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Abstract

Pedigree analysis is a central component of many current efforts to
locate genes that contribute to diseases or to valuable traits. The analysis
usually involves solving one of two very computation-intense problems.
We analyze the complexity of these two problems. Surprisingly, we show
that both problems are NP-hard even for pedigrees that contain no in-
breeding loops.

1 Introduction

“Rigorous analysis of human pedigree data is a vital concern in genetic epi-
demiology, human gene mapping, and genetic counseling” [1]. The key element
of most of these analyses is the calculation or estimate of certain probabilities,
or pedigree likelihoods. There are several methods and extensively used com-
puter packages that compute these likelihoods for pedigrees of restricted forms
[3, 4, 7]. However, no worst-case efficient method for computing the likelihoods
in general pedigrees is known. “Evaluation of pedigree likelithoods remains a
subject sorely in need of further theoretical improvement. Linkage calculations
alone are among the most demanding computational tasks in modern biology”
[1], often consuming months of computation in practice [2]. Linkage and pedi-
gree analysis is almost always the key first step in positional cloning, a very
successful approach to finding the location of genes contributing to certain dis-
eases, or to favorable traits of economic importance in agriculture. There is an
enormous literature on biological studies where linkage and pedigree analysis is
a critical element.

At the heart of most pedigree/linkage analyses is the computation of the
probability (and hence likelihood) of the observed data, given that some data
in the pedigree is missing. Alternatively, the computation must find values for
the missing data to maximize the probability of the entire data. In linkage
analysis, in addition to missing data there is also the complication of genetic
recombination, so that the probability computations must be done repeatedly
at the inner loop of the linkage analysis.



Surprisingly, given the extreme importance of the calculations involved in
pedigree and linkage analysis, the large literature on computing and using them,
and the long computation times encountered in practice, the basic question of
whether their calculation 1s an NP-hard problem has not been addressed in
the literature. In this paper we establish that even a small deviation from the
special cases where efficient computation is known to be possible, leads to an
NP-hard problem.

This basic result can be extended to establish NP-hardness of certain approx-
imations, and to a variety of different questions concerning pedigree analysis.
We also note, however, that certain efficient approximations are possible. These
additional results will be detailed in a more complete version of this paper.

2 Introduction to pedigrees and genetic models

Definition 1 A pedigree is a directed acyclic graph G = (V, E) where the in-
degree of every vertex is either 0 or 2 and whose corresponding marriage graph
(to be defined shortly) is bipartite.

Definition 2 Given a directed graph G = (V, E), the marriage graph of G is
M = (V,E'), where E' = {(v,w) : v,w € V and there exist z s.t. (v,z), (w,z) €

The intended meaning of a pedigree graph is that a node in a pedigree rep-
resents an individual in a population, and an arc from node v to node w means
that individual v is a parent of w. The indegree constraint reflects the stan-
dard convention in pedigree analysis that either both parents of an individual or
none belong to a pedigree. In the later case, the individual is called a founder.
The pedigree graph must be acyclic because no individual can be an ancestor
of himself. In the context of a pedigree, when two individuals “mate” or are
“mates” | they share an offspring in the pedigree.

The marriage graph is the undirected graph where the nodes represent the
same individuals as in the pedigree, but there is an undirected edge between
two individuals if and only if they mate. Clearly, a marriage graph must be
bipartite to comply with gender distinction. Given a digraph, it’s easy to check
whether it is a valid pedigree, testing the defining properties with well known
algorithms.

Even though a pedigree is acyclic, the associated undirected graph may
have cycles, that are called loops in the pedigree literature. Two kinds of loops
are distinguished: when two individuals sharing a common ancestor mate, the
loop is an wnbreeding loop, otherwise it is a marriage loop. Marriage loops
are natural in real pedigrees, occurring whenever two siblings and both parents
are in the pedigree. Inbreeding in pedigrees is more common in some species
than in others. It is relatively uncommon, but definitely a possibility, in human
pedigrees, while very common in many domestically bred animals.

The occurrence of inbreeding loops is commonly perceived by practition-
ers as the main source of computational difficulty in pedigree analysis, even



though the only known polynomial-time algorithms for those computations as-
sume pedigrees containing no marriage or inbreeding loops. In this paper, we
provide an explanation for this, countering the common perception. We show
that the central computational tasks in pedigree analysis are NP-hard even when
there are no inbreeding loops, as long as marriage loops are permitted.

In addition to the graph (pedigree), a full problem instance associates two
types of random variables to each node. These types are genotypic and/or phe-
notypic. For some of the nodes, the value of these random variables are given
as input, and are assumed correct, and for others the values are completely
unknown. The fundamental problems in pedigree analysis arise from these un-
known or missing data.

