
Integer Linear Programming in Computational
Biology

Dan Gusfield

CIE, Turku Finland, June 15, 16, 2017

This tutorial is adapted from the draft of the book Integer Linear
Programming in Computational Biology: An entry-level course for
biologists (and other friends), to be published by Cambridge Press,
2018

Part I. Introduction to Integer Linear Programming

Why Integer Programming?

Integer (Linear) Programming, abbreviated “ILP”, is a versatile
modeling and optimization technique.

Increasingly used in computational biology in non-traditional ways.

Often very effective in solving instances of hard biological problems.

Moreover, even for a problem where a worst-case efficient general
algorithm might be possible, the time and effort needed to find it,
and the time and effort needed to implement it as a computer
program, are typically much greater than the time and effort
needed to formulate and implement an ILP solution to the problem.

Why ILP?

Highly engineered, commercial ILP solvers are available (now free
to academics and researchers) to solve ILP formulations.

The improvement of the best solvers has been spectacular, with an
estimate that (combined with faster computers) benchmark ILP
problems can now be solved 200-billion times faster than
twenty-five years ago.

Exploiting ILP, some biological problems of importance can be
modeled in a way that allows a solution in seconds on a laptop,
while more common models require days, weeks or months of
computation on large clusters.

Skills

In addition to demonstrating the power of integer linear
programming to model and solve certain computational problems
in biology, this tutorial develops skills for four tasks:

A) The task of developing the solution idea or solution logic for a
particular biological problem.

B) The task of creating an abstract ILP formulation for a
biological problem, translating the logic developed in Task A) into
integer linear inequalities, and a linear objective function.

C) The task of writing a computer program that takes in the
details of an instance of a biological problem, and creates the
concrete ILP formulation specifying the linear inequalities
(described in abstract through task B) that are used to solve the
problem instance.

D) The task of using an ILP solver to find the optimal solution for
the concrete formulation (created through task C).

Why learn from me?

A Fly-Over Introduction to Integer Linear Programming

First: Linear Programming (LP) and its use. Three parts:

A) The concrete formulation of a Linear Program (or model),
given all the data required to specify a specific problem instance.

B) The solution of a concrete formulation.

C) The abstract formulation of a Linear Program.

A concrete, chemical production problem

A lab makes and sells two kinds of chemicals, A and B, and has
two lab assistants.

One gram of chemical A requires 3 hours of work by Assistant 1,
and another 6 hours of work by Assistant 2.

Similarly, one gram of chemical B requires 4 hours of work from
Assistant 1, and another 2 hours of work from Assistant 2.

Chemical A can be sold for $12 per gram, and chemical B can be
sold for $7 per gram. Suppose that at least 1.3 grams of chemical
B must be made (due to some prior commitment), but any
amount of chemical A is allowed.

How much of A and B should be produced, and how?

More generally, what method can be used to answer this question?

Answer: Linear Programming

Creating an LP formulation for the problem instance

We begin by creating linear programming variables. An LP variable
can take on a numerical value.

The LP variables express the unknown values that we ultimately
want to determine: variable XA denotes the amount of chemical A
to be made; and variable XB denotes the amount of chemical B to
be made. The value given to an LP variable must be non-negative.

The next step is to develop linear constraints, which are either
inequalities or equalities. The inequalities and equalities express
the values that are permitted to be assigned to the variables.

Linear functions and LP constraints

A linear function of a set of variables is formed by multiplying each
variable by a specific coefficient (or constant) and adding together
the resulting terms. For example,

3XA + 4XB

is a linear function of XA and XB , with coefficients 3 and 4,
respectively.

A linear equality: 3XA + 4XB = 17.

A linear inequality: 6XA + 2XB ≤ 17

Constraints

In the chemical production problem, the two main constraints
come from the amounts of time that the two assistants have
available to work. These are specified as:

3XA + 4XB ≤ 13 (1)

6XA + 2XB ≤ 17 (2)

We also need inequalities to express constraints on the amounts of
each chemical to be made:
XA ≥ 0

XB ≥ 1.3

Feasible Solutions

Given the inequalities in the formulation, some combinations of
values for variables XA and XB are feasible (possible), and some
are infeasible (impossible).

Any assignment of values to the variables that satisfies all of the
constraints is called a feasible solution.

The Objective function

The dollar value of what is produced is expressed by the linear
function

12XA + 7XB

The goal is to maximize the value of what is produced, and that is
expressed in the following Linear Objective Function:

Maximize 12XA + 7XB (3)

Summarizing

The full concrete LP formulation for the problem instance is:

Maximize 12XA + 7XB

subject to the constraints:

3XA + 4XB ≤ 13

6XA + 2XB ≤ 17

XA ≥ 0

XB ≥ 1.3

Concrete formulations

A concrete LP formulation has all the information required to allow
a solution to a specific problem instance. The formulation can then
be input to an LP-solver.

In our concrete LP formulation, an optimal solution has value
$46.5, which is achieved by: XA = 1.44444, and XB = 4.166667.

