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1

Progress on population-scale genomics has focused on the acquisition and use of SNP’s and SNP-
haplotypes [15, 3]. Consequently, the next high-priority phase of human genomics will involve the
development of a full Haplotype Map of the human genome [7]. Tt will be used in large-scale screens of
populations to associate specific SNP-haplotypes with specific complex genetic-influenced diseases.
Building a Haplotype Map of the human genome has become a central NIH promoted goal [7, 12].
A critical, perhaps dominating, problem in all such efforts is the computational determination of

Abstract

The next high-priority phase of human genomics will involve the development and use of a
full Haplotype Map of the human genome [7]. A critical, perhaps dominating, problem in all
such efforts is the inference of large-scale SNP-haplotypes from raw genotype SNP data. This
is called the Haplotype Inference (HI) problem. Abstractly, input to the HI problem is a set
of n strings over a ternary alphabet. A solution is a set of at most 2n strings over the binary
alphabet, so that each input string can be “generated” by some pair of the binary strings in the
solution. For greatest biological fidelity, a solution should be consistent with, or evaluated by,
properties derived from an appropriate genetic model.

A model that is often mentioned in the literature is the Pure Parsimony model, where the
goal is to find a smallest set of binary strings that can generate the n input strings. The
problem of finding such a smallest set is called the Pure Parsimony Problem. Unfortunately,
the Pure Parsimony problem is NP-hard, and no paper has previously shown how an optimal
Pure-parsimony solution can be computed efficiently for problem instances of the size of current
biological interest. In this paper, we show how to formulate the Pure-parsimony problem as an
integer linear program; we explain how to improve the practicality of the integer programming
formulation; and we present the results of extensive experimentation we have done to show the
time and memory practicality of the method, and to compare its accuracy against solutions found
by the widely used general haplotyping program PHASE. We also formulate and experiment
with variations of the Pure-Parsimony criteria, that allow greater practicality. The results are
that the Pure Parsimony problem can be solved efficiently in practice for a wide range of problem
instances of current interest in biology. Both the time needed for a solution, and the accuracy
of the solution, depend on the level of recombination in the input strings. The speed of the
solution improves with increasing recombination, but the accuracy of the solution decreases with
increasing recombination.
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large-scale SNP-haplotypes from raw SNP data.
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1.1 Introduction to SNP’s, Genotypes and Haplotypes

In diploid organisms (such as humans) there are two (not completely identical) “copies” of each
chromosome (except for the sex chromosome). A description of the data from a single copy is called
a haplotype, while a description of the conflated (mixed) data on the two copies is called a genotype.
For many diseases, haplotype data (identifying a set of gene alleles inherited together) is a much
better predictor of disease or disease susceptibility than is genotype data.

The underlying data that forms a haplotype is either the full DNA sequence in the region, or
more commonly the values of single nucleotide polymorphisms (SNP’s) in that region. A SNP is a
single nucleotide site where exactly two (of four) different nucleotides occur in a large percentage of
the population. The SNP-based approach is the dominant one, and worldwide efforts to characterize
human molecular genetic variability has resulted in the construction of high density SNP maps (with
a density of about one SNP per thousand nucleotides). As this work continues, it is essential to
develop methods of deducing haplotypes from SNP data.

We focus on one chromosome with m sites (SNP’s) where each site can have one of two states
(alleles), denoted by 0 and 1. For each of n individuals, we would ideally like to describe the
states of the m sites on each of the two chromosome copies separately, i.e., the haplotype pair for
each individual. However, experimentally determining the haplotype pair is technically difficult or
expensive. As a result, almost all population data consists only of the set of SNP’s possessed by
an individual (their genotype), rather than their haplotypes. One then uses computation to deduce
haplotype information from the given genotype information. Several methods have been explored
and are intensely used for this task [2, 1, 5, 16, 6, 14]. None of these methods are presently fully
satisfactory.

Abstractly, for a population of n individuals, input to the haplotyping problem (HI) consists of
n genotype vectors (or strings), each of length m, where each value in the vector is either 0,1, or 2.
Each position in a vector is associated with a site of interest on the chromosome. The position in
the genotype vector has a value of 0 or 1 if the associated chromosome site has that state on both
copies (it is a homozygous site), and has a value of 2 otherwise (the chromosome site is hetrozygous).

