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Abstract. The problem of computationally predicting the secondary
structure (or folding) of RNA molecules was first introduced more than
thirty years ago and yet continues to be an area of active research and de-
velopment. The basic RNA-folding problem of finding a maximum cardi-
nality, non-crossing, matching of complimentary nucleotides in an RNA
sequence of length n, has an O(n3)-time dynamic programming solu-
tion that is widely applied. It is known that an o(n3) worst-case time
solution is possible, but the published and suggested methods are com-
plex and have not been established to be practical. Significant practi-
cal improvements to the original dynamic programming method have
been introduced, but they retain the O(n3) worst-case time bound when
n is the only problem-parameter used in the bound. Surprisingly, the
most widely-used, general technique to achieve a worst-case (and of-
ten practical) speed up of dynamic programming, the Four-Russians
technique, has not been previously applied to the RNA-folding prob-
lem. This is perhaps due to technical issues in adapting the technique to
RNA-folding.

In this paper, we give a simple, complete, and practical Four-Russians
algorithm for the basic RNA-folding problem, achieving a worst-case
time-bound of O(n3/ log(n)). We show that this time-bound can also
be obtained for richer nucleotide matching scoring-schemes, and that
the method achieves consistent speed-ups in practice. The contribution
is both theoretical and practical, since the basic RNA-folding prob-
lem is often solved multiple times in the inner-loop of more complex
algorithms, and for long RNA molecules in the study of RNA virus
genomes.

1 Introduction

The problem of computationally predicting the secondary structure (or folding)
of RNA molecules was first introduced more than thirty years ago ([9,8,14,11]),
and yet continues to be an area of active research and development, particularly
due to the recent discovery of a wide variety of new types of RNA molecules
and their biological importance. Additional interest in the problem comes from
synthetic biology where modified RNA molecules are designed, and from the
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study of the complete genomes of RNA viruses (which can be up to 11,000
basepairs in length).

The basic RNA-folding problem of finding a maximum cardinality, non-
crossing, matching of complimentary nucleotides in an RNA sequence of length n,
is at the heart of almost all methods to computationally predict RNA secondary
structure, including more complex methods that incorporate more realistic fold-
ing models, such as allowing some crossovers (pseudoknots). Correspondingly,
the basic O(n3)-time dynamic-programming solution to the RNA-folding prob-
lem remains a central tool in methods to predict RNA structure, and has been
widely exposed in books and surveys on RNA folding, computational biology, and
computer algorithms. Since the time of the introduction of the O(n3) dynamic-
programming solution to the basic RNA-folding problem, there have been sev-
eral practical heuristic speedups ([2,12]); and a complex, worst-case speedup of
O(n3(loglogn)/(logn)1/2) time ([1]) whose practicality is unlikely and unestab-
lished. In [2], Backofen et al. present a compelling, practical reduction in space
and time using the observations of [12] that yields a worst-case improvement
when additional problem parameters are included in the time-bound i.e. O(nZ)
were n ≤ Z ≤ n2. The method however retains an O(n3) time-bound when only
the length parameter n is used1.

Surprisingly, the most widely-used and known, general technique to achieve
a worst-case (and often practical) speed up of dynamic programming, the Four-
Russians technique, has not been previously applied to the RNA-folding problem,
although the general Four-Russians technique has been cited in some RNA fold-
ing papers. Two possible reasons for this are that a widely exposed version of the
original dynamic-programming algorithm does not lend itself to application of
the Four-Russians technique, and unlike other applications of the Four-Russians
technique, in RNA folding, it does not seem possible to separate the preprocess-
ing and the computation phases of the Four-Russians method; rather, those two
phases are interleaved in our solution.

In this paper, we give a simple, complete and practical Four-Russians algorithm
for the basic RNA-folding problem, achieving a worst-case time reduction from
O(n3) to O(n3/log(n)). We show that this time-bound can also be obtained for
richer nucleotide matching scoring-schemes, and that the method achieves signifi-
cant speed-ups in practice.The contribution is both theoretical and practical, since
the basic RNA-folding problem is often solved multiple times in the inner-loop of
more complex algorithms and for long RNA molecules in the study of RNA virus
genomes.

