
Tutorial on Creating Concrete ILP
Formulations using Python

for the book:
Integer Linear Programming in Computational and Systems

Biology
by Dan Gusfield

Published by Cambridge University Press, 2019

This tutorial is c⃝Dan Gusfield, 2019.

1 Introduction

This short tutorial on Python accompanies the book: Integer Linear Pro-
gramming in Computational and Systems Biology: An Entry-Level Text
and Course by Dan Gusfield, published by Cambridge University Press,
2019.

The book is also accompanied by about fifty computer programs writ-
ten in Python and Perl, that can be used without knowing anything about
computer programming or the languages Python and Perl. However, for
the reader who does want to do more than use the programs, I have writ-
ten a short tutorial on the subset of Python needed to understand two
of the Python programs used in the book. It is not a complete tutorial
on Python, but even discussing just these two Python programs exposes
a substantial amount about procedural computer programming and the
Python language.

The two Python programs that we discuss are CLgraphfile.py and first-
RNA.py, which can be downloaded from:

www.cambridge.org/9781108421768

The awful thirteen digit number at the end is the ISBN number for the
book.

The first program concerns the problems of finding a maximum-size
clique in a graph (a task that is common in the analysis of biological, and
social, networks); and the second program concerns the problem of finding
a most stable folding of an RNA molecule.

1

2 Task C

In the Preface of the book, I enumerated four tasks, A to D. The book
focuses on tasks A, B and D. Now I briefly discuss Task C, the task of
writing a computer program that takes in a concrete description of a prob-
lem instance, and creates the concrete ILP formulation that can be input
to an ILP solver.

If you are an experienced computer programmer (even if you do not
know Python), you will already have a good idea of what such a computer
program would look like and how it would work. But, readers who have
no experience in computer programming probably have little sense of how
a computer program takes in a concrete problem instance, and produces
the required concrete ILP formulation. This tutorial is mostly written for
those readers. It assumes no prior background in computer programming.

Goals The tutorial has two goals. First, to complete the presentation
of the full workflow involved in the ILP approach to solving biological
problems, answering the question of how concrete ILP formulations are ef-
ficiently created.1 Second, to teach just enough Python programming that
readers can start writing simple Python programs to produce concrete ILP
formulations, and learn enough about Python and computer programming
that they can learn more by themselves.

Why Python The choice of Python is somewhat arbitrary. It is a lan-
guage that is now frequently use in bioinformatics, although its immedi-
ate ancestor, Perl, was until recently the main programming language for
bioinformatics2 (and C is sometimes unavoidable). Python style can seem
a bit weird, but most of the concepts in Python programming are common
to many modern programming languages, and it is a good place to start
learning computer programming.3

In writing the Python programs for the book, I tried use the simplest
Python possible. But, those programs cover a fair amount of Python, and

1writing them out manually is impossible for all but the smallest problem instances.
2I had planned to use Perl for this book, but by the time I got started, it was clear

that Python had largely displaced Perl.
3We use the variant of Python numbered 2.71. This is a widely used version, but

Python 3 is also widely used. For our purposes, the differences between the versions are
very modest, but unfortunately programs written for Python 2.7 sometime will not run
correctly under Python 3, and vice verse.

2

introduce almost all of the style of writing procedural programs.4

3 A First Exposure to Computer Program-
ming

Here we begin a discussion of the computer programming language Python.
We will focus on two problems: the maximum-clique problem discussed in
Chapter 2 of the book; and the simple RNA folding problem, discussed in
Chapter 6. In the case of the maximum-clique problem, a concrete problem
instance is specified by a binary matrix describing the adjacencies (edges)
in an undirected graph. and in the case of the RNA folding problem, the
input is simply an RNA sequence.

We first discuss the Python program CLgraphfile that takes in a binary
matrix of 0s and 1s describing an undirected graph G, and produces a
concrete ILP formulation for the maximum-clique problem on graph G.
The maximum-clique problem was discussed in the book in Chapter 2. I
will assume that you have read and understood Section 2.2 of the book.

Program CLgraphfile.py My approach to teaching computer program-
ming is to write and explain a few lines of code at a time, and let the reader
induct from those examples and comments, rather than explicitly and for-
mally detailing all the rules and variations, as one finds in a manual (or in
many texts on computer programming). With examples and experimenta-
tion, letting the student use inductive learning, with a peek at a manual
when needed, a motivated student learns faster this way.

To start, look at the program CLgraphfile.py in Figure 1. It takes in a
file containing a matrix representing a graph G, and produces a concrete
ILP formulation for the maximum-clique problem on graph G.

While learning about CLgraphfile, it is helpful to download the program
from the book webpage and execute the program on small data, and then
examine the concrete ILP formulation that is produced.

Execution Recall that CLgraphfile.py is executed by issuing the follow-
ing command on a command line in a terminal window:

4You probably don’t know what is meant by “procedural programs”, and you don’t
need to. At this point, it only means that we won’t be writing object oriented programs,
which is a style of programming I abhor, and that you may have heard about (much
more favorably).

3

program CLgraphfile

import sys

INFILE = open(sys.argv[1], "r")
OUTFILE = open(sys.argv[2], "w")

constraints = "such that \n\n"
listC = ""
binaries = "binary \n"
index = 0

for line in INFILE:
index = index + 1
listC = listC + "+ C(%d) " % index
binaries = binaries + "C(%d)\n " % index

j = 0
for char in line:

j = j + 1
if char == ’0’ and (index < j):

string = "C(%d) + C(%d) <= 1\n" % (index,j)
constraints = constraints + string

OUTFILE.write("Maximize \n")
OUTFILE.write(listC + "\n")
OUTFILE.write (constraints)
OUTFILE.write (binaries)
OUTFILE.write ("end")

print ("The ILP file is: %s \n" % sys.argv[2])

INFILE.close()
OUTFILE.close()

Figure 1: The Python program CLgraphfile.py that creates concrete ILP for-
mulations for the maximum clique problem. Program CLgraphfile.py can be
downloaded from the book’s webpage. That version has comments that have
been removed here. Removing those comments makes the Python stand out
more, but the comments may be helpful, so you should also look at that version
of the program.

python CLgraphfile.py adjacency-matrix-file ILP-file.lp

4

where “adjacency-matrix-file” is the (user-provided) name of a file that
holds the adjacency matrix description of the input graph G, and “ILP-
file.lp” is the (user-provided) name of the file that will hold the concrete
ILP formulation. That file name must have the “.lp” extension. Those two
names are called arguments of (or for) program CLgraphfile.py. Thus we
say that CLgraphfile.py is a program with two arguments.

Before issuing the terminal command, be sure that first you have changed
directories (for example with “cd” commands on a Mac) to where the pro-
gram “CLgraphfile.py” resides. Otherwise, the system might not know
where the program is.5

When the program is run, the statements in the program are executed
from the top to the bottom of the program, except as modified by iteration
and conditional statements, which alter the basic top-to-bottom “flow of
control”. This will be explained in detail below. But, first we have to
explain even more basic elements of the program.

3.1 Variables, Values and Assignments

The most basic element of any programming language is the variable, which
(for our purposes) is just a name that can be assigned to hold a value
(essentially like a variable in algebra or an ILP formulation).

In Python, there are several different types of values that a variable
can hold. We will only use two types in our first program. Those are the
integer type, and the string type. An integer type is just an integer number
(duh!), such as: 17; and a string type is an alpha-numeric string, such as:
“this is a string” (without the quotation marks).

Since a variable can hold a value, we need a way to assign a value to
it. For a variable named index , the statement:

index = 0

has the effect of assigning the value of zero to the variable named index.
For a variable named row, the statement (with the quote marks explicitly
part of the statement):

row = "000100010"

5There are other ways to be sure that the system finds the program, but this is the
simplest.