Given an input set of n genotype vectors, a solution to the Haplotype Inference (HI) Problem
is a set of n pairs of binary vectors (strings), one pair for each genotype. For any genotype g, the
associated binary vectors vy, va must both have value 0 (or 1) at any position where g has value
0 (or 1); but for any position where g has value 2, exactly one of vi,v2 must have value 0, while
the other has value 1. That is, v1, v must be a feasible “resolution” of g into two haplotypes that
could explain how g was created. Hence, for an individual with k& hetrozygous sites there are 281
haplotype pairs that can resolve it.

For example, if the observed genotype g is 0212, then the pair of haplotypes 0110, 0011 is one
feasible resolutions, out of two feasible resolutions. Of course, we want to find the resolution that
actually gave rise to g, and a solution for the HI problem for the genotype data of all the n individuals.
However, without additional biological insight, one cannot know which of the exponential number
of solutions is the “correct one”. Therefore, haplotype deduction would be impossible without the
implicit or explicit use of some genetic model, either to assess the biological fidelity of any proposed
solution, or to guide the algorithm in constructing a solution.

1.2 The Pure-Parsimony-criteria

One natural approach to the HI problem that is often mentioned in the literature is called here the
Pure-Parsimony approach!: Find a solution to the HI problem that minimizes the total number of
distinct haplotypes used.

1 This approach was suggested to us Earl Hubbell, who also proved that the problem of finding such solutions is
NP-hard [8].



For example, consider the set of genotypes: 02120, 22110, and 20120. There are HI solutions for
this example that use six distinct haplotypes, but the solution 00100, 01110; 01110, 10110; 00100,
10110, for the three genotype vectors respectively, uses only the three distinct haplotypes 00100,
01110, and 10110.

The Pure parsimony criteria reflects the fact that in natural populations, the number of observed
distinct haplotypes is vastly smaller than the number of combinatorially possible haplotypes, and
this is also expected from population genetics theory. Moreover, the parsimony criteria is to some
extent involved in existing computational methods for haplotype inference. For example, some
papers have tried to explain Clark’s method [2] in terms of parsimony [13], although the role of
parsimony is not explicit in the method. The haplotyping program PHASE [16] has been partially
explained in terms of the parsimony criteria [4]. However, the indirect role of the parsimony criteria
in these methods, and the complex details of the computations, makes 1t hard to see explicitly how
the parsimony criteria influences the computation. This makes it difficult to use those methods
to evaluate the effectiveness of the parsimony criteria as a genetic model. Moreover, no paper has
shown how an optimal Pure-Parsimony solution can be computed efficiently in a practical range of
problem instances, although we announced without detail in [6] that integer programming could be
used to achieve this result.

In this paper we detail how to compute, via integer-linear-programming, an HI solution that
minimizes the number of distinct haplotypes, i.e., is guaranteed to solve the Pure-Parsimony problem.
However, the worst-case running time increases exponentially with the problem size, so the empirical
issue 1s whether this approach is practical for problem instances of current interest in population-
scale genomics. We improve the practicality of the basic integer programming formulation in a way
that is very effective in practice. We report on the results of extensive experimentation we have
done to show the time and memory practicality of the method, and to compare its accuracy against
existing HI methods that do not explicitly follow the Pure-parsimony criteria. We also formulate
and experiment with two variations of the Pure-Parsimony criteria, that allow greater practicality.

Empirically, the end result is that for haplotyping problem instances of current interest, Pure-
parsimony can be computed efficiently in most cases. However, it’s accuracy is somewhat inferior to
the solutions produced by the program PHASE, although this depends on the number of sites and
the level of recombination.

In more detail, the practicality and accuracy of our approach depend on the level of recombination
in the data (the more recombination, the more practical but less accurate is the method). We show
here that the Pure-Parsimony approach is practical for genotype data of up to 30 sites and 50
individuals (which is large enough for practical use in many current haplotyping projects). Up to
moderate levels of recombination, the haplotype calls are 80 to 95 percent correct, and the solutions
are generally found in several seconds to minutes, except for the no-recombination case with 30 sites,
where some solutions require a few hours.

