip the class of C;, and merge the class of C; with the class of T E,,. Run repeat loop again.
}
} (end else E, and p(E,) are in different classes)
} (end repeat)
} (end while) O

Procedure SecondPath:

While there are entries in CheckList not processed in this procedure, do the following {

Let C; be the largest unprocessed column index in CheckList, and let C; denote the second largest
unprocessed entry in CheckList, if C; is the only unprocessed entry in OldEntryList, then let C; =
root.

Let E, = te(C;).

Repeat until encountering an “Exit” statement {

If E, and p(E,) are in the same class, then {
If p(E,) is a shadow edge, then let E, = p(E,), and run the repeat loop again;
Else (p(E;) is a tree edge), then {
Let TE, = p(E,).
If col(TE,) == C}, then mark C; as processed by this procedure, and Exit repeat loop.
Else if col (T Ep) < Cj, or col(TEp) isn’t in OldEntryList, then {
We claim no valid PPH solution exists, report failure and Exit Algorithm. }
Else (C; < col(TEp), and col(TE,) is in OldEntryList), then {
Call Procedure DirectSecondPath, and Exit Procedure SecondPath. }
} (end else p(E;) is a tree edge)
}
Else (E, and p(E,) are in different classes), then {

Let root; be the class root of te(C;), and let roots be the class root of se(C;). Compare the
parent edges of root; and rooty. If p(rooty) is a shadow edge, then flip the class of C;. If both p(root;)
and p(rootz) are tree edges, and col(p(root1)) < col(p(rootz)), then flip the class of C;.

By the property of the shadow tree (not stated here) and the operations in the previous step,
p(rooty) is a tree edge now, and col(p(root1)) > col(p(rooty)). We use TE, to denote p(root,).

If col(TE,) == C}, then mark C; as processed by this procedure, and Exit repeat loop.

Else if col(T'Ep) < Cj, then {

We claim no valid PPH solution exists, report failure and Exit Algorithm. }

Else if C; < col(TE,), and col(TE,) isn’t in OldEntryList, then {

Flip the class of C;, and merge the class of C; with the class of TE,,. }
Else (C; < col(TEp), and col(TE,) is in OldEntryList), then {
Call Procedure DirectSecondPath, and Exit Procedure SecondPath. }
} (end else E, and p(E,) are in different classes)

} (end repeat)

} (end while) O

Procedure DirectSecondPath:

Mark C; as processed by Procedure SecondPath.

Find the tree edge which is recorded as below T'E,, on FirstPath (in Procedure FirstPath), and let Cp,
denote its column number.

If te(C;) and te(C)p) are in the same class, and have the same class root, then no PPH solution exists,
because no hyperpath can contain all the edges te(C;), te(Cpc), and TE,. Report failure and Exit
algorithm.
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If te(C;) and T'E), are in the same class, then {

Set flagl; ** Flagl indicates that T'E, must be on the path from te(C;) to the root in any solution
to PPH(k + 1).
}
Else if the set of tree edges on the path from roots to the root of the shadow tree is NOT identical to
the set of tree edges of all unprocessed column numbers in CheckList, then {

set flagl;

}

If te(Cp.) and T'E, are in the same class, then {

Set flag2; ** Flag2 indicates that T'E, must be on the path from te(C,.) to the root in any solution
to PPH(k + 1).
¥
Else {

Let rooty.1 be the class root of the class of Cp. that links to T'E,, and let root,.o be the other class
root of the class of C,.

If the set of tree edges on the path from root,.> to the root of the shadow tree is NOT identical to
the set of tree edges of all unprocessed column numbers in CheckList, then {

Set flag2; }

}

If both flagl and flag2 are set, then {

no PPH solution exists, report failure and exit algorithm;

}
Else if flagl is set and flag2 is not set, then {

Flip, if necessary, the class of Cp,, so that TE, is not on the path from te(Cp.) to the root; flip, if
necessary, the class of C;, so that T'E, is on the path from te(C;) to the root; and merge the class of
C; with the class of T'E, and the class of C)..