5

has the effect of assigning the string “000100010” (without the quote
marks) to the variable row.

Note that the assignment statement is asymmetric - it takes a value
from the right side of the equality sign, and assigns that value to the
variable on the left side of the equality sign. The reverse is never correct.
Thus

"000100010" = row

would give an error. Try it and learn.

OK, so we can assign values to a variable. How do we use those val-
ues? The simplest use is to print out the value a variable is holding. The
following statements:

index = 17
print index

will print the number 17 on the computer terminal just below the print
statement. Write the above two lines into a file, say “test.py”, and then in
a terminal window type the command:

python test.py

to see the effect. Note that the file name “test.py” has extension “.py”.
That extension is necessary for any file that holds a Python program.
Without that extension, the Python system might not be willing or able
to execute the program.

Nothing to Declare In Python, you do not have to declare whether a
variable is intended to hold an integer or a string (as you must do in many
other computer programming languages). Python figures out itself what
type of data is being held. Moreover, the type is allowed to change. For
example, it is fine to write:

j = "Now a string"
print j
j = 17
print j

6

Try it out.
As you may notice in looking at the print statements in CLgraphfile.py,

they are more complicated than the simple print statement used here. We
will explain all of that in due course. But one piece of the complication is
the use of the two-character symbol “\n”, called a “new line” symbol. It
has an effect when something is printed. Its effect is to insert a blank line
into what is printed. For example, if we change the four lines above to:

j = "Now a string \n\n"
print j
j = 17
print j

then what will be printed is:

Now is a string

17

Compare this to the previous output, when the new line symbols were not
used.

Assignments in CLgraphfile.py Having learned a bit about assign-
ment statements, let’s look at the following four statements that in CLgraph-
file.py.

constraints = "such that \n\n"
listC = ""
binaries = "binary \n"
index = 0

In these statements, the terms “constraints”, “listC”, “binaries” and
“index” are names of (user-specified) variables. The first statement assigns
the value “such that \n\n” to the variable named “constraints”; the second
statement assigns the empty string to the variable “listC” (we will later
add to this string, so that it will not always be empty); the third statement
assigns the string “binary \n” to the variable “binaries”; and the fourth
statement assigns the value 0 to the variable “index”.

7

Magical incantations Before those four assignments, there are two
more complex looking assignment statements:

INFILE = open(sys.argv[1], "r")
OUTFILE = open(sys.argv[2], "w")

The strings “INFILE” and “OUTFILE” look like variable names, and
these two statements seem to be assigning something to them. But what?
Remember that CLgraphfile.py is called (on a command line) with two
arguments, which are both names of files. The effect of the statement:

INFILE = open(sys.argv[1], "r")

is to assign the first argument, which is a string, to the variable “INFILE”.
Moreover, it opens the file named in the first argument so that its contents
can be read. Similarly, the effect of the second statement assigns the second
argument to variable “OUTFILE”, and opens the file named in the second
argument so that strings can be written into it.

For example, the if I call program CLgraphfile (which is in the file
“CLgraphfile.py”)with the command

python CLgraphfile.py graph-matrix CLgraph.lp

then when the program executes the two assignment statements above,
the variable “INFILE” will be assigned the string “graph-matrix”, and
variable “OUTFILE” will be assigned the string “CLgraph.lp”. Further,
the file named “graph-matrix” will be opened so that its contents can be
read; and the file named “CLgraph.lp” will be opened so that strings can
be written into it.6

Note the use of the “w” and “r” in the statements, telling the program
whether a file will be read (r) from, or written (w) to. How we actually
read and write will be discussed shortly.

One point to emphasize, in these two assignment statements, you have
to literally use the terms “sys.argv[1]” and “sys.argv[2]” to refer to the
two arguments used when CLgraphfile is executed.7 But, the name of the
variable on the left side of the statement is any variable name specified by
the user.8

6If the input file “graph-matrix” does not exist, or is not in the same directory where
the Python command is given, then the system will report an error. However, if the
output file “CLgraph.lp” does not exist, the system will create it in the directory where
the Python command is given.

7If the program had more arguments, they would be referred to as “sys.argv[3]”, etc.
8I like to use the word “INFILE” for input files, and use the word “OUTFILE” for

files used for output. But this that is just to remind me of their purposes. I could

8

It’s magic I don’t try to understand how this part of Python works. I
just consider statements involving “sys.argv” to be magic incantations that
assign the argument strings (given on a command line) to variables, so that
the variables can be used later in the program. Also, this magic requires in-
cluding the first statement in CLgraphfile.py, which is “import sys”. That
statement causes some software written elsewhere to be included in CL-
gaphfile.py. That software is necessary for the sys.argv command to work.

Note about specifying files to be opened The following statement
will be used in an upcoming example:

INFILE = open ("example-file", "r")

In this “open” statement, the name of the file, “example-file”, is literally
written in the statement. So, in this example, the file to be opened is not
specified on a command line. The effect is still to open file “example-file”
to be read, and to assign string “example-file” to the variable “INFILE”.
Similarly, files that will be written to can be literally named in an open
statement.

End of magic (for now) So much for magic incantations – just learn
them and use them as needed. Now we can talk about concepts and syn-
tactic details that make some intuitive sense.

Incrementing a value Program CLgraphfile contains the statement:

index = index + 1

What this statement does is increase by one the value being held in variable
index. More completely, the current value of the variable index is added to
1, and the result is assigned to variable index. The effect is to increment
the value held in index by one.

It may seem strange to have the variable index on both the left and right
side of the equality sign, and certainly the specific statement above would
make no sense in ordinary arithmetic. But, such statements are ubiqui-
tous in computer programming, and illustrate a major way that Python
(and most other computer programming languages) differ from natural lan-
guages. This statement is not asserting an equality – it is specifying the
following operations:

just as easily used “BEATLEJUICE” in place of “INFILE”. Also, it is common, but
not necessary, to use all upper case letters for variable names used in input or output
functions.

9

Take the current value held in the variable index, add one to
it, and assign the result back to the variable index.

The format of these kind of operational statements is that the left side
contains only the name (or names, as we will see later) of variables, while
the right side contains the operation(s) that create the value(s) to be as-
signed to the variable(s) on the left side.

4 Iteration and Blocks

The next construct of Python that we want to explain is the construct
of blocks. But in order to do that we must also explain the concept of
iteration.

4.1 Iteration

One of the most fundamental concepts, and heavily used construct, of any
computer programming language is that of iteration, i.e., the successive
repeating of some statement(s) in the program. Consider the following
program called testpy1, which is in file test.py. It prints out each line in
a file called “example-file”, and also prints out a number indicating which
line in the file was printed.

10

program testpy1
#
import sys
INFILE = open ("example-file", "r")
i = 1
for line in (INFILE):

print line
print i
i = i + 1

If file “example-file” contains the following three lines:

This is line 1
That was line 1
The previous line was line 2

then the resulting output of the program will be:

This is line 1

1
That was line 1

2
The previous line was line 2

3

How does program testpy1 work? Remember that it is in a file that we
have called “test.py”. From our earlier discussion, we know that the first
statement opens the file “example-file” for reading, and assigns the string
“example-file” to variable “INFILE”. The second statement assigns the
value of 1 to the variable “i”. Next comes the “for” statement with some
syntax that we have not seen before.

In the statement:

for line in (INFILE):

the words “line” and “INFILE” are variables. This “for” statement has
the general form of:

for variable1 in (variable2):

11

where variable2 holds the name of a file that is open for reading. The
effect is that each successive line in the file will be read in and assigned, as
a string, to the variable “line”.9

However, between each time that a line is read in from the file, the
three statements below the “for” statement will be executed. Those three
statements form what is called a block. You should be able to understand
the actions of the statements in the block from our earlier discussions of
print and iteration statements.

