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The Perfect Phylogeny Model 
for binary sequences
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Beyond Binary; beyond SNPs
  The binary perfect phylogeny model has been 

widely used in population genetics (four-
gametes), phylogenetics (compatibility); and 
many problems and methods build on the 
model (haplotyping, networks with 
recombination).  Infinite-Sites Model 

!
But, non-binary, non-SNP data is becoming 

more important in population genomics: CNVs, 
full DNA sequences, micro-sats; quantitative 
phenotyping; other applications in 
phylogenetics. Infinite-Alleles Model



A 3-state perfect phylogeny

32 1
3 1 1
3 2 3
23 2
12 3    

A   B     C

1

2
3

4
5

M
n = 5 number of taxa 
m = 3 number of sites 
k = 3 number of states

(3,2,1) 
(2,3,2)

(3,2,3)

(1,2,3)
(1,1,3)

(1,2,3)

(3,2,3)



A formal definition of a k-state 
unrooted perfect phylogeny

• Input consists of  n sequences M with m sites (characters) each, where 
each site can take one of k > 2 states (values). 

!
• T has n leaves, one for each sequence X in M, labeled by X. 
!
• Each node of T is labeled with an m-length sequence (not necessarily 

from M) where each site has a value from 1 to k. 
  
•  T must satisfy the convexity requirement. 
!
    This more reflects the infinite alleles model rather than the infinite sites 

model in binary perfect phylogeny. It also models Dollo parsimony.



Convexity requirement for T 

Arbitrarily choose a root of T and direct all the edges of T away from the 
root.  

!
Then, any character  can mutate into a given state at most once, but never 

mutate into its root state. 
 

This view makes a k-state perfect phylogeny a natural generalization of a binary 
perfect phylogeny.  

!
     The requirement that there is at most one mutation into any state of a character 

reflects the infinite alleles model in population genetics, and the Dollo parsimony 
model of evolutionary biology.
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Alternate view of the convexity 
requirement

!
  
• For each character-state pair (C,s), the nodes of T that are 

labeled with state s for character C form a connected subtree of 
T.  This is the convexity requirement. 

!
   



Convexity
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General K-state Perfect 
Phylogeny Problems (Gusfield, 

JCB 2010)

Existence Problem: 
Given M and k, is there a k-state Perfect Phylogeny for M? 
!
Missing Data (MD) Problem:  
For a given k, if there are cells in M without 
values, can values less than or equal to k be imputed 
so that the resulting matrix M’ has a k-state perfect phylogeny? 
!
Handling missing data extends the utility of the perfect- 
phylogeny model.

RE RECOMB 2009



Status of the Existence 
Problem

Poly-time algorithm for 3 states, Dress-Steel (1993) 
!
Poly-time algorithm for 3 or 4 states, Kannan-Warnow (1994) 
!
Poly-time algorithm for any fixed number of states - 
polynomial in n and m, but exponential in k, Agarwalla and 
Fernandez-Baca (1994) 
!
Speed up of the AFB method by Kannan-Warnow (1997) 
!
When k is not fixed, the existence problem is NP-hard



The missing data challenge

 The  general AFB,KW algorithms that solve the  
existence problem are not easily adapted to handle the 
missing data problem. They seem to extend only by brute-
force enumeration of imputed values. 
!
So, we need another approach to the missing data 
problem.



Prior work on the Missing Data 
problem

NP-complete even for k = 2; effective, practical 
approaches for k = 2.  (GFB in cocoon 2007; Satya, 
Mukherjee, TCBB 2008) 
!
Polynomial-time methods for a `directed’ variant of k = 2.  
Shamir et al. 
!
!
 specialized ILP methods for k = 3,4,5 (Newton 2007) 



New approach to existence 
and missing data problems

Based on an old theorem and newer techniques.

Old theorem: Buneman’s Theorem relating Perfect- 
Phylogeny to chordal graphs. (thirty-five years old) 
!
Newer techniques and theorems:  Minimal triangulations of a 
non-chordal graph to make it chordal. The literature on  
minimal triangulations is current and ongoing.