Some of technical insights we use to make the Four-Russians technique work in
the RNA-folding dynamic program come from the paper of Graham et. al. ([5])

1 Backofen et al. ([2]) also comment that the general approach in ([1]) can be sped
up by combining a newer paper on the all-pairs shortest path problem ([3]). That

approach, if correct, would achieve a worst-case bound of (O(n3∗log3(log(n))

log2n
)) which

is below the O(n3/ log n) bound established here. But that combined approach is
highly complex, uses word tricks, is not fully exposed, and has practicality that is
unestablished and not promising (in our view).
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which gives a Four-Russians solution to the problem of Context-Free Language
recognition2.

2 A Formal Definition of the Basic RNA-Folding Problem

The input to the basic RNA-folding problem consists of a string K of length n
over the four-letter alphabet {A,U,C,G}, and an optional integer d. Each letter
in the alphabet represents an RNA nucleotide. Nucleotides A and U are called
complimentary as are the nucleotides C and G. A matching consists of a set
M of disjoint pairs of sites in K. If pair (i, j) is in M , then the nucleotide at
site i is said to match the nucleotide at site j. It is also common to require
a fixed minimum distance, d, between the two sites in any match. A match is
a permitted match if the nucleotides at sites i and j are complimentary, and
|i − j| > d.3 A matching M is non-crossing or nested if and only if it does not
contain any four sites i < i′ < j < j′ where (i, j) and (i′, j′) are matches in M .
Graphically, if we place the sites in K in order on a circle, and draw a straight
line between the sites in each pair in M , then M is non-crossing if and only if
no two such straight lines cross. Finally, a permitted matching M is a matching
that is non-crossing, where each match in M is a permitted match. The basic
RNA-folding problem is to find a permitted matching of maximum cardinality.
In a richer variant of the problem, an n by n integer scoring matrix is given in
the input to the problem; a match between nucleotides in sites i and j in K is
given score B(i, j). The problem then is to find a matching with the largest total
score. Often this scoring scheme is simplified to give a constant score for each
permitted A, U match, and a different constant score for each permitted C, G
match.

3 The Original O(n3) Time Dynamic Programming
Solution

Let S(i, j) represent the score for the optimal solution that is possible for the
subproblem consisting of the sites in K between i and j inclusive (where j > i).

Then the following recurrences hold: S(i, j) = max{ S(i + 1, j − 1) + B(i, j)
︸ ︷︷ ︸

rule a

,

S(i, j − 1)︸ ︷︷ ︸
rule b

, S(i + 1, j)︸ ︷︷ ︸
rule c

, Maxi<k<jS(i, k) + S(k + 1, j)
︸ ︷︷ ︸

rule d

}

2 Note that although it is well-known how to reduce the problem of RNA folding to the
problem of stochastic context-free parsing ([4]), there is no known reduction to non-
stochastic context-free parsing, and so it is not possible to achieve the O(n3/ log n)
result by simply reducing RNA folding to context-free parsing and then applying
the Four-Russians method from ([5]).

3 We let d=1 for the remainder of the paper for simplicity of exposition, but in general,
d can be any value from 1 to n.
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Rule a covers all matchings that contain an (i, j) match; Rule b covers all
matchings when site j is not in any match; Rule c covers all matchings when
site i is not in any match; Rule d covers all matchings that can be decomposed
into two non-crossing matchings in the interval i..k, and the interval k + 1..j.

In the case of Rule d, the matching is called a bipartition, and the interval i..k
is called the head of bipartition, and the interval k + 1..j is the called the tail
of the bipartition.

These recurrences can be evaluated in nine different ordering of the variables
i,j,k [13]. A common suggestion [13,7] is to evaluate the recurrences in order of
increasing distance between i and j. That is, the solution to the RNA folding
problem is found for all substrings of K of length two, followed by all substrings
of length three, etc. up to length n. This dynamic programming solution is widely
published in textbooks, and it is easy to establish that it is correct and that it
runs in O(n3) worst-case time. However, we have not found it possible to apply
the Four-Russians technique using that algorithmic evaluation order, but will
instead use a different evaluation order.