To repeat, the program first reads line 1 in the file, and then executes
the statement in the following block; then it reads in line 2 and executes
the block; and then it reads in line 3 and executes the block; and then the
execution of the “for” statement is finished because there are no more lines
in the file. Be sure that you see that these actions will produce the output
shown above.

4.2 What exactly is a block?

When the above “for” statement is executed, the program repeats (iterates)
the three statements that follow the “for” statement. Those three state-
ments form a block. Every iteration (controlled by the “for” statement)
executes all three of the statements in the block. But how does Python
know which statements are in the block controlled by (and attached to)
the “for” statement?

In Python, the statement before the beginning of a block ends with a
colon (“:”). The colon signals that a new block is about to start. Also, the
position of every statement in the block is indented to the right, relative
to the starting position of the statement before the block. We see that in
program testpy1 above.

For now, we will assume that there is only one block. In that case,
every statement in the block must be indented the exact same number of
spaces, and we see this in testpy1. If you do not obey this rule, you will
get an error message when you try to run Python. For example, if you try
to execute the following:

9I like to use variable names, such as “line”, that suggest to me how the variable is
being used. But the actual variable name, “line”, has no meaning to Python. If I had
used the variable name “blat”, the “for” statement would still successively read in a
line from the file and assign it to blat.

12

#program testpy1
#
import sys
INFILE = open ("example-file", "r")
i = 1
for line in (INFILE):

print line
print i

i = i + 1

then you will get the following response:

File "test.py", line 5
print i

^
IndentationError: unindent does not match any outer indentation level

If instead, you indented line 5 to the right of the start of line 4, then
you would get the error message:

File "test.py", line 5
print i
^

IndentationError: unexpected indent

So, assuming there is only one block, as in the above example, every
statement in the blockmust be indented exactly the same number of spaces.
Now, I have to insert a word of caution here – Python has what I consider
to be an awful design flaw (but I suspect some people think it is a feature,
not a bug). The caution boils down to:

NEVER use the tab key to create spaces.
ONLY use the space bar to create spaces.

Using a mixture of tabs and spaces will work on the computer system
where your write your program, but when you try to run your program on
a different system, Python might declare that the program has an error of
indentations that do not match. That is because a single tab is equivalent
to a certain number of spaces, and different systems sometimes translate
a tab to different number of spaces. So, if you want your Python program
to work on all systems, avoid this problem by never using a tab.10

10Python purists will disagree and offer various fixes, but I think it is best to just
avoid the problem.

13

How does the “for” statement work? OK, so we now explain the
“for” statement used in the example, to explain how many times the block
is executed.11 In the statement:

for line in INFILE:

the word “line” is a variable name, selected by the programmer.12

Similarly, “INFILE” is a variable that holds the name of the input file,
i.e., “example-file”. The input file consists of an ordered list of lines of text.
So, the effect of the statement “for line in INFILE” is that each successive
line in example-file will be read, and assigned to the variable named “line”;
and the block attached to the “for” statement will be executed each time
a new line from the file is read. Finally, when all the lines in example-file
have been read, this execution of the “for” statement, and the execution of
the block attached to it, ends. Note that the words “for” and “in” are part
of the Python syntax, while the words “line” and “INFILE” are variable
names chosen by the programmer.

Two other examples of blocks Before returning to CLgraphfile.py, I
want to describe another example of iteration and a block; followed by an
example of a conditional statement and a block. Consider the following
example:

i = 1
for char in line:

print char
print i
i = i + 1

This looks very similar to the earlier statements:

11Wait, didn’t we explain this already, a few paragraphs before? Yes. Forgetting that
I had already written one, I wrote a second paragraph to explain the “for” statement.
Then, I was going to delete one of them, but I’ve heard that repetition is the key to
learning, hence I’ve left both in. So, if you thought you must not have understood
something in the first explanation because you are now seeing a second explanation,
this is the explanation of the explanations.

12The variable name “line” is a good choice because it is suggestive of what “line”
is assigned. This helps us humans, reading or writing the program, to understand the
logic of the program. But the word “line” has no meaning to Python – if we substitute
(everywhere) the word “tablecloth” for “line”, the programwill run just fine and produce
exactly the same output.

14

i = 1
for line in INFILE:

print line
print i
i = i + 1

But in the new statements, the variable “char” has replaced “line”,
and “line” has replaced “INFILE”. The replacement of “line” with “char”
looks uneventful, but the replacement of “INFILE” with “line” looks like it
could have a larger impact. The reason is that “line” holds a string, while
it has been established (in the “open” statement) that “INFILE” holds the
string which is the name of a file. So Python knows to interpret the two
“for” statements differently.

What happens in each iteration of the new statements, is that the next
unread single character of the string held in variable line is assigned to
the variable char, and then the block attached to the “for” statement is
executed. So, if the string held in variable line is:

This is line 1

then what will be printed is:

T
1
h
2
i
3
s
4

5
i
6
s
7

8
l
9
i

15

10
n
11
e
12

13
1
14

Notice that the character in positions 5, 8, and 13 is a space. However,
you may notice that no other spaces are output, while in the first example of
a “for” statement, there were added lines. That difference will be explained
later.

4.3 Conditionals and blocks

The next example of a block is with the use of a conditional statement.
Consider the following:

if char == "0":
print "The character is 0, but we will change it to 1"
char = "1"
print char

The first statement starts with the word “if” and ends with a colon.
The three following statements are indented and form a block. The effect
of this is:

If the value held in variable char is the string “0”, then execute
all of the statements in the block. If the value in char is not
the string “0”, then do not execute the statements in the block
– just move past them.

The “if” statement and its relationship with the block attached to it is
almost self-explanatory, with two important points to note.

First, the equality symbol is “==”, i.e., two equal signs, not just one.
The distinction is that a single equal sign is used to assign a value from the
right side of the equality to a variable on the left side, as we saw earlier.
The double equal sign is used to test whether the current value held in the
variable on the left side of the double equality is the same as the value

16

on the right. Many computer languages use this convention to distinguish
between assignment and testing. Confusing those uses is one of the most
common errors in computer programming, particularly using “=” when
“==” should be used.13

Second, the zero in the “if” statement is in quotes. That tells Python to
test if the current value in char is a string consisting of a single character,
“0”, rather than the integer 0. If instead the “if” statement had been:

if char == 0:

then the effect would be to test whether the current value of “char” is the
number zero. To emphasize the distinction consider the following:

char = 1
if char == 1:

char = char + 3
print char

This little program will print the number 4. But if we change the “if”
statement to

if char == "1":

The “if” statement will evaluate to false (the test will fail), and so the
block will not be executed and nothing will be printed. Try it out.

Conditional statements Generally, statements such as the “if” state-
ment used above are called conditionals. When a conditional evaluates to
true (passes the test), then the attached block is executed; and when a
conditional evaluates to false (fails the test), then the attached block is
skipped.

4.4 Blocks Inside Blocks

Above, we assumed that there was just one single block associated with a
“for” or “if” statement. That was to simplify your first exposure to blocks.
But in fact, a block may contain within it, another block, which itself may
contain another block, etc. Such nested blocks are extremely common and
useful. To illustrate this, let’s consider the following problem:

13Using “==” when “=” is intended is generally not as bad, because the statement
will usually not be grammatical and so the system will flag it as an error.

17

We are given a file containing multiple lines of text. We need
to read in each line of text, and for each line, print out the
line, and its line number in the file; and then print out the
characters in the line, numbering each one, as before. This is a
combination of the two problems considered above.