LP-Solvers

LP-algorithms (e.g. simplex method, interior point method).

When the details of an LP-algorithm are written into an executable
computer program, the program is called an LP-Solver.

An LP-Solver takes in a concrete LP formulation (in some, usually
user-unfriendly rigid format), and returns the value of the optimal
solution, together with values assigned to the LP variables in the
solution.

Solvers I have used:
Gurobi Optimization
IBM Cplex
GLPK

Integer Linear Programming (ILP)

Linear Programming allows the LP variables to be given fractional,
i.e. non-integer, values. Integer Linear Programming (ILP, MILP)
simply refines Linear Programming by requiring that (some of) the
variables in a formulation only be given integer values.

The optimal solution to an LP formulation (removing the
integrality requirements) will be no worse, and is often strictly
better, than the integer optimal solution.

An ILP formulation where the variables are further constrained to
only take on values of zero or one, is called a binary formulation.

ILP-Solvers

All of the LP-solvers discussed earlier, Gurobi, Cplex, GLPK, are
also ILP-solvers. SCIP is another ILP solver.

At the high level, the algorithms that ILP-solvers use to find an
integer optimal solution are quite different from the algorithms
used to solve LP formulations. But ILP methods usually require
creating and solving many concrete LP formulations.

General problem statements and abstract ILP formulations

Concrete ILP formulations completely specify a problem instance
and (suitably formatted) can be input to an LP or ILP-solver.

In contrast, when we describe a problem in general terms, and
demonstrate how the problem can be solved by Integer
Programming, we are describing an “abstract” ILP formulation.

The abstract formulation must be precise enough that when a full
concrete problem instance is specified, the abstract ILP
formulation can be converted into a concrete ILP formulation for
the problem instance.

It’s Not Computational Biology, yet

The chemical production problem provided a simple introduction to
the definition and use of linear inequalities to express, and allow to
be solved, an (integer) linear program for a simple problem. This
example is typical of the traditional use of LP and ILP, where the
originating problem (chemical production in our example) is already
implicitly defined in terms of linear inequalities. Formulating the
LP or ILP just makes the implicit inequalities explicit.

But as we will see, the problems that arise in computational
biology rarely are originally defined (even implicitly) in terms of
linear inequalities. We have to reduce, sometimes in a very
unnatural way, the computational biology problem to one involving
linear inequalities. That is one of the keys to understanding how
ILP in computational biology differs from traditional ILP.

Expressibility of ILP formulations

Linear vs. Non-Linear reality (Physicists and Bananas?)
A physicist’s reality: “Linear is to Non-linear as a banana is to
everything else in the universe”. But
A computer scientists reality: Every problem in NP reduces in
polytime (and space) to an ILP problem.

The problem of solving an ILP is NP-hard, so any
problem in NP can provably and efficiently be expressed
by a compact ILP formulation. (This is the good side of
NP-hardness.)

Most problems in NP don’t look “linear”, but can be formulated
and solved by ILP. Its a very big banana.

Part II. Biological Networks and High-Density Subgraphs

A few examples

Food webs and networks

Metabolic networks,

Gene interaction or gene influence networks and graphs
Protein-Protein interaction networks

Brain pathway graphs - connectome

Biologically-Informative Features of Graphs and Networks

Simple features: Hubs, Cuts, Paths, Distances

High-density subgraphs: A non-trivial feature

A more complex feature of biological graphs that is thought to
have significant biological importance is the variation in density in
the graph, and the existence of high-density subgraphs.

Subgraphs and Density

Graph H has n nodes. The density of H, is the number of edges in
H divided by n(n − 1)/2, a number between 0 and 1.

A high-density subgraph H ′ of H is a subgraph of H, where the
density of graph H ′ is above some large, fixed threshold, say 0.8.

A clique in graph H = (V ,E) consists of a subset V ′ of V
(possibly all of V) where for every pair of nodes (u, v) in V ′, edge
(u, v) is in E . The density of a clique is 1.

The Maximum Clique Problem: Our First ILP Formulation

Problem: Given an undirected graph G , find a maximum-size
clique K in G .

Task A - The logic) If K is a clique, it is required that if a node i is
chosen to be in K , and a node j is chosen to be in K , then (i , j)
must be an edge in G .

That is equivalent to saying that if (i , j) is not an edge in G , then
we cannot choose both i and j to be in K . That is the logic that
we will implement as linear inequalities.

The ILP variables and inequalities

The variables
One binary variable, C (i), for each node i of G .

Variable C (i) indicates whether or not node i will be included in a
set called K ∗. If C (i) is set to 1 in the optimal ILP solution, we
will put node i into K ∗; and if C (i) is set to 0, we will not. K ∗ will
be a maximum-sized clique in G .

The inequalities
For each pair of nodes (i , j) in G , we create the following inequality
if (and only if) there is no edge in G between nodes i and j .