Definition: Chordal Graphs

 A graph G is called Chordal if every cycle of  
length four or  more contains a chord. Chordal graphs are 
also called triangulated graphs. 

G



Buneman’s Approach to 
Perfect Phylogeny (1974)
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Each row of table M induces a clique in G(M). 

Input M, n by m

Partition-
Intersection Graph 
G(M) has 
 one node for each 
character-state pair 
in M, and an edge 
between two nodes 
if and only if there 
is a row in M with 
both those 
character-state 
pairs.

G(M)

 C1  C2   C3
   C1         C2        C3

G(M) is the superposition of m cliques.



Definitions
If M has m characters, then G(M) is an m-partite graph.   
The nodes associated with a single 
character (class in the partition) are given a distinct color.  

An edge (u,v) not in G(M) is called legal 
if u and v do not have the same color. 



Buneman’s Theorem

There is a perfect phylogeny for M if and only if legal 
edges can be added to graph G(M) to make it chordal. 
!
If there is such a chordal graph, denote it G’(M). 

Theorem (Buneman 1974)

G’(M) is called a legal triangulation of G(M).



From a Chordal Graph to a 
Perfect Phylogeny

 Fact: Given a legal triangulation G’(M), a Perfect  
  Phylogeny for M can be constructed in linear time. 
!
The algorithms are based on `perfect elimination orders’  
and `clique trees’, classic objects in the chordal graph 
literature. 



Example
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Character-State pair



A legal triangulation
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Yields a Perfect Phylogeny

A: 0 0 2 
B: 0 1 0 
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1 2 3 
!
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(Fact: every clique-tree of the  
Chordal graph G’(M) is a perfect  
Phylogeny for M)



What about Missing Data?
If M is missing data, build the partition intersection graph  
G(M) using the known data in M.  Buneman’s theorem still 
 holds: 
!
Theorem: There is a perfect phylogeny for some imputation  
of missing data in M, if and only if there is a legal triangulation 
 of G(M). 

The legal triangulation gives a perfect phylogeny T for M 
with some imputed data, and then the imputed values for 
M’ can be obtained from T.



Example
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Example

A: 0 0 2 
B: 0 ? 0 
C: 1 1 1 
D: 1 2 2

1 2 3 

M

3,0 2,1 3,1

1,0 1,1

2,0 3,2 2,2

B C

A D

G(M)



The Key Problem

So the key problem, in both the 
Existence and the Missing Data problems, is  how 
to find a legal triangulation, if there is one.

But, there is a robust and still expanding literature on 
efficient algorithms to find a minimal triangulation of 
a non-chordal graph.  

Some triangulation problems are NP-hard (Tree-width, 
Minimizing the number of added edges).

The PI graph is conceptually perfect for modeling missing 
data.



Minimal triangulation

A triangulation of a non-chordal graph G is  
minimal if no subset of added edges is a triangulation 
of G.  
!
Clearly, if there is a legal triangulation G’(M) of G(M), 
then there is one that is a minimal triangulation. A 
minimal triangulation is good enough for us. 
!
So we can take advantage of the minimal triangulation 
technology, and the contemporary literature. The 
minimal vertex separators are the key objects.



Minimal vertex separators
A set of nodes S whose removal separates vertices 
u and v is called a u,v separator. S is a minimal u,v 
separator if no subset of S is a u,v separator.

S is a `minimal separator’ if it is a minimal u,v 
separator for some vertex pair u,v.

Minimal separator S crosses minimal separator S’, if 
S separates some pair of nodes in S’. 
!
Crossing is a symmetric relation for minimal separators.



Example
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S = {(2,1), (3,2)} and 
S’ =  {(1,0), (1,1)} 
are crossing minimal 
separators.
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Example
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S = {(2,1), (1,1)} and  
S’ = {(1,0), (3,2)} are 
non-crossing minimal separators.

S
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A lucky break:  
A complete characterization of 
the minimal triangulations of G 

was derived in 1997

Definition: Completing a minimal separator S means adding  
all the missing edges between pairs of nodes in S  
to make S a clique.