A Python program to solve the stated problem could use two “for”
statement and two nested blocks:

program testpy2
import sys
INFILE = open ("example-file", "r")
i = 1
for line in INFILE:

print line
print i
i = i + 1
j = 1
for char in line:

print char
print j
j = j + 1

Note the statements from “print line” to “for char in line” are all in-
dented, with the same indentation. They are all in the same block, attached
to the first “for” statement. But the lines after the second “for” statement
have a greater indentation. Why? Those lines form a second block, one
that is contained inside the first block. The second block contains the
three lines following the second “for” statement, which ends with a colon
(marking the beginning of a block to follow). Then, the next three lines
are all indented the same amount, which is larger than the indentation of
the second “for” statement.

So, it is perfectly fine, and typically very useful, to have one block
nested inside of another block. We say that the first block contains all of
the statements from “print line” to “j = j + 1”, and that the first block
contains the second block.

Now let’s look more closely at how this program fragment is executed.
Suppose that the file specified by the variable “INFILE” contains two lines,
say:

abcd
efgh

18

The execution first assigns variable “i” the value 1. It then proceeds
to the next line, which is the first “for” statement, where variable line
is assigned the first string “abcd” in the file whose name is the value of
the variable “INFILE”. Next, the program prints the string held in “line”
(which is “abcd”), and then prints the value of variable i (which is 1). It
then increments variable i to have value 2, and sets the variable j to value
1.

To recap, the program has encountered and executed statements in a
top-down manner, and at this point the values of the variables are:

i: 2
line: "abcd"
j: 1

Continuing with our examination of the program, remember that the
execution is still inside the first block. But now we encounter a second
“for” statement, and a new block that is attached to it:

for char in line:
print char
print j
j = j + 1

The effect of this code fragment is to successively print each character in
the string held in variable line, where each character is followed by an
integer giving the position of the character in the string. So, this prints:

a
1
b
2
c
3
d
4

When that printing is done, execution of the “for char in line” statement
is done – for now. This is where things get interesting. At this point, the
program has finished the execution of the second “for” statement, but the
execution is still inside the first block, attached to the “for line in INFILE:”

19

statement. In fact, the end of the second block is also where the first block
ends. So, control of the program returns to the first “for” statement, which
continues where it last left off.

In more detail, the first line of the input file has been read, but there is
another unread line in INFILE. So, the first “for” statement is not finished.
Continuing where it left off, the second line in INFILE is now read and
assigned to the variable line. The program next prints the second line,
followed by the number 2. It then increments variable i, making its value
3. The next statement in the program is “j = 1”, so the value of j changes
back from 5 to 1.

At that point, the program encounters the “for char in line” statement
that it previously encountered and executed. What happens? What hap-
pens is that this “for” statement is executed again, independent of its prior
execution. But now, variable line has a different value (“efgh”) than before.
The result is that the following is printed:

e
1
f
2
g
3
h
4

Now control returns to the first “for” statement. But since all the lines
in INFILE have been read, the first “for” statement is finished, and every-
thing in the block attached to it is skipped. Skipping over a block means
that the next statement to be executed should be the first statement after
the end of that block. In the case of this program, there is no statement af-
ter the end of the first block, so the program is at its end, and the execution
terminates.

20

4.5 Three nested blocks

OK, so we have seen two nested blocks. Now let’s go for three. Consider
the following code fragment:

program testpy3
import sys
INFILE = open ("example-file", "r")
counta = 0
i = 1
for line in INFILE:

print line
print i
i = i + 1
j = 1
for char in line:

print char
print j
j = j + 1
if char == "a":

counta = counta + 1
print "The number of times that character ‘a’ appears in the input file is"
print counta

When program testpy3 is executed, it will print out the lines we have
discussed above, and then will print out the two additional lines:

The number of times that character ’a’ appears in the input file is
3

Note that only single quote marks are used around the “a” inside of
the print statement. This is because the double quote marks are needed
at the start and end of the text that is to be printed. If “a” is enclosed in
double quotes, Python would be confused and not produce what we want.
You should cut and paste program testpy3 into a file, called say testpy.py,
and execute it, and modify it, to see for yourself what happens.

4.6 More refined output

The next thing I want to introduce is one way to produce less clunky
output in Python. In program testpy3 (and the earlier programs) each

21

print statement caused the value of a single variable to be printed, and
on its own line. The result was readable, but not desirable. Suppose that
instead of what is produced in testpy3, we want to print

There is an occurrence of character ’a’ on line 3 in position 3 of that line
There is an occurrence of character ’a’ on line 3 in position 7 of that line
There is an occurrence of character ’a’ on line 4 in position 20 of that line
Character ’a’ appears in the input file 3 times

The key thing to note is that each printed number is inside of a complete
sentence, with words around it. This makes for nicer output of the kind
that is essential in program CLgraphfile. To produce such output, we need
to learn a little about how Python specifies formatted output. The program
that produced the above output is testpy4, shown here:

testpy4

import sys
INFILE = open ("example-file", "r")
counta = 0
i = 1
for line in INFILE:

i = i + 1
j = 1
for char in line:

if (char == "a"):
print "There is an occurrence of character ’a’ on line %d in position %
counta = counta + 1

j = j + 1
print "Character ’a’ appears in the input file %d times" % counta

Let’s look first at the second print statement, at the end of the program.
Compared to the print statements we have seen so far, there are several
new elements. First, there is the “%d” (percentage symbol followed by
“d”) between the words “file” and “times”, and the statement ends with
“% counta”. Well, “counta” is a variable name, but what are the other
things?

The symbol combination “%d” is a kind of place holder, telling Python
that when the print statement is executed, and a line is printed, the value
of some variable will go there. So, the symbols “%d” are not printed, but
are replaced by the value of a variable. OK, which variable? You probably

22

can guess from the statement. After the last quotation mark, the symbol
“%” indicates that the needed variable is listed next. In this case, the
variable is “counta”, and you can see that its value has been printed in
the output above. Being able to print the value(s) of variables inside a
longer text string allows for much nicer output, and is actually required to
produce the correct output in program CLgrahfile.

There is one technical point we need to mention here. The two symbols
“%d” do not just indicate that the value of a variable will be inserted there,
they specify that the variable will have a value that is a number. In case
that the value is a string, we have to use a different placeholder: “%s”.
An example of this is in the last print statement in program CLgraphfile
shown in Figure 1.

Now let’s look at the first print statement in testpy4. It has two oc-
currences of “%d”, so when that line is printed, there will be two values
of variables that will be inserted into the line. How are those variables
specified? As you can guess, the two variables are listed, in the order that
their values should appear in the line, after the single “%”. Those variables
are i and j. In the program, variable i is used to specify a line number in
a file, and variable j is used to specify a position in a line.

Note that the variables are listed with a comma between them, and
are enclosed in left and right parentheses. This is the standard way that
Python specifies a kind of sequence called a tuple of things (in this case,
a tuple of variables). I think of a tuple as a kind of list, but formally, in
Python-ese, it is a sequence. We will say a bit about Python lists later.
You should experiment with the program - removing the parentheses for
example, to see what happens. The second print statement did not need
parentheses because there was only one variable in the “tuple”. Could it
have been enclosed in parentheses also? Try it.

4.7 Two logical points

I want to point out two other details in program testpy4, which illustrate
logical aspects of the program, rather than syntactic details. What I mean
by logical is that if we get those details wrong, Python might not give
an error message – because the program will obey all of the syntactic
(grammatical(rules of Python – but the program might not produce the
result we want. The first detail I want to point out is that the statement:

j = j + 1

23

is not part of the third block, but it is part of the second (and hence also,
the first) block. We see that it is not part of the third block because it is not
indented as far as the statements that are in the third block. It is indented
the same way that the statements in the second block are indented.