4 An Alternative O(n3)-Time Dynamic Programming
Solution

for j =2 to n do
[Independent] Calculations below don’t depend on the current column j
for i =1 to j − 1 do

S(i,j)=max( S(i+1,j-1)+B(i,j) , S(i,j-1)) (Rules a, b )
[Dependent] Calculations below depend on the current column j
for i =j − 1 to 1 do

S(i,j)=max(S(i+1,j) , S(i,j) ) (Rule c)
for k = j − 1 to i+1 do {The loop below is called the Rule d loop}

S(i,j)=max( S(i,j), S(i,k-1)+S(k,j) ) (Rule d)

The recurrences used in this algorithm are the same as before, but the order
of evaluation of S(i,j) is different. It is again easy to see that this Dynamic
Programming Algorithm is correct and runs in O(n3) worst-case time. We will
see that this Dynamic Programming algorithm can be used in a Four-Russians
speed up.

5 The Four-Russians Speedup

In the Second Dynamic Programming algorithm, each execution of the loop
labeled “independent” takes O(n) time, and is inside a loop that executes only
O(n) times, so the independent loop takes O(n2) time in total, and does not need
any improvement. The cubic-time behavior of the algorithm comes from the fact
that there are three nested loops, for j, i and k respectively, each incrementing
O(n) times when entered. The speed-up we will obtain will be due to reducing
the work in the Rule d loop. Instead of incrementing k through each value
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from j − 1 down to i + 1, we will combine indices into groups of size q (to be
determined later) so that only constant time per group will be needed. With
that speed up, each execution of that Rule d loop will increment only O(n/q)
times when entered. However, we will also need to do some preprocessing, which
takes time that increases with q. We will see that setting q = log3(n) will yield
an O(n3/ log n) overall worst-case time bound.

5.1 Speeding Up the Computation of S

We now begin to explain the speed-up idea. For now, assume that B(i, j) = 1 if
(i, j) is a permitted match, and is 0 otherwise. First, conceptually, divide each
column in the S matrix into groups of q rows, where q will be determined later.
For this part of the exposition, suppose j−1 is a multiple of q, and let rows 1...q
be in a group called Rgroup 0, rows q + 1..2q be in Rgroup 1 etc, so that rows
j − q...j − 1 are Rgroup �j − 1�/q. We use g as the index for the groups, so g
ranges from 0 to (�j − 1�/q). See Figure 1. We will modify the Second Dynamic
Program so that for each fixed i, j pair, we do not compute Rule d for each
k = j − 1 down to i + 1. Rather, we will only do constant-time work for each
Rgroup g that falls completely into the interval of rows from j−1 down to i+1.
For the (at most) one Rgroup that falls partially in that interval, we execute
the Rule d loop as before. Over the entire algorithm, the time for those partial
intervals is O(n2q), and so this detail will be ignored until the discussion of the
time analysis.

Introducing vector Vg and modified Rule d loop. We first modify the
Second Dynamic Program to accumulate auxiliary vectors Vg inside the Rule d
loop. For a fixed j, consider an Rgroup g consisting of rows z, z − 1, z − q + 1,
for some z < j, and consider the associated consecutive values S(z, j), S(z −
1, j)...S(z − q + 1, j). Let Vg be the vector of those values in that order.

The work to accumulate Vg may seem wasted, but we will see shortly how Vg

is used.

Introducing vg. It is clear that for the simple scoring scheme of B(i, j) = 1
when (i, j) is a permitted match, and B(i, j) = 0 when (i, j) is not permitted,
S(z − 1, j) is either equal to S(z,j) or is one more then S(z,j). This observation
holds for each consecutive pair of values in Vg. So for a single Rgroup g in
column j, the change in consecutive values of Vg can be encoded by a vector of
length q− 1, whose values are either 0 or 1. We call that vector vg. We therefore
define the function encode:Vg → vg such that vg[i]=Vg[i-1]-Vg[i]. Moreover, for
any fixed j, immediately after all the S values have been computed for the cells
in an Rgroup g, function encode(Vg) can be computed and stored in O(q) time,
and vg will then be available in the Rule d loop for all i smaller than the smallest
row in g. Note that for any fixed j, the time needed to compute all the encode
functions is just O(n).