Capstone Theorem on Minimal 
Triangulations

Parra, Scheffler (1997): Every minimal triangulation 
 of G is obtained by completing each minimal separator in a 
maximal set of pairwise non-crossing minimal separators  
of G.  
!
Conversely, completing every minimal separator in 
a maximal set of pairwise non-crossing minimal separators 
yields a minimal triangulation of G.



Example:

A: 0 0 2 
B: 0 1 0 
C: 1 1 1 
D: 1 2 2

1 2 3 
!

M

3,0 2,1 3,1

1,0 1,1

2,0 3,2 2,2

B C

A D

G(M)

There are 
6 minimal 
separators.

There are two 
maximal sets 
of 5 pairwise 
non-crossing 
minimal 
separators.



A minimal (illegal) triangulation 
obeying the P,S Theorem
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B: 0 1 0 
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A legal minimal triangulation
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Back to Perfect Phylogeny
A minimal separator S in the partition intersection graph G(M) 
Is called legal if it does not use an edge between two nodes 
of the same color, and is called  illegal if it does.

P,S Theorem can be used to prove the Main New Results 
!
Theorem 1: 
There is a perfect phylogeny for M, even if M has missing 
data, 
If and only if there is a set Q of pairwise non-crossing, legal, 
minimal separators in G(M) that separate  every  
mono-chromatic pair of nodes in G(M).



The legal minimal 
triangulation, obeying 

Theorem 1

3,0 2,1 3,1

1,0 1,1

2,0 3,2 2,2

B C

A D

G’(M)

From G’(M), we get a perfect phylogeny for M.



Corollaries to Theorem 1
Cor 1: If there is a mono-chromatic pair of nodes in G(M) 
that is not separated by any legal minimal separator, then 
M has no perfect phylogeny.

Cor 2: If G(M) has no illegal minimal separators, then 
M has a perfect phylogeny. 
!
Cor 3: If every mono-chromatic pair of nodes is separated 
by some legal minimal separator, and no legal minimal 
separators cross, then M has a perfect phylogeny. 



 Recipe to solve the missing 
data problem with Theorem 1

Given M, find all legal minimal separators in G(M);  
for each legal minimal separator, determine which  
mono-chromatic pairs of nodes it separates, and which 
 legal minimal separators it crosses.  
!
Determine if any of the Corollaries hold. If so, either 

there is no perfect phylogeny (Cor. 1) or a set Q 
needed in Theorem 1 can be found greedily. 

!
If no Cor. holds, set up and solve a (straightforward) 

integer linear program to find  a set Q of pairwise 
non-crossing legal minimal separators that separate 
every mono-chromatic pair of nodes in G(M). 



If the ILP is feasible, greedily extend Q to be a maximal 
 set of pairwise non-crossing legal minimal separators,  
and use Q to get a legal triangulation G’(M) of G(M). 
!
From G’(M), construct a perfect phylogeny T, and from 
T impute values for the missing entries. 



Conceptually nice, but

Does it work in practice?



It works surprisingly 
(shockingly) well

Simulations with data from program ms,  
characteristic of many current applications in  
phylogenetics and population genetics - but not 
genomic scale or tree-of-life scale.



Surprising empirical results
The minimal separators are found quickly by existing 
algorithms from 1999:  cubic-time per minimal separator, 
but we have methods (not in the paper) to speed this up. 
!
When there is no missing data, all the legal minimal 
separators can be found in O(nm^2) worst-case time, 
for any fixed k. 
!
The observed number of minimal separators is small. 
There are few crossing pairs of legal minimal separators. 
!
Until a large percentage of missing data, most problems 
are solved by the Corollaries, without the need for an ILP. 
!
 



The ILPs  solve quickly in practice - all have 
solved in 0.00 CPLEX-reported seconds (CPLEX 11 on 
2.5 Ghz machine).  
!
Most solve in the CPLEX pre-processor. 

When an ILP is needed, it has been tiny. For the existence 
problem, the size of the ILP is polynomialy bounded. 
!





So
 Although the chordal graph approach may 

at first seem impractical, it works 
  on a large range of data of sizes that 
 are typical of current phylogenetic 

problems, and degree of missing data. 
!
 