If, by (logical) mistake, we had indented the line so that it was part
of the third block, Python would not object – that would by syntactically
ok - but when executed, the result would be wrong. It would then only
increment variable j when the value of char is “a”. That would be wrong
because we need j to indicate the position in the current line that is being
examined. You should modify the program, making this indentation error,
to see exactly what goes wrong.

Similarly, the last statement in the program:

print "Character ‘a’ appears in the input file %d times" % counta

is not indented at all. It is aligned with the first “for” in the program.
That means that this print statement is not in any of the three blocks.
And that is just what we want, because we only want that print statement
to execute once, after all the characters in all the lines have been examined.

Critical Exercise Learn by doing. Experiment with indenting the print
statement (leaving it as the last statement in the program) to see what
happens in each case. There are five indentations you should try: indent
so that the start of the print statement aligns with the start of the first
“for”; so that it aligns with the second “for”; so that it aligns with the
“if”; so that it aligns with the first “j”; so that it aligns with none of those
positions. Some of those indentations will lead to syntactic error, where
Python will yell at you; but some will lead to logical errors – Python will
be happy, but you will not be. Logical errors are the hardest to figure out
and fix. And sometimes, you don’t even realize that the program is getting
the wrong answer.14

Central Message In Python, indentation and block structure are ab-
solutely crucial in conveying your logic, i.e., your solution method, to the
computer. In fact, block structure is similarly crucial in almost all modern
programming languages. And, blocks can nest and interact in very com-
plex ways: you can have a series of many successive blocks inside blocks,

14Hopefully it doesn’t take a plane crash, stolen election, or unintended nuclear missile
launch to let you know that something is amiss.

24

more than just three; or several independent blocks inside other blocks,
etc. Most of your programming energy will go into getting your blocks
correct.

However, Python differs from most other programming languages in
that blocks are specified by indentation structure – most other languages
use explicit matching symbols to mark the start and end of a block –
symbols such as “{” and “}”. Indentation of blocks in those languages is
not syntactically required, although consistent indentation really helps you
(and others) see the logical structure of the blocks.

The syntax of blocks differs in different languages, but their logical
meaning and import is the same. So, what you have learned here about the
logic of blocks is good preparation for learning many other programming
languages in addition to Python.

5 Back to CLgraphfile

Having introduced variables, Python magic, assignment, iteration, blocks
and conditionals, lets look again at program “CLgraphfile.py”. The heart
of that program contains the following statements:

constraints = "such that \n\n"
listC = ""
binaries = "binary \n"
index = 0

for line in INFILE:
index = index + 1
listC = listC + "+ C(%d)" % index
binaries = binaries + "C(%d)\n" % index

j = 0
for char in line:

j = j + 1
if char == "0" and index < j:

string = "C(%d) + C(%d) <= 1\n" % (index,j)
constraints = constraints + string

INFILE.close()
OUTFILE.write("Maximize \n")

25

OUTFILE.write(listC + "\n")
OUTFILE.write (constraints)
OUTFILE.write (binaries)
OUTFILE.write ("end")
OUTFILE.close()

The block structure of this code fragment is the same as in testpy4.
It has three nested blocks, the first two are attached to “for” statements,
and the third is attached to the “if” statement. The first block reads
one line at a time from the file name held in variable INFILE, assigning
it to the variable line, and incrementing “index” each time. The next
statement assigns something to the variable “listC”, but what? There are
some unfamiliar elements here. Before the start of the first block, we see
that “listC” is assigned the empty string, so listC is a variable intended to
hold a string.

We can then guess that:

listC = listC + "+ C(%d)" % index

starts with the current value in listC, does something with or to it, and
then assigns the result back to listC. Also, the statement has symbols “%d”,
and symbol “%” followed by a variable name, as we saw earlier in a print
statement. If these elements work the same in this assignment statement
as they do in a print statement, then the effect is to replace “%d” with
the value of the variable index. In fact, that is what happens. The final
unfamiliar element of this statement is the plus sign, “+”, that follows
“listC” on the right side of the statement. What is being added?

The answer is that two strings are added together – but not numerically,
since that would make no sense. Rather, the two strings are concatenated.
That is, the second string is added to the end of the first string. The
symbol “+” is used both to numerically add two numbers, and is also used
to concatenate two strings. Context tells Python which use is intended:
when the two variables to the right and left of the “+” symbol each hold a
number, then “+” means arithmetic add; but when the two variables each
hold a string, then “+” means concatenation.15

For an example, lets suppose that variable index has the value 4. Then,
when the above statement is executed by Python, the number 4 will replace

15Just to confuse matters, the plus symbol inside the quotes does not specify an
addition or a concatenation. It is a part of the string that is being built up. That string
will be part of the concrete ILP formulation that is output, as we will see.

26

the symbols “%d” to create the string “C(4)”, and the current string held
in variable listC will be concatenated together with the string “+ C(4)”
(without the quotes).

Now, the statement:

listC = listC + "+ C(%d)" % index

is in the first block of the program, so it will be executed once for each
line in the input file, and the value held in index will be one larger in each
iteration. For example, if there are five lines in the input file, the final
string held in listC will be:

C(1) + C(2) + C(3) + C(4) + C(5)

And this is what will be printed when the Python program is run and
string listC is printed. We will see later that this string will be the main
part of the objective function for the concrete ILP formulation.

The next line The next statement in the program is:

binaries = binaries + "C(%d)\n" % index

which is similar to the statement just before it. The variable “binaries”
was initially set to the string

binary \n

Each time the statement above is executed, the value of binaries is
concatenated with another string, “C(i)”, where “i” the current value of
variable index. Those characters are then followed by ”\n”, which will
cause Python to move to a new line each time it prints the value of a
“C(i)”. So, the final value of variable binaries will be the string:

binary \nC(1)\n C(2)\n C(3)\n C(4)\n C(5)\n

Later, near the end of program CLgraphfile, when the value of variable
binaries is printed, or written to a file, that string will be output as:

binary
C(1)
C(2)
C(3)
C(4)
C(5)

27

5.1 Continuing our examination of CLgraphfile

Now we come to the most critical part of program CLgraphfile. Recall that
the logic behind the abstract ILP formulation for the maximum clique
problem (discussed in Section 2.2 of the book) is that the concrete ILP
formulation must contain the inequality:

C(i) + C(j) <= 1

for every pair of nodes (i, j) which are not connected by an edge. So the
Python program CLgraphfile must create such an inequality for each pair
of nodes (i, j) that are not neighbors in the input graph. The program
does this in the following code fragment:

j = 0
for char in line:

j = j + 1
if char == "0" and index < j:

string = "C(%d) + C(%d) <= 1\n" % (index,j)
constraints = constraints + string

This code fragment is inside block 1. Hence this entire code fragment will
be executed once after each line is read in from the input file. But note that
the code fragment contains two blocks of its own, which we next examine.

The second block of the program (which is inside the first block) exam-
ines each character in the string held in variable line. The first statement
in the block is executed after each new character is extracted from the
string. That statement increments variable j, which was set to 0 before the
start of the second block; hence the value of j specifies the position in the
string of the current character being examined.

Next, the if statement checks whether the character held in variable
char is “0” and whether the value in variable index is less than the value
in j. The word “and” in the “if” statement means that the whole “if”
statement will be evaluated to “true” if and only if both conditions
(char == “0”, and index < j) evaluate to true. The word “and” is a logical
operator – its meaning is built into Python.16 Python has several built-in

16The word “or” is also a logical operator built into Python. Its meaning is that the
whole “if” statement would be evaluated to “true” if one or both of the two conditions
are evaluated to “true”. If, by mistake, we had used “or” instead of “and” in this “if”
statement, Python would not object, since the statement would still be grammatically
permitted, but the program would not behave the way we want it to. Try it out, and
see for yourself.