Introducing Table R and the use of vg. We examine the action of the
Second Dynamic-Programming algorithm in the Rule d loop, for fixed j and
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fixed i < j − q. For an Rgroup g in column j, let k∗(i, g, j) be the index k in
Rgroup g such that S(i, k − 1) + S(k, j) is maximized, and let S∗(i, g, j) denote
the actual value S(i, k∗(i, g, j) − 1) + S(k∗(i, g, j), j).

Note that the Second Dynamic-Program can find k∗(i, g, j) and S∗(i, g, j)
during the execution of the Rule d loop, but would take O(q) time to do so.
However, by previously doing some preprocessing (to be described below) before
column j is reached, we will reduce the work in each Rgroup g to O(1) time.

To explain the idea, suppose that before column j is reached, we have pre-
computed a table R which is indexed by i, g, vg. Table R will have the property
that, for fixed j and i < j−q, a single lookup of R(i, g, vg)) will effectively return
k∗(i, g, j) for any g. Since k − 1 < j and k > i, both values S(i, k∗(i, g, j) − 1)
and S(k∗(i, g, j), j) are known when we are trying to evaluate S(i, j), so we can
find S(i, k∗(i, g, j) − 1) + S(k∗(i, g, j), j) in O(1) operations once k∗(i, g, vg) is
known.

Since there are O(j/q) Rgroups, it follows that for fixed j and i, by calling
table R once for each Rgroup, only O(j/q) work is needed in the Rule d loop.
Hence, for any fixed j, letting i vary over its complete range, the work will be
O(j2/q), and so the total work (over the entire algorithm) in the Rule d loop
will be O(n3/q). Note that as long as q < n, some work has been saved, and the
amount of saved work increases with increasing q. This use of the R table in the
Rule d loop is summarized as follows:

Dependent section using table R.
for g =�(j − 1)/q� to �(i + 1)/q� do

retrieve vg given g
retrieve k∗(i, g, j) from R(i, g, vg)
S(i,j)=max( S(i,j), S(i, k∗(i, g, j) − 1) + S(k∗(i, g, j), j) );

Of course, we still need to explain how R is precomputed.

5.2 Obtaining Table R

Before explaining exactly where and how table R is computed, consider the
action of the Second Dynamic-Programming algorithm in the Rule d loop, for
a fixed j. Let g be an Rgroup consisting of rows z − q + 1, z − q, ..., z, for some
z < j. A key observation is that if one knows the single value S(z, j) and the
entire vector vg, then one can determine all the values S(z− q +1, j)...S(z, j) or
Vg. Each such value is exactly S(z, j) plus a partial sum of the values in vg. In
more detail, for any k ∈ g, S(k, j) = S(z, j) +

∑p=z−k−1
p=0 vg[p]. Let decode(vg)

be a function that returns the vector V ′ where V ′[k]=
∑p=z−k−1

p=0 vg[p].
Next, observe that if one does not know any of the Vg in the rows of g (e.g.,

the values S(z − q + 1, j), S(z − 1, j)...S(z, j)), but does know all of vg, then,
for any fixed i below the lowest row in Rgroup g (i.e., row z-q+1), one can find
the value of index k in Rgroup g to maximize S(i, k − 1) + S(k, j). That value
of k is what we previously defined as k∗(i, g, j). To verify that k∗(i, g, j) can be



A Simple, Practical and Complete O( n3

log n
)-Time Algorithm 103

Fig. 1. Rgroups with q=3 Fig. 2. Cgroups

determined from vg, but without knowing any S values in column j, recall that
since k − 1 < j, S(i, k − 1) is already known. We call this Fact 1.

Precomputing the R table. We now describe the preprocessing that is needed
to compute table R.

Conceptually divide matrix for S into groups of columns of size q, i.e., the
same size groups that divide each column. Columns 1 through q − 1 are in a
group we call Cgroup 0, q through 2q − 1 are in Cgroup 1 etc, and we again use
g to index these groups.

Assume we run the Second Dynamic Program until j reaches q − 1. That
means that all the S(i, j) values have been completely and correctly computed
for all columns in Cgroup 0. At that point, we compute the following:

for each binary vector v of length q − 1 do
V ′=decode(v)
for each i such that i < q − 1 do

R(i, 0, v) is set to the index k in Rgroup 0 such that S(i,k-1) + V ′[k]
is maximized. {we let k∗ denote that optimal k }

The above details the preprocessing done after all the S values in Cgroup 0 have
been computed. In general, for Cgroup g > 0, we could do a similar preprocessing
after all the entries in columns of Cgroup g have been computed. That is, k∗(i,g,v)
could be found and stored in R(i,g,v) for all i < g ∗ q.