C (i) + C (j) ≤ 1 (4)

The objective function

We use the objective function:

Maximize
i=n∑

i=1

C (i)

The objective function, along with the inequalities specified in (4),
ensures that an optimal ILP solution will specify a maximum-size
clique in G . Hence K ∗ will be one.

A concrete problem instance

5 3

4

2

1

Figure : graph for max-clique ILP

The concrete ILP

The edges that are not in G are (1, 4), (2, 3), (2, 5) and (4, 5), the
concrete ILP formulation for this instance of the maximum clique
problem is:

Maximize C (1) + C (2) + C (3) + C (4) + C (5)

Subject to

C (1) + C (4) ≤ 1

C (2) + C (3) ≤ 1

C (2) + C (5) ≤ 1

C (4) + C (5) ≤ 1

(5)

where all variables are binary.

Formatting for Gurobi
Input that could be given to Gurobi for this small example is:

Maximize C(1) + C(2) + C(3) + C(4) + C(5)

subject to

C(1) + C(4) <= 1

C(1) + C(4) <= 1

C(2) + C(3) <= 1

C(2) + C(5) <= 1

C(4) + C(5) <= 1

binary

C(1)

C(2)

C(3)

C(4)

C(5)

end

Solving the concrete ILP formulation

Save the above Gurobi-formatted ILP formulation in a file, say
clique.lp.
The extension tells Gurobi the ILP formulation is in LP format.
To find an optimal solution to the concrete ILP formulation stored
in clique.lp, I use a terminal window; move to the same directory
that clique.lp is in; and issue the following command at the prompt:

gurobi_cl clique.lp

This tells Gurobi to read in file clique.lp and then (using default
parameter settings for Gurobi) find values for the variables giving
an optimal solution. Gurobi executes and outputs:

Gurobi Optimizer version 6.5.0 build v6.5.0rc1 (mac64)

Copyright (c) 2015, Gurobi Optimization, Inc.

Read LP format model from file clique.lp

Reading time = 0.00 seconds

(null): 4 rows, 5 columns, 8 nonzero

Optimize a model with 4 rows, 5 columns and 8 nonzeros

Coefficient statistics:

Matrix range [1e+00, 1e+00]

Objective range [1e+00, 1e+00]

Bounds range [1e+00, 1e+00]

RHS range [1e+00, 1e+00]

Found heuristic solution: objective 2

Presolve removed 4 rows and 5 columns
Presolve time: 0.00s

Presolve: All rows and columns removed

Explored 0 nodes (0 simplex iterations) in 0.00 seconds

Thread count was 1 (of 8 available processors)

Seeing the full solution

If we want to see the values that Gurobi set for the variables in the
optimal solution, we would execute Gurobi with the command

gurobi_cl resultfile=clique.sol clique.lp

The prefix ‘resultfile=’ is a Gurobi specification, but we make up
the name of the file to write to.

Objective value = 3

C(1) 1

C(2) 0

C(3) 1

C(4) 0

C(5) 1

Practicality

For randomly generated graphs with one hundred nodes, where
each potential edge is in the graph with probability one-half,
Gurobi 6.5 (on my Macbook Pro - i7) typically finds a
maximum-size clique in under one second.

With 300 nodes, where each potential edge is in the graph with
probability one quarter, Gurobi finds a maximum-sized clique in
under ten seconds.

But for 500 nodes with the same edge density, the typical solution
time increases to around 40 minutes. Whether that is a practical
time depends on the user and the application.

Real biological graphs
To illustrate the practicality of maximum-clique finding in real
biological networks, consider:

A “hairball”

The figure shows part of the protein-protein interaction (PPI)
graph1 from a class of yeast. There are 208 nodes and 1776 edges,
so the edge edge density is about 8.2%.

Gurobi solved the Maximum-Clique problem for this graph, finding
a clique of size twelve, in about one-half of a second.

The Maximum-Clique Problem for randomly generated graphs with
208 nodes and edge-probability of 0.082 took 2.5 - 4 seconds to
solve. The faster solutions for real biological networks is likely due
to the greater asymmetry in real graphs compared to random
graphs.

1Thanks to David Amar for producing this graphic.

Adding node weights

Suppose that w(i) represents the weight given to node i . Then the
ILP formulation for this problem is the same as for the Maximum
Clique Problem, by changing the objective function from:

∑

i

C (i),

to

∑

i

w(i)× C (i).

Later, we will see how to incorporate edge weights into the clique
problem.

Bounds and Gurobi Progress Reporting

ILP solvers solve a concrete ILP formulation by alternately focusing
on finding better feasible solutions, and by finding better bounds
on the value of an optimal ILP solution.

In the case of a maximization problem, the solver creates a series
of better feasible solutions, with value denoted lb, and a series of
guaranteed upper bounds, denoted ub, on the value of an optimal
solution.
Therefore, if opt denotes the optimal value for a problem instance,
then at any point during the computation, it is guaranteed that
lb ≤ opt ≤ ub, for the current values of lb and ub.