A genotypic random variable is a vector of pairs of states called alleles and
is a model for the information carried by the DNA. The positions of the vector
are called loci. A phenotypic random variable is related to an observable feature
of an organism and is the result of the interaction between the genotype and
the environment. The separation between phenotype and genotype is important
when the genotype must be inferred from the phenotype (which has typically
been the case until recently).

Finally, we need to specify the model for the joint distribution of these ran-
dom variables. In pedigree analysis, it is often assumed that the phenotype of
an individual casually depends only on its genotype, which in its turn depends
only on the genotype of its parents. These casual independence assumptions
result in a precise statement about the joint probability distribution of all the
random variables associated with a pedigree. Let P(g;) be the probability dis-
tribution of the genotype of founder i, let P(gi|g;(i), 9m(i)) be the conditional
probability of the genotype of non-founder i given the genotype of its father and
mother (f(7) and g(7) respectively), and finally let P(y;|g;) be the probability
of the phenotype of individual ¢ given its genotype. In genetics jargon, these
are known as prior, transmission and penetrance probability respectively.

Then the joint probability distribution of all the genotypes, GG, and pheno-
types Y is just the product of the three above terms, that is

P(G)Y) = H P(g:) P (yilg:) H P(gilgsy, 9me)) P(yilg:)

founder i non founder i

The pedigree, along with the prior, transmission and penetrance probabilities
form the input to an instance of a pedigree analysis problem. However, for the
input to represent a meaningful genetic model, it is necessary to specify further
constraints on the probability distributions. The prior distribution can be any
discrete distribution. But the transmission distribution must reflect genetic
reality, which is most often described by simple Mendelian genetics (parts of
which are detailed later in the paper).

The model specified above is a special case of a family of statistical models
known as Bayesian networks. In the general case of Bayesian networks, general
directed, acyclic graphs and unrestricted probability distributions are allowed.
It is known in the Bayesian network literature that computing certain probabil-
ities over such models is NP-hard [6, 5]. However, these proofs use graphs and



transmission models that are totally unrealistic as a genetic model, so they do
not imply the hardness of the equivalent problems when restricted to pedigrees
and genetically sound transmission models.

3 The fundamental computational problems in
pedigree analysis

The following two problems are at the heart of most problems in pedigree anal-
ysis, and their solution is often in the inner loop of pedigree analysis algorithms.

Problem 3 Marginal-probability: Given a pedigree and, for every node,
its prior distribution or transmission distribution (whichever appropriate) and
penetrance distribution and given values for a subset G’ of the genotype G and
a subset Y' of the phenotype Y, compute P(G')Y') = ZG\G,X\Y, P(G,Y).

This amounts to taking into account all possible explanations of the data,
that is all values of G and Y compatible with G’ and Y. Of course, this is only
an issue when either G’ is a strict subset of G, or Y’ is a strict subset of Y.
Sometimes it is necessary to single out only one such explanation, the one with
the highest likelihood. This leads to a second

Problem 4 Maximum-likelihood: Given a pedigree and, for every node, its
prior distribution or transmission distribution (whichever appropriate) and pen-
etrance distribution and given values for a subset G' of the genotype G and a
subset Y' of the phenotype Y, compute maxg\a y\y' P(G,Y).

4 NP-hardness results for the marginal and maximum-
likelihood problems on pedigrees

We assess the complexity status of the two problems above by restricting to
special cases. The NP-hardness of these special cases implies the NP-hardness
of the general problems. We study a single locus, where each of the two “copies”
can take on at most two possible states (alleles). Furthermore, we assume that
the trait of interest is codominant and fully penetrant. What this means is that
the phenotype is in a deterministic, one to one relation with the genotype, and
hence each of the three combinations of alleles specifies a different phenotype.
Therefore, we will remove any reference to phenotype and deal directly with the
genotype. We consider only a single random variable for each individual, which
can take on one of three values denoted 00, 11, and 01, for concreteness. As
transmission distribution of alleles between parents and offspring, we assume
standard Mendelian probabilities without mutation. That is, if the parent’s
genotype is 00 or 11, it passes on 0 or 1, respectively, with certainty; and if the
parent is 01, it passes on 0 or 1, respectively, with probability 1/2. Finally, we
assume a uniform distribution of the genotypes of the founders, meaning that



P(g; = 00) = P(g; =01) = P(g; = 11) = 1/3, and all founders are independent.
In the construction, we will not use any inbreeding loops.

The particular restrictions we assume do not limit the relevance of the re-
sult, but rather expand it. The NP-hardness result is established with a model
that reflects the most basic, and simplest biological case. Any other realistic
biological model is almost certain to contain this one as a special case, hence the
results proved here establish that marginal and maximum-likelihood problems
are NP-hard in those models as well.