28

logical operators, which you can learn about in a general text on Python.
Here, we only use the “and” operator.17

That attached block When the “if” statement evaluates to true, the
two statements in the attached block are executed. The first one creates
the string

C(vin) + C(vj) <= 1\n

where vin denotes here the current value held in variable index, and vj
denotes the current value held in j. For example, if the value in index is 4
and the value in j is 13, then the string created would be:

C(4) + C(13) <= 1\n

That created string is then assigned to the variable “string”18 The sec-
ond statement in the block concatenates the string in variable string to the
string held in variable constraints. So, constraints accumulates, as one long
string, all of the inequalities that are created in a concrete ILP formulation.
Later, that string will be printed in its correct location in the concrete ILP
formulation.

You might ask why I have used the variable string. Wouldn’t it be
more direct and compact to replace the two statements in the block with
the single statement:

constraints = constraints + "C(%d) + C(%d) <= 1/\n" % (index,j)

Yes, I could do that, but I prefer to break up long statements so I can
see better what is going on in the program. Also, having intermediate steps
and additional variables helps with the critical task (in most programs) of
debugging.

17Sometimes logical operators are written in all capital letters to make it easier (for
humans) to see the logic of the program.

18Again, I use the word “string” because it reminds me of its purpose in the program.
It has no intrinsic meaning in Python. I could have called it “waterfall”, but that would
have been silly.

29

More explanation of the “if” The purpose of checking whether the
character is “0” in the “if” statement should be clear from the logic of
abstract ILP formulation for the maximum clique problem, since a “0” in
the input matrix (which encodes the edges that are in the input graph)
means that there is no edge between the node specified by the value of
variable index, and the node specified by the value of variable j. The
purpose of checking whether the value in index is less than the value in
j is to make sure that the next statement is only executed once for any
pair of positions in the string. Otherwise, the concrete ILP produced by
CLgraphfile would contain the inequality:

C(i) + C(j) <= 1

and also the inequality:

C(j) + C(i) <= 1

for each pair of nodes i, j that are not adjacent in the input graph.19 You
might modify the “if” statement by removing that second check, and see
for yourself how the concrete ILP formulation changes.

5.2 Putting it together

OK, so now we have explained how CLgraphfile accumulates a string, held
in the variable listC, containing all of the C variables, with the plus sign
“+” between each successive pair; how it accumulates a string, held in
the variable binaries, containing all of the C variable, with "\n" between
each successive pair; and how it accumulates a string, held in variable con-
straints, which starts with “such that \n” and follows with all the inequal-
ities (constraints) needed for a concrete ILP formulation of the maximum
clique problem.

The final outputs Finally, the program writes out the entire concrete
ILP formulation to the file whose name is held in variable OUTFILE. The
Python syntax to write a string to a file is:

FILE-VARIABLE.write(string or statement evaluating to a string)

19Such redundancy is actually fine. Gurobi (and other ILP solvers) will identify the
redundancy and remove one of the inequalities in the preprocessing phase, but since the
concrete ILP formulations tend to be large, making it harder to read it, my choice is to
avoid the redundancy in the first place.

30

The specific statements in CLgraphfile are:

OUTFILE.write("Maximize \n")
OUTFILE.write(listC + "\n")
OUTFILE.write (constraints)
OUTFILE.write (binaries)
OUTFILE.write ("end")

In these “write” statements we see examples of different ways that the
“string or statement evaluating to a string” requirement is met.

Finally, the statement:

print ("The ILP file is: %s \n" % sys.argv[2])

prints the name of the ILP file that is created by this Python program,
and the statements

INFILE.close()
OUTFILE.close()

close the files whose names are held in variables INFILE and OUTFILE.

5.3 An alternative approach

In program CLgraphfile, all of the constraints are concatenated into a single
string, called ”constraints”. That string has a new-line symbol between
each successive constraint, so that when the string is printed, each con-
straint appears on its own line. Similarly, the set of ILP variables that will
appear in the objective function is accumulated in a single string, “listC”,
as are the ILP variables that are listed below the word “binary” in the ILP
formulation.

I like this style of programming to construct concrete ILP formulations,
but it may seem more natural to use Python “lists” instead of strings, and
discussing this alternative approach is a way to introduce a bit more of
Python.

Python lists A list in Python is just what it sounds like, an ordered
collection of elements (things) – numbers, strings, or values specified by
Python variables – for now. The elements in a list are enclosed by left and
right brackets, and are separated by commas. For example, the statement:

31

binaries = ["C(1)", "C(2)", "C(3)"]

assigns a list of three strings to the variable binaries. Note that each string
is enclosed in quotes.

When the value of variable binaries is printed, the result shows ex-
plicitly that the value is a list, and that contains strings. Adding the
statement:

print binaries

to the Python assignment statement above, yields:

[’C(1)’, ’C(2)’, ’C(3)’]

A list can have a mixture of strings, numbers and values held in a
variable. For example, the output of the following code fragment:

height = 10
alist = ["tom", 53, height]
print alist

is:

[’tom’, 53, 10]

If we want to individually access or print all of the values in a list, we
can use the “for, in” statement:

for element in alist:
print element

where “element” is a variable. The effect of this “for, in” statement is sim-
ilar to the “for, in” statements we saw earlier, although now the successive
values are the elements in a list, rather than lines from a file, or characters
in a string. The above code fragment produces:

tom
53
10

32

Notice that each element in the list is printed on its own line, even
without a "\n" in the print statement. Also, note that the string “tom” is
printed without quotes.

Exercise Change the “for” statement above to:

for element in [alist]:

to see what is printed. Then try to explain the result.
If we want to access an individual element in a list, we use the name

of the list, followed by square brackets that enclose the position of the
element we want; or a variable whose value is the position. For example,

alist[2]

specifies a single element in the list alist. But which one exactly? It is the
third element, the number 10. Why the third and not the second? Because
Python, as many other programming languages do, begins indexing with
zero (Yuck!). So alist[0] is the first element in alist, with value “tom”, and
alist[1] is the second element in alist, with value 53.

Illustrating how to use indexing to access and print elements in alist,
the following code fragment accomplishes the same result as the “for, in”
statement discussed above.

for i in range(0, len(alist)):
print alist[i]

In addition to the index of a list, there are two new syntactic features
of Python that are used in this code fragment. First, len is a built-in
Python function which, applied to alist, finds the length of the list alist,
i.e., number of elements in alist. In this example, the length is 3. Second,
the built-in Python range function in:

range(0, len(alist))

generates a list of integers starting with 0 and ending with len(alist) minus
1. So, for our example,

for i in range(0, len(alist)):
print alist[i]

is equivalent to:

33

for i in [0,1,2]:
print alist[i]

but the use of len(alist) is more general since it can accommodate any
length that list alist might be. That length might not even be known at
the time that the program is written. Of course, the original syntactic
approach, i.e.,

for element in alist:
print element

is similarly general and easier to write. Still, these examples illustrate the
use of list indexing, which is often the Python syntax we need. You should
try out all of the variations we have described here to see exactly how they
work, and see for yourself what limitations each approach has.