Progress reporting
Nodes | Current Node | Objective Bounds | Work

Expl Unexpl |Obj Depth IntInf | Incumbent BestBd Gap |It/Node Time

0 0 24.19001 0 150 9.0000 24.19001 169% - 0s
H 0 0 11.000000 24.19001 120% - 0s

0 0 23.85906 0 149 11.0000 23.85906 117% - 0s
0 0 23.71799 0 150 11.0000 23.71799 116% - 0s
0 0 23.71223 0 150 11.0000 23.71223 116% - 0s
0 0 23.66983 0 150 11.0000 23.66983 115% - 0s
0 0 23.65555 0 150 11.0000 23.65555 115% - 0s
0 0 23.65259 0 150 11.0000 23.65259 115% - 0s
0 0 23.65249 0 150 11.0000 23.65249 115% - 0s
0 0 23.61698 0 150 11.0000 23.61698 115% - 0s
0 0 23.61314 0 150 11.0000 23.61314 115% - 0s
0 0 23.61162 0 150 11.0000 23.61162 115% - 0s
0 0 23.61114 0 150 11.0000 23.61114 115% - 0s
0 2 23.61114 0 150 11.0000 23.61114 115% - 0s

* 208 166 16 12.000000 22.88016 90.7% 80.3 1s
H 1031 575 13.000000 19.57340 50.6% 65.9 2s

1737 535 18.62161 22 81 13.0000 19.57340 50.6% 61.4 5s

Cutting planes:
Clique: 38

Explored 6738 nodes (307332 simplex iterations) in 8.46 seconds
Thread count was 8 (of 8 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.3000000000e+01, best bound 1.3000000000e+01, gap 0.0%

F G b h l l ILP f l

Part III. Near-Cliques in Biological Networks

We have developed an ILP formulation for the maximum-clique
problem and discussed applications of it in biological networks.
However, those were just two of the wide variety of problems and
models in computational biology that involve finding large cliques,
near cliques and high-density subgraphs.

Now, we extend the range of applications, with several near-clique
problems, develop ILP formulations for them, and discuss some of
the ways that these problems arise in computational biology. This
discussion will also lead to our first ILP idiom, i.e., a formalized
way to implement certain logical statements as integer linear
inequalities.

Near Cliques

We are interested in finding a subset of nodes with a high
percentage of the possible edges, but the requirement of having
every possible edge is too severe.

There are many ways to formalize the concept of a near clique. We
start with the simplest one:

The Maximum Near-Clique Problem: Find the largest
subset of nodes K which would be a true clique if one
edge was added between some pair of nodes in K.

An ILP formulation to solve the Maximum Near-Clique
Problem

We will modify the ILP for the maximum clique problem. In the
max clique ILP the inequality

C (i) + C (j) ≤ 1 if (i,j) is not an edge (6)

made it impossible to select both nodes i and j if (i , j) is not an
edge.

Now, remove the inequalities that strictly prohibit this, and
instead, use variables and inequalities that record that such a pair
of nodes has been selected. Then we use an inequality that limits
the number of such selected pairs.

Let E be the set containing every pair of nodes (i , j) in G where
there is no edge between i and j .

For every pair (i , j) in E , binary variable, V (i , j) will record that
both nodes i and j have been selected, although there is no edge
between them. So, we replace the inequalities in (6) with:

C (i) + C (j) − V (i , j) ≤ 1. (7)

This says that If both C (i) and C (j) are set to 1, so that their sum
is two, then variable V (i , j) must be set to 1 in order to satisfy
inequality (7).

Also, if C (i) and C (j) are both 0, inequality (7) reduces to
V (i , j) ≥ −1. If exactly one of C (i) or C (j) has value 1, then (7)
reduces to V (i , j) ≥ 0. These are trivially satisfied, so the
inequalities do not have any bad side effects.

Hence, if we make those changes also add the inequality

∑

(i ,j)∈E

V (i , j) ≤ 1,

then the set of selected nodes, K , will be a clique or a near-clique.

Summarizing, the Maximum Near-Clique Problem can be
formulated as:

Maximize
∑

i∈V
C (i)

subject to ∑

(i ,j)∈E

V (i , j) ≤ 1, (8)

and for each node pair (i , j) ∈ E :

C (i) + C (j) − V (i , j) ≤ 1, (9)

where all variables are binary.

Note the asymmetry

The inequality C (i) + C (j)− V (i , j) ≤ 1 ensures that V (i , j) will
be set to 1 if both C (i) and C (j) are set to 1.

But, it does not force V (i , j) to be 0 when C (i) and C (j) are not
both 1, and there is no inequality in the formulation that does
that. This does not cause a problem, because the inequality

∑

(i ,j)∈E

V (i , j) ≤ 1

limits the number of V variables that can be set to value one.

Related notions of a near clique

Suppose that k > 1 new edges can be added. Implementing that
change in the ILP only requires that we change the right-hand side
of inequality (8) from 1 to k .