While the main point of this paper is to report that Pure-Parsimony solutions can be prac-
tically obtained, the accuracy level observed is a validation of the genetic model implicit in the
Pure-Parsimony objective function, for a purely randomly picked solution to the HI problem would
correctly resolve only a minuscule fraction of the genotypes.

2 Pure Parsimony via Integer Linear Programming

We assume that the reader is generally familiar with linear programming: A set of linear inequalities,
defined over a set of variables, must be satisfied (by assigning values to the variables), and among all
feasible solutions to the inequalities, one seeks a solution that optimizes a linear objective function
defined on the same variables (either maximizing or minimizing its value as specified in the formu-
lation). Linear programming problems can be solved efficiently both in theory and practice, and
commercial software exists that can efficiently solve linear programs with millions of variables and
inequalities. In Integer-linear-programming, one insists that the variables take on values that are



integral. In our application, the values of the variables will be restricted to be either 0 or 1. There
are no known methods to solve integer-linear programming problems efficiently in the theoretical
worst-case sense, but many integer-programming formulations are efficiently solved in practice, and
commercial code exists that efficiently solves huge integer-linear-programs for certain applications.
The practical success of integer programming on many problems motivates this empirical study on
the use of integer programming to solve the Pure-Parsimony problem.

2.1 The conceptual TIP formulation

We will begin by describing a conceptual integer-linear-programming solution to the problem of
finding an HI solution that minimizes the number of distinct haplotypes used. The solution is con-
ceptual because it would be generally impractical to use. After describing this conceptual solution,
we introduce two simple observations that makes this conceptual solution practical on ranges of data
of current biological interest.

Let g; denote the i’th genotype input vector, and suppose it has h; polymorphic sites (i.e.,
sites with value 2). There are 2":~! pairs of haplotypes that could have generated g;. In the
conceptual integer-linear-programming formulation, we enumerate each one of these pairs, and create
one integer-programming variable y; ; for each of the 2hi=1 pairs. As we create these y variables,
we take note of the haplotypes in the enumerated pairs. Whenever a haplotype is enumerated that
has not been seen before, in any of the pairs of haplotypes enumerated for any previously examined
genotype, we generate a new integer-programming variable zy for that haplotype. Thus, no matter
how many times that haplotype occurs in the haplotype pairs, over all the genotype vectors, there
will only be one z variable generated for it.

Now we explain the linear-programming inequalities defined on the y and the z variables. We
will describe these through the following example. For genotype g; = 02120 we enumerate the two
haplotype pairs 00100, 01110; and 01100, 00110, and generate the two variables y; 1 and y; 2 for
these pairs. Assuming, that the four haplotypes above (which are all distinct) have not been seen
before, we generate the four variables z1, x5, 3, 4 for them. Then, we create the inequality

Yii+yi2=1

Recall that the variables can only be set to 0 or 1, so this inequality says that in an HI solution,
we must select exactly one of the enumerated haplotype pairs as the resolution (explanation) of
genotype g;. The y variable set to 1 indicates which haplotype pair will be used in the explanation
of genotype g;.

Next, we create two inequalities for each variable y; ;. These are:

yi1— 21 <0
Yi1— 22 <0
Yio— 23 <0
Yio— x4 <0

To explain these inequalities, we examine the first one: y 1 — 21 < 0. It says, that if we set
¥i1 to 1, then we must also set z; to 1. Essentially, if we select the haplotype pair associated with
variable y; 1 to explain g; in an HI solution, then we must use the haplotype associated with variable
x1, because that haplotype is one of the pair of haplotypes associated with variable y; ;. The next
inequality says the same thing for the haplotype associated with variable z5.

These are the two types of inequalities that are included in the integer-programming formulation.
We include such inequalities for each input genotype vector. Of course, in general, there will be many
more inequalities generated than in the above example. If a genotype has h polymorphic sites, then



there will be exactly 27 + 1 inequalities generated for it. This fully specifies the inequalities needed
in the formulation.