4.1 The maximum-likelihood problem
In the next sections we prove the following theorem:

Theorem 5 The mazimum-likelthood problem is NP-hard.

4.1.1 The reduction

We define a reduction from 3SAT with at most three occurrences per variable,
that is for every instance ¥ of problem 3SAT we define an instance of the
maximum-likelihood problem, MaxL(X), such that it is satisfiable if and only if
the probability of a solution for MaxL(X) is larger than a given threshold.

We can assume that every variable appears both positive and negated (oth-
erwise it can be easily eliminated together with all the clauses containing it).
From the 3SAT instance, we construct a pedigree in polynomial time, as follows.
For every variable z in X, the set of founders includes four individuals, z, z’, z
and z’. In order to ensure that the marriage graph is bipartite, we arbitrarily
assume that individuals corresponding to negated variables are male whereas
the ones corresponding to positive variables are female. Individual z mates z
and ' k + 1 times each, where k£ = 5 (but we will need larger & for other proofs
later on, so we describe the construction for any k). Among the offspring, k£ have
genotype 11, and one has genotype 10. Similarly, individual ' mates z and z’
k + 1 times each, with the same distribution of offspring genotypes (Figure 1).
We call the sub-pedigree just described the “variable gadget”.

In addition to variable gadgets, we construct one “clause gadget” for each
clause in X. The construction of these gadgets depends on whether the clause
contains two or three literals and on whether all literals are either all positive
or all negated or mixed. For each clause with two literals /1, [, one positive and
one negated, the individuals denoted by l1,l5 and those denoted by i, 1, mate
once and their offspring mate once giving birth to an individual whose genotype
is 00 (Figure 2).

For a clause C' with three literals l1,[5,l3 we need to distinguish two cases.
If the literals are not all positive or all negated, let us assume they are ordered
so that {; and ls are not both positive or negated and the same is true of /5 and
I3, 11 and I}, I}, and ;. Then, in the clause gadget for that clause, {; mates l5
and ! mates l;,. Their offspring, C; and Cq, mate I3 and [ respectively, issuing
two more offspring, C's and C4. These mate in turn and their offspring, C5, has
genotype 00 (Figure 3).
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Figure 1: The variable gadget for variable z

If a clause has only positive or only negated literals, then the above construc-
tions would mate two individuals corresponding to positive or negative literals.
Under our interpretation of positive literals as females and negated literals as
males, this would mate two individuals of the same gender and hence make it
less clear whether the marriage graph of MaxL(X) is bipartite. We can fix this
with the following simple modification. We introduce a new founder with geno-
type 11, with the opposite gender of [y and we mate it with /;. We declare the
offspring to have the opposite gender of ;. We then use this offspring in place
of {1 in the above construction.

Let ¢ be the number of clauses and v the number of variables in MaxL(X).
The correctness of the reduction rests on the following:

Lemma 6 X is satisfiable iff the optimum for MazL(X) is larger than

1 1

4.1.2 The proof

The proof is implied by two lemmas proved in this section.
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Figure 2: The clause gadget for clause C' =115
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Figure 3: The clause gadget for clause C' = 1153

Lemma 7 If there exists a satisfying assignment for ¥ then there is a setting
of the genotypes for the pedigree MazL (%) whose probability is greater or equal
than the bound in Lemma 6.

Proof: If z is true in the satisfying assignment then set individuals z and =z’
to 10, and set z and z’ to 11. If x is false, then set z and z’ to 11, and set
z and Z’ to 10. Then set every unknown non-founder genotype to 10, unless
both parents have genotype 11; in that case, obviously, set it to 11. Simple
calculations show that these genotypes have the required probability. [ |

This establishes one direction of Lemma 6. In order to establish the other
direction, we need to first introduce some additional concepts and terminology.

First observe, from the variable gadget, that none of the founders can be
a 00 (or, equivalently, such a genotype occurs with probability 0), nor can a
variable and its negation both be 11. It follows that in a single variable gadget,
the are only three ways to set the genotypes of the four individuals to yield a
non-zero probability: either set all the individuals to 10, or set three to 10 and
one to 11, or set two to 10 and two to 11. Moreover, in the later case, it must
be that both z and #’ are 10, or that both are 11. We call the first two settings
of a single variable gadget inconsistent and the third setting consistent. Any
setting of the genotypes in the entire pedigree is said to be consistent if and



only if the setting of each variable gadget is consistent.

A choice of genotypes for all individuals is satisfying if and only if for each
clause €| in the associated clause gadget at least two founders have genotype
10, one on the maternal side of individual Cj5 for two-literal clauses or C5 for
three-literal clauses (see Figures 2 and 3), and one on the paternal side. We
observe that consistent satisfying genotypes of MaxL(X) are in a one-to-one
correspondence with satisfying assignments of 3. Moreover, a non-satisfying
genotype has zero probability because either all the maternal or all the paternal
ancestors of C3 (Cs for three-literal clauses) would be 11, making it impossible

for C'5 to be 00.