We solved the Near-Clique problem for the Yeast PPI graph
discussed earlier. The largest clique in that graph is of size 12.

Gurobi took ten minutes to determine that the largest clique
remains of size 12, when only one new edge can be added; it took
seven minutes to find a clique of size 13, when two new edges are
allowed; and took 12 minutes to determine that the largest clique
remains of size 13, when three new edges are allowed.

Another generalization

Allow up to one new edge per node to be added.

Implementing that change only requires that we replace the single
inequality (8) with n inequalities, one for each node in G . For a
node i , the inequality would be

∑

j :(i ,j)∈E

V (i , j) ≤ 1.

An ILP for the Largest High-Density Subgraphs

The High-Density Subgraph Problem Given an
undirected graph G = (V ,E), and a density threshold d
between 0 and 1, find a subgraph, G ′ = (V ′,E ′), in G
with the maximum number of nodes, such that the
density of G ′ is greater or equal to d.

As before, we have binary variable C (i) for each node i in G ,
indicating whether or not node i will be included in V ′.

We also have a variable P(i , j) for each pair of nodes (i , j) in G .
This indicates that (i , j) is a Potential edge in E ′. We also have a
variable E (i , j) for each edge (i , j) ∈ G . All of these variables are
binary.

An ILP for the Largest High-Density Subgraphs

Variable P(i , j) will be set to 1 in the optimal ILP solution if both
C (i) and C (j) are set to value 1. This is implemented by:

C (i) + C (j)− P(i , j) ≤ 1 (10)

Note that

∑

i∈V ,j∈V ,i<j

P(i , j)

is the maximum number of edges that could possibly be in E ′, i.e.,
n′(n′ − 1)/2, where n′ = |V ′|.

An ILP for the Largest High-Density Subgraphs

Variable E (i , j) will be set to 1 only if both C (i) and C (j) are set
to 1. This indicates that edge (i , j) will be in E ′. This is
implemented by:

2E (i , j) − C (i)− C (j) ≤ 0 for (i,j) in E (11)

An ILP for the Largest High-Density Subgraphs
Next, we need an inequality that implements the requirement that
the chosen nodes identify a subgraph with density threshold at
least d . That is equivalent to the requirement that:

∑
i∈V ,j∈V ,i<j [E (i , j)]∑
i∈V ,j∈V ,i<j[P(i , j)]

≥ d (12)

which is equivalent to:

∑

i∈V ,j∈V ,i<j

[E (i , j)] − d ×
∑

i∈V ,j∈V ,i<j

[P(i , j)] ≥ 0, (13)

where d is the density threshold, between 0 and 1, specified by the
user.

Finally, the objective function for the formulation is

Maximize
∑

i

C (i).

Practicality
The meaning of “practical” depends on the full context of the
problem instance. If it takes years to accumulate the data (which
is the case in some PPI data) then an ILP solution time of several
days is a practical computation.

We tested the ILP formulations on random graphs, and solved
them with Gurobi, for a range of values for n, p and d .

The formulations take longer to solve than do the formulations for
the maximum clique problems with the same n and p. Still the
range of n and p where the approach is successful illustrates the
power of the ILP approach compared to brute-force methods.

n p d seconds for 6.5 seconds for 7.0
25 0.4 0.8 0.6 0.58
25 0.6 0.9 0.66 0.82
30 0.4 0.9 1.13 0.77
35 0.5 0.8 9.03 8.73
50 0.4 0.8 166 102
50 0.2 0.5 250 268

However, when the ILP formulation was applied to a much larger
problem, the 208 node graph for the yeast PPI network discussed
earlier, where the maximum-size clique of size 12 was found in
under a second, the ILP formulation for the maximum density
problem, with d = 0.8, did not complete for three hours and was
stopped.

A more complete test was run on that data with d = 0.5. Gurobi
was allowed to run for a full day before it was stopped. At that
point, it had found a subgraph of 36 nodes with a density of 0.5 or
greater, and a guarantee that no high-density subgraph (with
d = 0.5) of size 63 exists in the PPI network. Moreover, the
execution found a subgraph of size 30 (with d = 0.5) in the first
21 minutes of execution, and found a subgraph of size 35 after
about seven hours of execution.

Part IV: Our first ILP Idioms

There are certain logical constructs that come up frequently in
mathematical modeling, and general linear integer inequalities have
been developed to implement them. We use the term “idiom” to
refer to such logical constructs and their ILP implementations.

An “If-Then” idiom for binary variables
Overwhelmingly, the most important ILP idiom that arises in
computational biology is the If-Then idiom. For example,
inequality (7) expresses the logical construct that if C (i) + C (j) is
equal to 2, then variable V (i , j) must be set equal to 1.

This is a simple instance of the If-Then idiom for binary variables.
More general versions will be discussed as the tutorial progresses.

An “Only-If” ILP idiom for binary variables

Inequality (7) sets V (i , j) to 1 if C (i) + C (j) equals 2, but it does
not prevent V (i , j) from being set to 1 even if C (i) + C (j) is less
than 2.