When there is no missing data

All of the legal minimal separators can be found in O(nm^2) 
time for any fixed k.

Details - proper cluster; proper cluster induces a legal 
separator in the PI(M); can test in O(nm) time if a  
separator S is minimal - minimal if and only if there are two 
full connected components in G - S. 



More structure

The empirical results suggest the existence of 
more combinatorial structure in the perfect-
phylogeny problem.  And more has been 
recently found.  

(F. Lam) When k = 3, a NASC for the existence 
of a 3-state perfect-phylogeny is: 

    Every mono-chromatic pair of nodes in G(M) 
is separated by some legal minimal separator. 
(Compare to Theorem 1). 

This does not extend to k = 4.



Using this for 3-states

• The NASC implies a simple algorithm to 
decide if a 3-state problem has a PP, in 
time equal to existing algorithms. 

• But, constructing the PP in competitive 
time, using the chordal graph approach 
was a challenge. 

• Now solved in paper by Gysel, Lam, 
Gusfield. 



Removable data
 The CR Problem:  
Given data that does not have a k-state perfect phylogeny, 
what is the minimum number of characters to remove so 
that the remaining data does have a k-state perfect 
phylogeny? 
!
The MDCR Problem: 
When there is missing data and there is no solution to 
the MD problem, what is the minimum number of  
characters to remove to that the remaining data does 
have a solution to the MD problem? 
!



Generalizing the Four 
Gametes Condition

           Fumei Lam, Gusfield, Sridhar   
           (WABI 2009, SIAM Discrete Math 2011)
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When can binary data be 
derived on a perfect 



The Four Gametes Condition 
(compatibility, splits 

equivalence)

For binary data, there is a perfect 
phylogeny if and only if no pair of sites 
contains all four gametes, i.e., all four 
binary combinations 0,0; 0,1; 1,0; 1,1

Four Classic Gametes Theorem:



The Four Gametes theorem  has two parts: 
!
1) For binary data, there is a perfect phylogeny  
if and only if there is a perfect phylogeny for every 
pair of sites. 
!
2) A single pair of sites has a perfect phylogeny if and only 
if it does not have all four gametes.



So a generalization of the Four Gametes Theorem to 
more than two states could generalize either or both 
of these parts.

A generalization for the first part for three states 
was studied in 1975. But, Fitch showed examples with 
three states where there is a 3-state perfect phylogeny 
for every pair of sites, but there was no perfect 
phylogeny for the entire data. 
!
.



– The Fitch example was generalized by Meacham 
(1981) to show that for every r, there is an example 
where every subset of r-1 characters has an r-state 
perfect phylogeny, but the whole data does not. 

– The conclusions  drawn from these examples were 
too strong. 



Meacham (1981): ``The Fitch example shows  that any  
algorithm to determine whether a set of characters 
 is compatible must 
consider the set as a whole, and cannot take the 
shortcut of only checking pairs of characters.'' 

The second phrase is correct, but not the first one.



  We showed: 
!
There is a 3-state perfect phylogeny for given data 
if and only if there is a 3-state perfect phylogeny 
for each triple of sites. 
!
This generalizes the first part of the Four Gametes 
Theorem. 
!
The proof uses Buneman's Theorem 
 (discussed shortly) and very exacting case analysis.



Forbidden data patterns

The second part of the Four Gametes 
Theorem specifies when two sites have 

a 2-state perfect phylogeny.  
 How is that generalized to three sites 

for 3-state data?



The answer is that there are four forbidden patterns of 
data. Three sites will have a 3-state perfect phylogeny 
if and only if none of these four forbidden patterns of 
data appear in the three sites.



a b c     a b c    a b c      a b c 
0 0 2     0 0 2    0 0 2     0 1 0 
0 2 1     0 2 1    0 2 1     1 0 0 
1 0 0     1 0 0    1 0 0     2 0 1 
2 1 0     2 1 0    1 1 0     0 2 1 
2 1 1     1 1 1    1 1 1     1 2 2

Fitch's Example

The Four Forbidden Patterns (obstruction sets)



Habib and To (WABI 2011) 
!
For 4-states, there is an example 
where every four characters has 
a 4-state perfect phylogeny, but 
the full data does not.