For the objective function, let X denote the set of all the x variables that are generated, over all
the genotypes. Recall, that there is one z variable for each distinct haplotype, no matter how many
times 1t occurs in the enumerated pairs. Then the objective function is:

Minimize E z
reX

That objective function forces the x variables to be set so as to select the minimum possible num-
ber of distinct haplotypes. Taken together, the objective function and the inequalities, along with
the restriction that the variables can only be set to 0 or 1, specifies an integer-linear-programming
formulation whose solution gives an HI solution that minimizes the number of distinct haplotypes
used. That is, this formulation truly solves the “Pure-Parsimony” haplotype problem. We refer to
this formulation as the TIP formulation. For any specific problem instance, when the TIP formu-
lation for that instance is solved, the set of x variables that are set to 1 in the solution specify a
solution to the Pure-Parsimony problem.

3 Efficiency

The above formulation can actually be used without further modification for some problems of
current biological interest. But for many problems of current interest (up to 50 individuals and 30
sites) the number of inequalities generated would make it impractical to solve the resulting integer
program. For that reason, the TIP formulation is only conceptual, and additional ideas are required
to make 1t practical.

The first idea is the following: If the haplotype pair for variable y; ; consists of two haplotypes
that are both part of no other haplotype pair, then in the integer-program, there is no need to
include variable y; ; or the two z variables for the two haplotypes in the pair associated with y; ;.
Let RTIP denote the integer programming formulation created by removing such y and z variables
from TTP. If there is a genotype vector g such that all associated y variables are removed, then there
is an optimal solution to the TIP formulation where we arbitrarily choose the haplotype pair for g.
Otherwise, there is an optimal solution to the original TIP formulation which does not set any of
the removed z or y variables to 1. Hence there is no loss in removing them, and the smaller RTIP
formulation will find exactly the same optimal solution as the TIP formulation finds.

This idea is particularly effective because DNA sequences in populations have generally undergone
some amount of recombination. Recombination is a process where a prefix of one string, and a
suffix of another string, are concatenated to form a third string. The haplotypes in a population
evolve both by mutations of single nucleotides, and by pairwise recombinations. Depending on
the level of recombination that occurred in the evolution the strings, the RTIP formulation can
be much smaller (fewer variables and inequalities) than the original TIP formulation. The reason
is that as recombination levels rise, the haplotypes become more differentiated, and in turn the
genotypes become more different from each other, so that more of the haplotypes enumerated in
the TIP formulation only appear in one haplotype pair. These haplotypes are removed in the
RTIP formulation. Smaller formulations allow the integer programming solution codes to run more
efficiently.

The above idea reduces the size of the integer-programming formulation while preserving the
optimal solution. However, if we first enumerate all the haplotypes and haplotype pairs in the
TIP formulation, and then remove variables, the work involved could still make the RTIP approach
impractical. For a genotype with h polymorphic sites, there are 2" haplotypes, and so brute-force
enumeration itself may be very time consuming, even if later many variables are removed. That
brute-force enumeration can be eliminated as follows: Let g; and g, be two genotype vectors, and



let Hy and H; be respectively the set of haplotypes that are associated with each genotype, in the
conceptual approach. It is easy to identify the haplotypes in H; N Hs, and generate them in time
proportional to m|Hy N Hs|, where m is the length of the genotype vector. Simply scan g; and
g2 left to right; if a site occurs with a value of 1 in one and 0 in the other, then Hy N Hy = §; if
a site occurs with a 2 in one vector and a 0 or 1 in the other, then set that 2 to be equal to the
other value. Then if there are £ remaining sites, where both g; and gy contain 2’s, then there are
exactly 2% distinct haplotypes in H; N Hy, and we generate them by setting those k sites to 0 or 1
in all possible ways. The point is that the time for this enumeration is proportional to m|H; N Hs|.
Moreover, each generated haplotype in H; N Hy specifies a haplotype pair that will be included in
RTIP, for both ¢g; and g5.

Any z variable that is included in the RTIP formulation must occur in an intersecting set for
some pair of genotypes, and every pair of haplotypes that should be associated with a y variable must
also be found while examining some pair of genotypes. Hence we can produce the RTIP formulation,
essentially in time proportional to its size, and so if the RTIP formulation is small, we can produce
it very quickly.