In some formulations, we need to enforce the converse of an
If-Then construct. In the case of inequality (7), the converse
construct is:

V (i , j) is allowed to be set to 1 only if C(i) + C (j) is
equal to 2.

To implement this Only-If idiom, we might try the inequality:

C (i) + C (j)− V (i , j) ≥ 1 (14)

This looks promising, but is not correct. It has a bad side-effect.

When V (i , j) has value 0, inequality (14) reduces to
C (i) + C (j) ≥ 1, which is bad.

A correct “Only-If” inequality

To implement the Only-If idiom without bad side effects:

2V (i , j)− C (i)− C (j) ≤ 0 (15)

When V (i , j) has value 1, both C (i) and C (j) must be set to 1.
When V (i , j) has value 0, inequality (15) reduces to
−C (i)− C (j) ≤ 0, which is always satisfied.

More general “If-Then” and “Only-If” idioms for binary
variables

Suppose L is an integer linear function of binary variables. A more
general version of the If-Then idiom is:

If the binary ILP variables are set so that the integer
linear function L has value greater or equal to a strictly
positive value, b, then a binary variable, z, must be set
to 1. Variable z is called an “indicator” variable.

For example, consider the statement::

If 5x1 + 7x2 − 8x3 + 2x4 ≥ 2, Then z must be set to 1

All of the variables x1, ..., x4, z are binary.

Implementing this general “If-Then” idiom

Note that the variables in L are binary, so there is an upper limit
on the largest value that L can attain. Let M denote the largest

value that the linear function L can attain. Then, the following
abstract inequality implements the general If-Then idiom for binary
variables:

L− (M × z) ≤ b − 1 (16)

A more general “Only-If” idiom for binary variables

z = 1 only if the value of L is greater or equal to b.

To implement that idiom, we might first try:

L+ z ≥ b + 1.

When z = 1, the inequality becomes L ≥ b, which can be satisfied
only if the value of L is greater or equal to b, so this looks
promising. However, the inequality has a bad side-effect because
when z = 0, the inequality becomes L ≥ b + 1.

To get a correct implementation, let s be the smallest value that
function L can achieve and set m = s − b (i.e., s = m + b). Then,
we can correctly implement the Only-If idiom with the inequality:

L+m × z ≥ m + b (17)

An immediate extension from binary variables to bounded
variables

Above, we assumed that the all the variables in L were binary.
That was used to establish upper and lower bounds, M and s, on
the values that L can attain, and such bounds were all that were
needed for the the validity of the idioms.

If the variables in L are not necessarily binary, but are bounded
(i.e., for each variable in L, there are known upper and lower
bounds on the values that the variable can attain), then the values
that L can attain are also bounded, both above and below.

Exploiting the idioms

The If-Then and Only-If idioms can be used to build additional
idioms.

The NOT-AND (NAND) idiom for inequalities Let L1 and L2
be linear functions whose variables are bounded, and consider the
linear inequalities, L1 ≥ b1 and L2 ≥ b2. Suppose we require that
at most one of the two linear inequalities is satisfied. This is the
NOT-AND idiom for inequalities.

The NAND idiom can be implemented by using the If-Then idiom
twice: once, so that if L1 ≥ b1, then variable z1 is set to value 1;
and once so that if L2 ≥ b2, then variable z2 is set to value 1.
Next, we add the inequality:

z1 + z2 ≤ 1 (18)

The OR idiom for inequalities

Suppose we require that at least one of the inequalities is satisfied.
This is the OR idiom for inequalities.2

We use the Only-If idiom twice: once, so that z1 is set to 1 only if
L1 ≥ b1; and once so that z2 is set to 1 only if L2 ≥ b2. Then, we
replace inequality (18) with:

z1 + z2 ≥ 1 (19)

If neither L1 nor L2 can ever take on a negative value, then the OR
idiom for inequalities can be implemented more simply as:

L1 ≥ (1− z)b1

L2 ≥ z × b2,
(20)

where z is a binary variable.

2The OR idiom for binary variables is simpler: X + Y ≥ 1.

An XOR idiom for inequalities

To require that exactly one of the inequalities is satisfied, we use
the inequalities for the If-Then idioms for both L1 and L2; and the
inequalities for the Only-If idioms for both L1 and L2.

So, z1 will be set to 1 if and only if L1 ≥ b1; and, z2 will be set to
1 if and only if L2 ≥ b2.

Then, we replace inequality (18) with:

z1 + z2 = 1 (21)

This idiom is called the Exclusive-Or (XOR) idiom for inequalities.3

3The XOR idiom for two binary variables, X and Y , is simpler: X + Y = 1.

An IMPLIED-SATISFACTION idiom for inequalities

We can also express the construct:

if L1 ≥ b1 then L2 ≥ b2,

by using the If-Then idiom for the first inequality, and the Only-If
idiom for the second inequality, and then replacing inequality (18)
with

z1 ≤ z2 (22)

which forces z2 to have value 1 if z1 has value 1.