!63

Shutters, Vakati, and Fernandez-Baca (WABI 2012)!
For every k, there is a k-state problem M with!
[rd(k/2) x ru(k/2)] + 1 columns, such that M does!
not have a k-state perfect phylogeny, but every!
proper subset of columns of M does have a!
k-state perfect phylogeny.!
rd = round down!
ru = round up!
for k = 3, need to look at all subsets of size 3.!
for k = 4, need to look at all subsets of size 5.!
In general, need to look at all subsets of size!
q, where q grows quadratically with k.



 
(Gysel,Gusfield – ISBRA 2010)

!
The CR problem can be formulated as an ILP 
using the chordal-graph view. It also solves the MDCR 
problem. 
!
Preprocessing ideas can reduce the time needed to find 
all of the minimal separators. Time reduced to 1/3 to 1/2 
of the original times. 
!



Solving CR and MDCR by 
the chordal graph approach

In this solution we see the utility of using 
illegal minimal separators.



Main Theorem

The CR and MDCR problems are solved by 
finding a minimal triangulation, which may be 
illegal, maximizing the number of legal 
characters it contains. 
!
It is easy to cast this as an ILP, again using 
the PS algorithm to ensure a minimal triangulation, 
and then adding in additional constraints to 
implement the theorem.



Empirical results for CR and 
MDCR

Good enough or I wouldn't be talking about it. 
!
Details are in the paper.



Other results

• The 3-state perfect phylogeny existence 
problem reduces to 2-SAT, in competitive 
time. (Gusfield, Wu 2010) 

• The k-state problems reduce to 2-state 
problem with missing data, in poly-time. 
Then existing 2-state approaches can 
then be used to solve the problems. 
(Stevens, Gusfield (WABI 2010)



One more

• MD and Removable data problems when 
the data satisfies the ``Rich Data 
Hypothesis” and generalizations of it. 

• Poly-time algorithms are given (Stevens,



Dress-Steel solution for 3-state 
Perfect phylogeny(1991)

• Recode each site M(i) of M as three binary sites M’(i,
1), M’(i,2), M’(i,3) each indicating the taxa that have 
state 1, 2, or 3, respectively.  

• Theorem (DS):  
   There is a 3-state perfect phylogeny for M, if and only 

if there is a subset S of pairwise compatible columns, 
such that S contains at least two of the columns 

    M’(i,1), M’(i,2), M’(i,3), for each column i of M. 
   



Example

1

2

3

4

M’

3 2 1
3 1 1
3 2 3
2 3 2
1 2 3    

A    B    C

1

2
3

4
5

M

100010001
100001001
100010100
010100010
001010100

5

A,1  A,2  A,3  B,1  B,2  B,3  C,1 C,2  C,3

Compatible subset



Solving by 2-SAT

Dress and Steel gave a polytime algorithm to find S, 
If it exists, but the problem of finding S can be naturally 
cast as an instance of 2-SAT. 
!
Create a binary variable for each column of M’: 
Variables X(i,1), X(i,2), X(i,3) for the three columns in  
M’ that originate from column i in M.



1

2

3

4

M’

3 2 1
3 1 1
3 2 3
2 3 2
1 2 3    

A    B    C

1

2
3

4
5

M

100010001
100001001
100010100
010100010
001010100

5

A,1  A,2  A,3  B,1  B,2  B,3  C,1 C,2  C,3

X(1,1) X(1,2) X(1,3) X(2,1)X(2,2) X(2,3)X(3,1)X(3,2)X(3,3)

Binary variables



2-SAT
For every pair of incompatible columns (i,j), (i’,j’) in M’, 
!
Create the clause (not X(i,j) v not X(i’,j’)) to assure that 
the columns in S are pairwise compatible. 
!
For every column I in M, create the three clauses: 
(X(i,1) v X(i,2)) 
(X(i,2) v X(i,3)) 
(X(i,1) v X(i,3))   
to assure that S contains at least  
two of the three columns in M’ that originate from  
Column i in M. 
!