This describes the preprocessing that is done after the computation of the
S values in each Rgroup g. With that preprocessing, the table R is available
for use when computing S values in any column j > g × q. Note that the
preprocessing computations of table R are interleaved with the use of table R.
This is different than other applications of the Four-Russians technique that
we know of. Note also that the amount of preprocessing work increases with
increasing q. Several additional optimizations are possible, of which one, parallel
computation, is described in Section 5.5.

With this, the description of the Four-Russians speed up is complete. However,
as in most applications of the Four-Russians idea, q must be chosen carefully. If
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not chosen correctly, it would seem that the time needed for preprocessing would
be greater than any saving obtained later in the use of R. We will see in the next
section that by choosing q=log3(n) the overall time bound is O(n3/ log(n)).

5.3 Pseudo-code for RNA Folding Algorithm with Four Russians
SpeedUp

for j =2 to n do
[Independent] Calculations below don’t depend on the current column j
for i =1 to j − 1 do

S(i,j)=max( S(i+1,j-1)+B(i,j) , S(i,j-1)) (Rules a, b )
[Dependent] Calculations below depend on the current column j
for i =j − 1 to 1 do

for g =�(j − 1)/q� to �(i + 1)/q� do
if (i > k), k ∈ Rgroup g then {this statement runs at most
once, for the smallest g}

find k∗(i, g, j) by directly computing and comparing S(i,k-
1)+S(k,j) where k ∈ L={g ∗ q to i}4 |L| < q

else
retrieve vg given g
retrieve k∗(i, g, j) from R(i, g, vg)
S(i,j)=max( S(i,j), S(i, k∗(i, g, j) − 1) + S(k∗(i, g, j), j) );

if ((i − 1) mod q == 0), Compute vg for group g and store it
[Table] once Cgroup g = �j/q� is complete
for each binary vector v of length q − 1 do

V ′=decode(v)
for each i 1 to i < j − 1 do

R(i, g, v) is set to the index k in Rgroup g such that
S(i,k-1) + V ′[k] is maximized.

5.4 Correctness and Time Analysis

From Fact 1, it follows that when the algorithm is in the Rule d loop, for
some fixed j, and needs to use R to look up k∗(i, g, j) for some g, k∗(i, g, j) =
R(i, g, vg). It follows immediately, that the algorithm does correctly compute all
of the S values, and fills in the complete S table. A standard traceback can be
done to extract the optimal matching, in O(n) time if pointers were kept when
the S table built.

Time Analysis. The time analysis for any column j can be broken down into the
sum of the time analyzes for the [independent], [dependent], [table] sections.

For any column j the [independent] section of the speedup algorithm re-
mains unchanged from the original algorithm and is O(n) time. For each row
4 Reversing the order of evaluation in the algorithm for i, and k would eliminate

this overhead. Lowering the time for this operation from 0(q) to 0(1). However for
simplicity of exposition we leave those details out.
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i, the [dependent] section of the speedup algorithm is now broken down into
n/q calls to the table R. As discussed above, the total time to compute all the
encode functions is O(n) per column, and this is true for all decode functions as
well. Therefore in any column j, the dependent section takes 0(n2

q ) time. Also,
the processing of the one (possible) partial group in any column j only takes
O(n2q) time. The [table] section sets R(i,g,v) by computing every binary vector
v and then computing and storing the value k*(i,g,v). The variable i ranges from
1 to n and there are 2q−1 binary vectors. Hence the dependent section for any j
takes O(n ∗ 2q−1) time.

In summary, the total time for the algorithm is O(n2 ∗ q) + 0(n3

q ) +0(n2 ∗ 2q)
time.

Theorem 1. (Runtime) If 2 < b < n, then the algorithm runs in O(n3/ logb(n))
time.