A NOT-EQUAL idiom

In many ILP formulations, it is natural to require that two integer
variables (whose values can be larger than 1) always take on
different values. This is easily implemented using the OR idiom, as
follows. If X and Y are integer variables, then the inequality:

(X − Y ≥ 1) OR (Y − X ≥ 1) (23)

is satisfied if and only if the values of X and Y are different.

A NOT-EQUAL idiom for binary variables

The situation is simpler when X and Y are binary variables; then
the NOT-EQUAL idiom is trivially implemented as X + Y = 1.
Note that this forces the binary variables X and Y to have
different values.

However, sometimes we only want to test if two binary variables
have different values. We want the logical construct that if binary
variable X is NOT-EQUAL to binary variable Y , then binary
variable z is set to 1. This is implemented by:

z ≥ X − Y

z ≥ Y − X .
(24)

NOT-EQUAL idioms with linear functions

More generally, suppose Z1 and Z2 are linear functions of integer
variables whose values are bounded from both above and below,
and can only have integer values. Then the functions Z1 − Z2 and
Z2 − Z1 have bounded values that are always integers.

In that case, we can express the NOT-EQUAL idiom, Z1 ̸= Z2 as:

(Z1 − Z2 ≥ 1) OR (Z2 − Z1 ≥ 1). (25)

Of course, when creating a concrete ILP formulation, the OR idiom
must be implemented with linear inequalities, as explained earlier.

A special case

A particularly simple case is that Z1 and Z2 are just integer
variables whose values are bounded between 1 and n.

Then, starting with (25), and expanding the OR idiom, we can
implement the requirement that Z1 ̸= Z2 with the inequalities:

Z1 − Z2 − n × (z − 1) ≥ 1

Z2 − Z1 + n × z ≥ 1
(26)

where z is a binary variable.

The Key to the Idioms

The key to all of these idioms for inequalities is that they first
implement the logic that when a specific inequality is satisfied an
indicator variable, such as z , z1, z2, is set to value 1.

Or, conversely, they implement the logic that when an indicator
variable is set to 1, a specific inequality must be satisfied; or both.

Then, using an individual indicator variable for each inequality, we
add constraints on the indicator variables to implement relations
between the inequalities. Those relations are implemented by
idioms for variables.

Part V. The RNA Folding Problem

The RNA Folding Problem is to predict the secondary structure
of an RNA molecule, given only its nucleotide sequence. This
important, classic problem in computational biology is often solved
with variants of dynamic programming which have been
highly-refined and engineered in several widely-used computer
programs.

But here, we show how integer linear programming can be used to
obtain the same results, with much less effort on the part of the
developer or programmer, and can also be extended to model more
complex versions of the folding problem, in ways that are difficult
to model with dynamic programming.

We start with an ILP formulation for a simplified version of the
RNA problem, and then extend the biological model and the ILP
formulation to incorporate more realistic biological features of the
problem.

A Crude First Model of RNA Folding

We let S denote a string of n characters made up of the RNA
alphabet {A,C ,U,G}. For example, S = ACGUGCCACGAU.

A pairing is set of disjoint pairs of characters in S . A character can
be in at most one pair. Note that some characters might not be in
any pair in a pairing.

A pair is called complementary if the two characters in the pair are
{A,U} or {C,G}. In our first model of RNA folding, we require
that all pairs be complementary.

If we draw the RNA string S as a circular string, we define a
nested pairing (alternately called non-crossing) as a pairing of
complementary nucleotides, where each pair in the pairing is
connected by a line inside the circle, and where none of the lines
cross each other.

A nested pairing of complementary nucleotides

G

G

A

U

U
G

U
U

A

U

G C

G

A

G
G

C
C

A
A

G

A G
C

C
C G

A

C
C

U
G

Figure : The lines show a nested pairing, not necessarily the largest.

Fold stability

It is generally asserted that as a first approximation, the fold of an
RNA molecule corresponds to a nested pairing that is the most
stable.

In the simple model, we measure the stability of a nested pairing
by the number of matched pairs it has. So, the most stable nested
pairing is the one with the largest number of matched pairs. This
leads to the following computational problem:

The Simple RNA Folding Problem Given the
nucleotide sequence S of a RNA molecule, find a nested
pairing that pairs the maximum number of nucleotides,
compared to any other nested pairing.

Formulating and Solving the Simple RNA Folding Problem
via ILP

We create one binary ILP variable, called P(i , j), for each pair (i , j)
of positions in S , where i < j . The value of P(i , j) in a solution of
the ILP will indicate whether or not the nucleotide in position i of
S will be paired with the nucleotide in position j of S : value 1 if
‘yes’; value 0 if ‘no’.

If the ordered pair of nucleotides in any positions i and j are not
(A,U) or (U,A) or (C ,G) or (G ,C), then we will create and
include the equality:

P(i , j) = 0,

to disallow the pairing of the nucleotides in positions i and j .