}
Else if flag2 is set and flagl is not set, then {

Flip, if necessary, the class of Cp, so that TE, is on the path from te(C’pC) to the root; flip, if
necessary, the class of Cj, so that T'E, is not on the path from te(C;) to the root; and merge the class
of C; with the class of TE, and the class of Cy,.

}
Else (none of flagl and flag2 is set), then {

Flip, if necessary, the class of C, so that TE, is on the path from te(C)p.) to the root; flip, if
necessary, the class of Cj, so that T'E,, is not on the path from te(C;) to the root; and merge the class
of C; with the class of Cj,.

} O

Procedure FixTree:

Let T'E4 denote the tree edge of the largest column number in OldEntryList; if OldEntryList is empty,
then let TE; be the root. Let SE; = se(TE1).

Let T E; denote the tree edge of the largest column number in OldEntryList whose tree edge is not on
the path from T FE; to root; if no such tree edge exists, then let T'F; be the root.

Find a maximal path from TFE; toward leaves in Tsp(k) consisting of shadow edges whose column
numbers are in OldEntryList.

Let E5 denote the edge that is the lower end of the maximal path found in the previous step; if the
path doesn’t contain any edge, then let Ey be the same as T Ej.
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Repeat until either TE; and E» are in the same class, or Fs is the parent of the class root of SE; {
If col(the class root of TE;) > col(the class root of TE;), then
Merge the class of TE; with its attaching class.
Else
Merge the class of TE; with its attaching class.
} (end repeat) O

Procedure NewEntries:

If NewEntryList is empty, then there is no new edge for row k + 1, exit Procedure NewEntries.
Create edges te(C;) and se(C;) for each column number C; in NewEntryList.
Let p(te(C;)) = te(Cj), p(se(C;)) = se(Cj), for each C; in NewEntryList and its left neighbor Cj in
NewEntryList (column numbers in NewEntryList are ordered by their leaf counts, with the leftmost
entry having the largest leaf count).
Let TFEy, SE1, and E5 be the same edges as in Procedure FixTree.
Let Cp = the smallest column number in NewEntryList.
If col(TEy) < Ch, then {
If TE; and E5 are in the same class, then {
Let p(te(Cr)) = TEx, p(se(Ch)) = Bs. }
Else (TE; and Ej are in different classes), then {
Let p(te(Ch)) = TE1, and let the H connector of se(C},) link to the class root of SE;. }
}

Else (Ch, < col(TE)), then {

Let TE' denote the tree edge of the largest column number in OldEntryList that is less than Cj; if
no such tree edge exists, then let TE] be the root. Let SE| = se(TE}).

Let TE] denote the tree edge of the largest column number in OldEntryList that is less than Cp,
whose tree edge is not on the path from TE{ to the root; if no such tree edge exists, then let TE] be
the root.

Find a maximal path from T'E] toward leaves in Tpy(k) consisting of shadow edges whose column
numbers are in OldEntryList and less than C},.

Let F) denote the edge that is the lower end of the maximal path found in the previous step, if the
path doesn’t contain any edge then let E} be the same as T'E].

If TE and E), are in the same class, then {

If TE] is on the path from T'E; to the root, then {
Let p(te(Ch)) = Ej, p(se(Ch)) =TE]. }
Else (T Ej is on the path from E5 to the root), then {

} Let p(te(Ch)) = TEy, p(se(Ch)) = E3. }

Else (TE] and E!, are in different classes), then {
If TE! is on the path from TE) to the root, then {
Let p(se(Cp)) = TEY, and let the H connector of te(C},) link to the class root of SEf. }
Else (T'E] is on the path from Ej to the root), then {
Let p(te(Cp)) = TE}, and let the H connector of se(C},) link to the class root of SEf. }
}

Let C; = the smallest column number in NewEntryList that is larger than col(T'E1); if no column
number in NewEntryList is larger than col(TE;), then let C; = col(TE));
Merge the class of C}, with classes of column numbers in NewEntryList that are less than C;.
Merge the class of Cp, with classes of column numbers in OldEntryList that are larger than Cj,.
If C; > col(T'Ey), then let p(se(Cy)) = TE;.
} (end else Cp, < col(TE1)) O