Lemma 8 If there is a setting of the genotypes for pedigree MazL(X) whose
probability s greater or equal to the bound in Lemma 6, then there exists a
satisfying assignment for X.

Proof:

All non-satisfying settings of the genotype yield a probability of zero, so the
assumed setting of genotypes for MaxL(X) must be a satisfying setting. As
observed, any consistent, satisfying setting of the genotypes specifies a way to
set the variables to satisfy . Thus it is enough to show that no inconsistent
setting of the genotypes can satisfy the probability bound given in Lemma 6.

Suppose h of the variable gadgets are set inconsistently. Then the trans-
mission probability of one of these gadgets is at most Zekﬁ The transmission
probability of each consistent variable gadgets is 24,:% There are at most 3h
clauses containing variables whose gadgets where set inconsistently. The trans-
mission probability of these clause gadgets is at most 1. For other clauses, the
transmission probability is at most 1/8. The founders probability is the same
as above. Putting the product together:

1 1 1 1
P(G) < 34v 9(6k+4)h 9(4k+4)(v—h) 93(c—3h) (1)
This is less than the required bound whenever k& > 5. ]
We have therefore established both sides of Lemma 6 and have shown that
the maximume-likelihood problem in NP-hard.

4.2 The marginal-probability problem
Theorem 9 The marginal-probability Problem 1s NP-hard

The reduction is similar, but with a different choice of k. The key observation 1is
that if the given formula of X is not satisfiable, then every satisfying genotype
must be inconsistent, and we can make the probability of inconsistent assign-
ments very small by increasing k. Conversely, if ¥ is satisfiable than there is
a consistent satisfying genotype with a relatively large probability. The only
technical detail is to choose k large enough so that the sum of the probabili-
ties of all inconsistent genotypes is less than the probability of one satisfying,



consistent genotype. As stated above, the probability of a satisfying, consistent

genotype is larger than
1 1

34v 94(k+1)v+3c (2)
There are at most 25¢t%¥ inconsistent non-zero-probability genotypes, whose
probability is at most (see Equation 1)

1 1 1 1
34v 9(6k+4)h 9(4k+4)(v—h) 93(c—3h)

where h is, again, the number of variables whose variable gadget is set to be
inconsistent. The product of the latter two quantities is smaller than (2) for
k>9/2+ % and, since there is at least one “inconsistent” variable in every
inconsistent genotype, this is true for k > 9/2 + 3¢ + 2v.

5 Discussion

We have established that the fundamental computational problems in pedigree
analysis are NP-hard. Moreover, this is true even in pedigrees that do not
contain inbreeding loops. While hardness results are standard in the computer-
science, such results are quite new in the field of pedigree analysis and com-
putational genetics. As these areas grow in importance, and of interest to an
expanding group of computational scientists, we believe it is very helpful to
map out what central problems are likely to lack efficient (worst-case) deter-
ministic solutions. Knowing that the problem is NP-hard should not lead to its
abandonment, but should focus or justify alternative efforts to obtain practical
solutions.

To some, it is “intuitive” (and therefore, not in need of rigorous analysis)
that the problems discussed here could not have an efficient (worst-case, de-
terministic) solution, because there are an exponential number of terms, as a
function of pedigree size, in the definition of the likelihood. That is, there are
an exponential number of legal ways that the incomplete data can be specified.
More simply, there is an exponential number of paths describing the way a gene
can flow to an individual from one of its ancestors. However, the argument that
efficient computation is not possible when the solution-space grows exponen-
tially with the pedigree size, cannot be relied on, as there are counter-examples
to that “intuition” in pedigree analysis (and combinatorics generally).

For example, when a pedigree has inbreeding loops, it is possible for an
individual to obtain both copies of some gene from one single ancestor in the
pedigree. When this happens, the allele at that locus is said to be identical by
descent. The probability, under the Mendelian transmission model, that a given
allele is identical by descent for an individual is called the inbreeding coefficient
for that individual. Computing the inbreeding coefficients is a basic task needed
in some pedigree analyses. Methods for calculating the inbreeding coefficient
described in the biological literature typically follow the definition and involve
enumerating all node-disjoint pairs of paths from an ancestor to an individual.



That set of paths can grow exponentially with the size of the pedigree, and lead
to the intuition that the inbreeding coefficient cannot be computed efficiently.
However, the inbreeding coefficient can be computed in worst-case polynomial
time via dynamic programming recurrences [8;, 1, 9]. Hence, intuition alone
cannot be relied on, and it is worth rigorously establishing which pedigree com-
putation problems can be solved efficiently and which are NP-hard.
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