Proof. Clearly, O(n2 logb(n) + n3

q ) = O(n3/ logb(n)).
To show that n2 × 2logb(n) = O(n3/ logb(n)) for 2 < b < n, we need to show that

2logb(n)=O(n/ logb(n)).

The relation holds iff

nlogb(2)=O(n/ logb(n)) iff
logb(n) × nz = O(n)

for z=logb(2). 0 < z < 1 since b > 2.
The above relation holds if

lim
n→∞

(nz∗logb(n))
n = 0

We simplify the above equation to lim
n→∞ logb(n)/(n1−z)

We find the limit by taking the derivative of top and bottom (L’ Hopital’s Rule)

lim
n→∞

logb(n)
(n1−z) = lim

n→∞
( 1

n ln(b) )

(1−z)n−z = lim
n→∞

1
n ln(b)∗(1−z)n−z =

lim
n→∞

1
(1−z) ln(b)n1−z = 0 since z < 1.

5.5 Parallel Computing

By exploiting the parallel nature of the computation for a specific column, one
can achieve a time bound of O(n2) with vector computing. The [Independent]
section computes max(S(i+1,j-1)+B(i,j), S(i,j-1)), and all three of the values are
available for all i simultaneously. So for each i we could compute the maximum in
parallel with an asymptotic run time of O(1) . The [Dependent] section encodes
the entire column into vectors of size q. This could be done in parallel, but
sequentially it is has 0(n) asymptotic run time.
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Table 1. Empirical Results

Size O(n3) Algorithm O(n3/ log(n)) Algorithm ratio

1000 3.20 1.43 2.23
2000 27.10 7.62 3.55
3000 95.49 26.90 3.55
4000 241.45 55.11 4.38
5000 470.16 97.55 4.82
6000 822.79 157.16 5.24

The encoding is used to reference the R table. For each i there are q entries
in the R table. The maximum for each i computed in parallel takes O(n +
q)=O(n) time to find. The [Tabling] section can also be done in parallel to find
k∗ for all possible v vectors in O(1) time, entering all 2q−1 values into table R
simultaneously. The entire algorithm then takes O(n2) time in parallel.

6 Generalized Scoring Schemes for B(i,j)

The Four Russians Speed-Up could be extended to any B(i,j) for which all possi-
ble differences between S(i,j) and S(i+1,j) do not depend on n. Let C denote the
size of the set of all possible differences. The condition that C doesn’t depend on
n allows one to incorporate not just pairing energy information but also energy
information that is dependent on the distance between matching pairs and types
of loops. In fact the tabling idea currently can be applied to any scoring scheme
as long as the marginal score (S(i − 1, j) − S(i, j))is not Ω(n). In this case, the
algorithm takes O(n ∗ (n ∗ Cq−1 + n2

q + n)) = O(n2Cq−1 + n3

q + n2) time. If we
let q = logb(n) with b > C, the asymptotic time is again 0(n3/log(n)). Based on
the proof of Theorem 1, the base of the log must be greater then C in order to
achieve the speed up. The scoring schemes in ([6,10]) have marginal scores that
are not dependent on n, so the speedup method can be applied in those cases.

6.1 Empirical Results

We compare our Four-Russians algorithm to the original O(n3)-time algorithm.
The empirical results shown below give the average time for 50 tests of randomly
generated RNA sequences and 10 downloaded sequences from genBank, for each
size between 1,000bp and 6,000bp. All times had a standard deviation of .01. The
purpose of these empirical results is to show that despite the additional overhead
required for the Four-Russians approach, it does provide a consistent practical
speed-up over the O(n3)-time method, and does not just yield a theoretical re-
sult. In order to make this point, we keep all conditions for the comparisons
the same, we emphasize the ratio of the running times rather than the absolute
times, and we do not incorporate any additional heuristic ideas or optimizations
that might be appropriate for one method but not the other. However, we are
aware that there are speedup ideas for RNA folding, which do not reduce the
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O(n3) bound, but provide significant practical speedups. Our empirical results
are not intended to compete with those results, or to provide a finished compet-
itive program, but to illustrate the practicality of the Four-Russians method, in
addition to its theoretical consequences. In future work, we will incorporate all
known heuristic speedups, along with the Four-Russians approach, in order to
obtain an RNA folding program which can be directly compared to all existing
methods.
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