4 A Variation

In the Pure-Parsimony criteria we find a solution to the HI problem that minimizes the fotal number
of distinct haplotypes used. However, in most data sets there are individuals whose genotypes are
homozygous at every position. These are haplotypes that one knows for sure are in the population,
and population genetic theory suggests that they are likely to have been used in pairs of haplotypes
that create ambiguous genotypes. In fact, this idea is central in Clark’s haplotyping method. So,
we should preferentially try to use in the HI solution any haplotypes that appear as homozygous
genotypes in the input. That leads to the Modified-Parsimony criteria and problem: find an HI
solution that minimizes the number of distinct haplotypes used, excluding in the count any haplotype
that is seen as a homozygous genotype in the input. Hence this minimizes the number of new
haplotypes generated, beyond the ones given in the input. Note that the solution to this problem
can be smaller than the solution to the Pure-Parsimony problem minus the number of homozygotes
in the input. Essentially, we are able to use in the solution any homozygous string from the input,
at zero cost. The integer programming formulation for the Modified-Parsimony problem is created
by simply removing from the objective function any z variable that is identical to a homozygous
genotype in the input.

5 Boosting Accuracy

As we will detail below, for experiments with a small number of sites, or a moderate to large level
of recombination, the time to generate and solve the RTIP formulation was so small, that we were
able to generate multiple optimal solutions, when they existed. We are generally able to find around
100 multiple optimal solutions in under one minute. Prior work and some theoretical considerations,
suggested that when multiple optimal solutions are available, a more accurate solution can be ob-
tained by creating the “consensus” solution from the multiple optimals[14]. That is, we simply look
at each genotype and use the resolution for it found in the largest number of the multiple optimal
solutions found. Consistently, the accuracy of the consensus solution is better than the average
accuracy of the multiple optimals.

6 Experimental Results

To test the RTIP approach, we ran a widely-used program developed by R. Hudson [9, 10] that
uses coalescent theory to generate a simulated population of haplotypes. Haplotypes generated by



the program were then randomly paired to create genotype data. The Hudson program allows one
to specify a level of recombination in the simulated data through a parameter . In this paper, we
report on the results obtained from data with 50 individuals, with 10 and 30 sites, and with r set to
0, 4, 16, and 40. It is not known what setting of r corresponds to real recombination levels in nature,
but the range used here is thought to be large enough to capture realistic levels of recombination.

For each of these eight different settings, we generated 15 data sets and then generated and solved
the RTTP formulations (for both the Pure-Parsimony and the Modified-Parsimony criteria). We use
the commercial program CPLEX from ILOG to find the optimal integer-programming solutions. We
were interested in the size of the generated formulations, and the time needed to solve them, along
with the quality of the solutions. We compared the solutions given by the Pure-Parsimony criteria
to the solutions given by the Modified-Parsimony criteria (both with the consensus solution when
practical), and to solutions obtained by running the publically-available program PHASE, using its
default parameter settings.

We summarize the experimental results as follows: First, for ten sites, regardless of the level of
recombination, the RTIP formulations were generated and solved in under one second. At low levels
of recombination r = 0 up to r = 16 the quality of the Pure-Parsimony and Modified-Parsimony and
PHASE solutions were essentially indistinguishable, with each method occasionally being superior
or inferior to the others. The quality of the solutions depended on the level of recombination. For
r = 0, all methods were correct for 96 to 100 percent of the haplotype calls. For example, both the
Pure-Parsimony and PHASE were 100 percent correct in 6 of the 15 trials, and were 96% correct
in only one of the 15 trials; they were 98% correct in all the other trials. For r = 16, the accuracy
ranged from 72% to 96%.

As the recombination level increased, the accuracy of all the methods decreased, but the accuracy
is still impressive. For 50 individuals, 10 sites and r = 40, the accuracy of all methods ranged from
74% to 96%.