5.3.1 Adding an element to an existing list

Each of the lists illustrated above were created with a single assignment
statement. But in most applications, lists are built up over time, during
the execution of the program. Typically, one wants each new element to
be added to the end of the growing list. This is achieved through the use of
what is called a “string method” in Python, and in particular, the method
called “append”. The syntax for using a method is to write the name of
the variable that holds a string, followed by a dot, followed by “append”,
followed, in parenthesis, by the item that is to be added to the list.20 For
example, we can add an element to alist as follows:

alist.append(48)

Then, the code fragment:

for element in alist:
print element

will print:

tom
53
10
48

20Notice that our use of “write”, above, is of this form, and “write”, in fact, is also a
Python method.

34

Before appending any new items to a list, the variable holding the list
must already hold a list, as shown above, or have been explicitly assigned
the empty list. For example, in the following code fragment, the first
statement assigns the empty list to variable “blist”, and then the string
“susan”, and the number 15, are appended to the list. The end result is
that blist holds a list consisting of two elements.

blist = []
blist.append("susan")
blist.append(15)

5.4 Using lists in CLgraphfile

OK, so now that we have seen a bit about Python lists and how to access
individual elements in a list, we explain how lists can be used in a mod-
ification of the program CLgraphfile. In the following code fragment, the
three variables listC, binaries and constraints which each had previously
accumulated and held a single (long) string, now each accumulate and hold
a list of strings.

index = 0
listC = []
constraints = ["\n such that \n"]
binaries = ["binary \n"]

for line in INFILE:
index = index + 1
string = " + C(%d)" % index
listC.append(string)
string = "C(%d)\n" % index
binaries.append(string)

j = 0
for char in line:

j = j + 1
if char == "0" and index < j:

string = "C(%d) + C(%d) <= 1\n" % (index,j)
constraints.append(string)

Notice that we reset the variable “string” many times – it is really just
a shuttle from the statement where a string is constructed, to the next

35

statement where the string is used. After that, its value can be changed
without harm.

Near the end of the program, instead of writing out three long strings,
as done in the original CLgraphfile, we write out three lists of strings, as
follows:

OUTFILE.write("Maximize \n")
for string in listC:

OUTFILE.write(string)
for string in constraints:

OUTFILE.write(string)
for string in binaries:

OUTFILE.write (string)
OUTFILE.write ("end")

The use of lists instead of strings is a more standard way to write in
Python, but the main reason for converting program CLgraphfile in this
way is just to introduce strings and discuss their use in Python. We will
see a more involved use of lists when we discuss the program first-RNA in
the next section.

5.5 Summary

Perhaps surprisingly, this little program, CLgraphfile contains most of the
critical constructs used in Python, and many other programming lan-
guages. It contains variables, assignments, iteration, blocks, condition-
als, formatted printing, tuples, lists, functions, and methods. Of course,
Python contains more syntactic choices than what we have introduced here.
For example, there are several ways to specify iteration – more than the
way we did it here, with the use of a “while” statement. We will see
some more Python syntax in our discussion of program first-RNA. And
there are a few central programming language concepts, for example multi-
dimensional lists, dictionaries and procedures, that we will not discuss.21

But again, it is really interesting that such a simple program as CLgraph-
file.py contains most of the critical constructs in Python and for procedural
programming in general.

21We have not touched object-oriented programming.

36

6 RNA folding: More complex programming
and more Python syntax

In this section we discuss the Python program for simple RNA folding,
(first-RNA), discussed in Chapter 6 of the book. We try to make the
Python programming as simple as possible. As a consequence, this program
generates some unneeded ILP variables, and some unneeded inequalities,
but these do no harm. They will be cleaned up by the Gurobi preprocessor.

Remember that the problem is to find a legal pairing of characters in
an RNA string that obeys three critical constraints. First, each pair of
characters in a pairing must be complementary: A and U can pair; C
and G can pair. Second, each character, at a given position in the RNA
string, can be in at most one pair in a pairing. Third, the set of pairs
in a pairing must be non-crossing: There cannot be four positions in the
RNA string h < i < j < k, where the character at position h is paired
with the character at position j, and the character at position i is paired
with the character at position k. Then, the objective is to find as many
pairs as possible, obeying the above three constraints. Recall that the ILP
variable P (i, j) will be set to 1 in the optimal ILP solution, if the character
in position i pairs with the character in position j of the RNA string.
Otherwise, it is set to 0.

Program first-RNA is shown below.

37

first-RNA.py # for python 2.7
#
Python program to generate the inequalities for the ILP
formulation for the simple RNA folding problem,
discussed in Chapter 6, Section 6.1.1.
#

#
OUT = open ("RNA1.lp", ’w’)

Collect information from the user
print ("Will you type in the RNA sequence, or read it from file ‘randomstring’?")

inchoice = raw_input("Type ’t’ for typed input, ’f’ for file. ")
if (inchoice == ’t’):

RNA = raw_input("Write an RNA sequence (using A,U,C,G, and hit return \n")
else:

IN = open("randomstring", ’r’)
RNA = IN.readline().strip()

print "You input the sequence: %s" % RNA

length = len(RNA)

Generate the objective function

OUT.write ("Maximize \n")
for i in range(1, length):
for j in range(i+1, length+1):

OUT.write ("+ P(%d,%d) \n" % (i,j))
OUT.write ("such that \n")

The following segment generates the ILP inequalities to ensure
that only complementary nucleotides pair.

for i in range(1, length):
for j in range(i+1, length+1):

if (RNA[i-1] == ’A’) and (RNA[j-1] != ’U’):
OUT.write ("P(%d,%d) = 0 \n" % (i,j))

if (RNA[i-1] == ’U’) and (RNA[j-1] != ’A’):
OUT.write ("P(%d,%d) = 0 \n" % (i,j))

if (RNA[i-1] == ’C’) and (RNA[j-1] != ’G’):
OUT.write ("P(%d,%d) = 0 \n" % (i,j))

if (RNA[i-1] == ’G’) and (RNA[j-1] != ’C’):

38

OUT.write ("P(%d,%d) = 0 \n" % (i,j))

The following segment generates the ILP inequalities to ensure
that each position is paired to at most one other position

for i in range(1,length):
inequality = ""

for j in range(1, i):
inequality = inequality + " + P(%d,%d)" % (j,i)

for j in range(i+1, length+1):
inequality = inequality + " + P(%d,%d)" % (i,j)

inequality = inequality + ’ <= 1’
OUT.write (inequality)
OUT.write ("\n")

The following segment generates the ILP inequalities to ensure
that no pairs cross.

for h in range(1, length - 2):
for i in range(h+1, length - 1):

for j in range(i+1, length):
for k in range(j+1, length+1):

OUT.write ("P(%d,%d) + P(%d,%d) <= 1 \n" % (h,j,i,k))

Write out the list of binary variables
OUT.write ("binary \n")
for i in range(1, length):

for j in range(i+1, length+1):
OUT.write ("P(%d,%d) \n" % (i,j))

OUT.write ("end \n")
print "The ILP file is RNA1.lp"

We will not explain each statement in program first-RNA, but only
those statements containing Python elements that were not in program
CLgraphfile. Any statement not explained should be understandable after
understanding the discussion of CLgraphfile.

Let’s look first at the following fragment of program first-RNA:

inchoice = raw_input(" ‘t’ for typed input, ‘f’ for file ‘randomstring’.")

39

if (inchoice == ’t’):
RNA = raw_input("Please type an RNA sequence and hit return \n")

else:
IN = open("randomstring", ’r’)
RNA = IN.readline().strip()

The purpose of this code fragment is to ask the user whether they will
input an RNA string by typing one out at the keyboard, or if they will input
it from a file called “randomstring”. The second line in this fragment has
a Python construct that we have not encountered before. That line has
the function raw_input followed by a string encolsed in parenthesis. To
the left of ‘‘raw_input" is an equality sign and the variable “inchoice”.
Function raw_input is built into Python 2.7 (it is not in Python 3, and this
is one of few places where the difference in Python versions will concern us).
When function raw_input is executed, the string enclosed in parentheses
is printed to the monitor (screen), and the program waits for input typed
on the keyboard. That input is interpreted as a string and assigned to
the variable on the left of the equal sign. So, in this specific example, the
following will be printed to the monitor:

Will you type in the RNA sequence, or read it from file ‘randomstring’?
‘t’ for typed input, ‘f’ for file ‘randomstring’.

Now the program pauses and waits for input (ended with a return key)
from the keyboard. If the user is interacting as expected, they will either
type ‘t’ or ‘f’, followed by the return key. We will see soon what happens
if they input something different.

The next two statements in this fragment use Python syntax that has
been explained already. But the line after those is:

else:

which is aligned with the “if” two lines before it. It is part of a Python “if,
else” construct. The meaning of this construct is that if the condition in
the “if” statement is true, then the block attached to that “if” statement
will be executed, and the block attached to the “else” statement will not
be executed. But if the condition in the “if” statement is false, then the
block attached to it will not be executed, and the block attached to the
“else” statement will be executed. Such “if, else” constructs are very useful
and common in computer programs.

40

So, let’s look at what is in the block attached to the “else”. The first
statement is an “open” statement of the kind we have discussed already.
The next statement looks like it might be of the form we discussed earlier
when discussing Python methods, but instead of having a single dot, it has
two dots, and there is nothing inside the two parentheses. So, what does
this statement do? We will first consider the shorter statement:

RNA = IN.readline()

This is an application of the Python method “readline” to the file whose
name is held in variable IN. The effect is to read the next unread line in
that file (which is “randomstring”), and assign that line (as a string) to
the variable called “RNA”. The line starts at the start of the file, if there
have been no previous reads, or one character after the point where the
file was last read. That line ends where a newline character ("\n") is first
encountered, or at the end of the file.

Now, there are ways to modify the behavior of “readline”, and if any
are desired, they would be specified as parameters inside the parentheses.
But in “first-RNA”, no modifications are desired, so the parentheses have
nothing in them. Even with nothing inside them, Python requires them.

The full statement Now, we return to the full statement:

RNA = IN.readline().strip()

which contains two Python methods: strip, in addition to readline. Based
on what we have seen in the prior uses of Python methods, we may infer
that strip is applied to the result of whatever comes before the dot in
.strip(). What comes before is a line that is read in from the file whose
name is held in the variable IN. So strip applies to that string.

But what exactly does strip do? It removes any “whitespaces” at the
beginning and at the end of the string. A whitespace in Python is either a
space or a tab symbol. So, the string that is assigned to variable RNA will
have no spaces or tabs at its front or at its end. And, this is very desirable
since we only want the RNA folding program to work on the real RNA
string and not any characters around it.

len The next new element of Python in first-RNA is the function “len”,
which appears in the statement:

41

length = len(RNA)

Function “len” is a built-in Python function which is applied to a string,
and returns the length (number of characters) in the string. So, the variable
length is assigned the number of characters in string held in RNA, which
is the string just read in from the file “randomstrings”.

range The next code fragment generates the objective function in the
ILP formulation. For that, the program needs to generate every P (i, j)
variable, for i < j ≤ length, and create a string that sums those variables
together. Note that the value of i should be at most length + 1, since j
must be larger than i. The code fragment is:

OUT.write ("Maximize \n")
for i in range(1, length):
for j in range(i+1, length+1):

OUT.write ("+ P(%d,%d) \n" % (i,j))

The new Python in these statements is the built-in function range,
which produces a list of all the integers from a beginning integer to an
ending integer. Consider:

range(1, length)

You might guess that the starting integer is 1, and you would be right.
You might also guess that the ending integer is the value in variable length.
That would be sensible, but wrong. Instead, the ending integer is one less
than the value in length. For example, if the value in length is 5, then
range(1, length) generates the list (1, 2, 3, 4). So if you want to generate
a list that contains all the integers from 1 to one less than length of the
string in RNA, you call function range with the parameters (1, length).
And if you want to generate a list that contains all integers from the value
of i+1 to the value in length, you call function range with the parameters
(i+ 1, length+ 1).

Now, you may ask why the range function in Python only generates
integers to one below the value of its second parameter. Why doesn’t it
do the more sensible thing of generating integers out to the actual value of
its second parameter. Well, you got me - I don’t know! I would not have
designed Python with that “feature”, but I didn’t design Python.

42

Only complementary nucleotides can pair The next code fragment
we consider generate the inequalities that ensure that only complementary
nucleotides are allowed to pair.

for i in range(1, length):
for j in range(i+1, length+1):

if (RNA[i-1] == ’A’) and (RNA[j-1] != ’U’):
OUT.write ("P(%d,%d) = 0 \n" % (i,j))

if (RNA[i-1] == ’U’) and (RNA[j-1] != ’A’):
OUT.write ("P(%d,%d) = 0 \n" % (i,j))

if (RNA[i-1] == ’C’) and (RNA[j-1] != ’G’):
OUT.write ("P(%d,%d) = 0 \n" % (i,j))

if (RNA[i-1] == ’G’) and (RNA[j-1] != ’C’):
OUT.write ("P(%d,%d) = 0 \n" % (i,j))

The only new Python syntax in this code fragment is the symbol “!=”.
That symbol means “not equal”. So, for example, if the character in posi-
tion i− 1 in the string held in variable RNA is “A”, and the character in
position j− 1 is not “U”, then those two positions are not allowed to form
a pair. So we want the ILP formulation to contain the equality

P (i, j) = 0

.
You may ask why these statements have indices i− 1 and j− 1 instead

of i and j. It is because I use 1 as the first index of the RNA string. That is
the sane and sensible thing to do – the first element of anything is element
number 1, isn’t it? But, at some point in the history of computer program-
ming, someone decided that the index should be 0, and most subsequent
languages (and Python in particular) followed this awful convention. So,
the first element in a Python list is element 0. Hence, to access my char-
acter i of the RNA string, you have to access character i−1 of the Python
string.22

22Wouldn’t life be easier if I just gave in and joined the zero-first convention? No!
Never!

43

Onward The next segment of program first-RNA creates the ILP in-
equalities to ensure that no position in the RNA string is paired with more
than one other position. This code fragment has no new Python elements,
so you should be able to figure out how it works without my help.

The next segment creates the ILP inequalities to ensure that the pairing
specified by the P (i, j) variables with values 1, is a non-crossing pairing.
Again, it has no new Python syntax, and you should be able to figure
out how it works. I will only point out that it has four nested blocks
(each preceded by a “for” statement), and the effect is that these blocks
generate all possible combinations of values for variables h, i, j, k such that
1 ≤ h < i < j < k ≤ length.

Finally, the program ends by writing out, to the file “RNA1.lp”, all the
remaining ILP inequalities, and writing to the monitor to inform the user
that the concrete ILP formulation is there.

7 What did we leave out about Python?

Lots! We left out lots about Python syntax. That is partly why there are
thousand page books of Python. And we left out some important elements
of procedural programming in general. But, as stated earlier, it is very
surprising (and pleasing) how much of Python, and of programming, is
illustrated in just these two simple programs. Master these programs and
you are well on your way to mastering procedural Python programming.23

I will end by mentioning one additional important element of program-
ming in Python (and other languages), that of multi-dimensional lists. The
simplest is a two-dimensional list, where the elements of the list are not
numbers, or strings, or variables (as discussed here), but are lists. So a
two-dimensional list is a list of lists. This is illustrated, and explained in
the comments, in the RNA-folding program fourth-RNAf.py.

23Again, we are completely ignoring object-oriented programming.

44