For 30 sites, the practicality of the RTTIP approach depends inversely on the level of recombina-
tion, while the accuracy of all methods depends directly on the level of recombination. For r» = 0,
the sizes of the 15 datasets were quite variable. One dataset had under 300 variables and the op-
timal solution was found in 0.03 seconds. Another dataset had 135,000 variables, and the optimal
solution was found in 2.5 minutes. The largest dataset had nearly four million variables, and no
optimal solution was obtained. A second dataset had two million variables and again no solution was
obtained. Most of the datasets had under 10,000 variables and were solved in under two minutes.
The accuracy of the 13 datasets that were solved, was in the 80% to 95% range. In comparison,
PHASE took much more time, but was slightly more accurate in 10 out 15 datasets (excluding the
two where the RTTP formulation wasn’t solved), and slightly less accurate in three out of the 15
datasets.

For 30 sites and r = 16, the sizes of the RTIP formulations were notably smaller and all the
executions ran in seconds. The accuracy was in the 72% to 92% range, but were consistently inferior
(but only by small amounts) to the solutions obtained by PHASE.

For 30 sites and r = 40, the RTIP formulations again ran in seconds, and the accuracy was in
the 50% to 80% range, but PHASE had notably superior accuracy in 13 of the 15 datasets, with
accuracy between 68% and 92%.

As expected, the RTIP formulation was generally significantly smaller than the TIP formulation.
Two typical instances are: for 50 individuals and 30 sites and r» = 4, the TIP formulation had 28,580
haplotype variables; while the RTIP formulation had only 5,418; for 50 individuals and 40 sites and
r = 16, the TIP formulation had 548,352 haplotype variables, while the RTIP formulation had only
129,814.



7 A Hybrid Approach

In this paper we have concentrated on datasets with at most 30 sites and 50 individuals. But we
have also explored datasets with up to 150 individuals and 100 sites. Datasets of that size are too
large for the Pure-Parsimony approach via integer programming. However, we also have an integer
programming formulation that builds on Clark’s well-known method.

A. Clark [2] suggested a (non-deterministic) algorithm to solve the HI problem. This algorithm
is widely used, and is the basis for several large-scale haplotype studies [1, 5, 11]. The algorithm
starts with a set of unresolved genotypes and a set of haplotypes that are known to be in the
population. The key idea of Clark’s algorithm is to repeatedly use the following “resolution rule”
until no more unresolved genotypes remain, or no more can be resolved: If an unresolved genotype
g can be resolved by a haplotype pair h,h', where h is a haplotype that is already known, or an
already deduced haplotype, and A’ is its “conjugate” (which is forced, given h and g), then declare
g resolved with the pair A, A'. If A’ has not previously been deduced (or known), then add it to the
set of available haplotypes that can be used in additional deductions.

In [6] we showed how to maximize, via integer programming, the number of resolutions that
Clark’s method achieves. By combining that formulation with the ideas in the RTTP formulation,
we now can minimize the number of distinct haplotypes used, within the group of solutions that
maximizes the number of resolutions. The integer programming formulations produced are much
smaller than those produced by RTTP. With this method, we can find solutions in seconds to minutes
even for datasets with 100 sites and 150 individuals. For datasets that can be solved by Pure-
Parsimony, this hybrid approach is a only a bit less accurate than the Pure-Parsimony solution, so
its ability to solve large datasets quickly makes it of interest for further study.

8 Conclusions

The parsimony objective function has been frequently mentioned in the haplotyping literature, and
is a part of the conceptual underpinning of some existing haplotyping methods. However, because
those methods are complex, it 1s difficult use their performance to access the effectiveness of the Pure-
Parsimony objective function. We show here that for genotype data of the size of current interest,
the Pure-Parsimony problem can be efficiently solved via integer-linear-programming. However,
except in the case when the number of sites is small, these methods, while impressively accurate
in an absolute sense, generally produce solutions that are less accurate than those produced by the
PHASE program.

While the main point of this paper is to report that Pure-Parsimony solutions can be practically
obtained, so that the efficacy of the criteria can be accessed, the level of accuracy observed is a
validation of the genetic model implicit in the Pure-Parsimony objective function. Purely randomly
picked solutions to the HI problem would correctly resolve only a minuscule fraction of the genotypes,
in contrast to the observed 80 to 90 percent accuracy of the Pure-parsimony-based method.
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