Each site in at most one pair

Next, we implement the requirement that each nucleotide can be
paired to at most one other nucleotide.

for each j
∑

k>j

P(j , k) +
∑

k<j

P(k , j) ≤ 1. (27)

Note that this is an inequality, not an equality, meaning that it is
permissible for a position j to not be in any pair.

Nesting required

To implement the requirement that the pairing be nested, the key
is to note that a pairing that is not nested, must contain matched
pairs (i , j) and (i ′, j ′) where i < i ′ < j < j ′.
So, we use: For every choice of four positions i < i ′ < j < j ′,

P(i , j) + P(i ′, j ′) ≤ 1 (28)

We can think of this as instance of an ILP idiom: the NAND
(“Not And”) of two variables. This is a particularly simple idiom,
because it only involves relations between variables, rather than
between inequalities.

The objective function

Finally, the objective function for the ILP is:

Maximize
∑

i<j

P(i , j)

which says that we want to set as many P variables as possible to
the value 1.

A Toy Example
S = ACUGU. Then the ILP is:
MaximizeP(1, 2) + P(1, 3) + P(1, 4) + P(1, 5) + P(2, 3) +
P(2, 4) + P(2, 5) + P(3, 4) + P(3, 5) + P(4, 5)
s.t.

P(1,2) = 0

P(1,4) = 0

P(2,3) = 0
P(2,5) = 0

P(3,4) = 0

P(3,5) = 0

P(4,5) = 0

P(1,2) + P(1,3) + P(1,4) + P(1,5) <= 1

P(1,2) + P(2,3) + P(2,4) + P(2,5) <= 1

P(1,3) + P(2,3) + P(3,4) + P(3,5) <= 1

P(1,4) + P(2,4) + P(3,4) + P(4,5) <= 1

P(1,5) + P(2,5) + P(3,5) + P(4,5) <= 1

Continuing

P(1,3) + P(2,4) <= 1

P(1,3) + P(2,5) <= 1

P(1,4) + P(2,5) <= 1
P(1,4) + P(3,5) <= 1

P(2,4) + P(3,5) <= 1

Simple Biological Enhancements

! Minimum distance constraint between paired positions, to
avoid impossible bends. Trivial to incorporate this constraint.

! Differential binding strengths.
The binding strength of a {C ,G} pair is larger than the
binding strength of an {A,U} pair, since a {C ,G} pair has
three hydrogen bonds, while an {A,U} pair only has two
bonds. So, to find the most stable nested pairing, we need a
maximum weight nested pairing. Trivial to incorporate into
the objective function.

! Allowing non-complementary matched pairs.

In some models of RNA folding, certain non-complementary
pairs of characters are allowed to form matching pairs, as long
as appropriate weights, or multipliers, are used in the objective
function for each allowed pair. The most commonly allowed
non-complementary pair is {G ,U}.

More Complex Biological Enhancements
Base Stacking - stems - helices
A matched pair (i , j) in a nested pairing is called a stacked pair if
either (i + 1, j − 1) or (i − 1, j + 1) is also a matched pair in the
nested pairing.

A stack in a nested pairing consists of a consecutive run of two or
more stacked pairs. If (i , j) and (i + 1, j − 1) are stacked pairs, the
four positions (i < i + 1 < j − 1 < j) is called a stacked quartet.

G

G

A

U

U
G

U
U

A

U

G C

G

A

G
G

C
C

A
A

G

A G
C

C
C G

A

C
C

U
G

Stacks are particularly evident in the folding of transfer RNA
(tRNA), in a distinctive secondary structure called a cloverleaf.

Stacks and stability

Stacking contributes significantly to the stability of an RNA fold.
So a more realistic ILP formulation for RNA folding, must
encourage paired nucleotides to be organized into (long-ish) stacks
as much as possible.

As a simple first step, we will extend the objective function of the
ILP by including a count of the number of stacked quartets in the
nested pairing. Hence, we need the ILP formulation to calculate
that number, based on the pairing variables P(i , j).

Counting quartets

We create the binary ILP variable Q(i , j) to indicate whether the
pair (i , j) is the first pair in a stacked quartet. We have, for each
i , j , where j > i :

P(i , j) + P(i + 1, j − 1)− Q(i , j) ≤ 1 (29)

2Q(i , j) − P(i , j)− P(i + 1, j − 1) ≤ 0 (30)

The first inequality enforces the condition that if both (i , j) and
(i + 1, j − 1) are in the nested pairing then the value of variable
Q(i , j) must be set to 1.

The second inequality enforces the converse condition, that Q(i , j)
can be set to 1 only if P(i , j) and P(i + 1, j − 1) are both set to 1.

The two inequalities together ensure that Q(i , j) will be set to 1, if
and only if both (i , j) and (i + 1, j − 1) are in the nested pairing,
so (i , i + 1, j − 1, j) is a stacked quartet, and i is the smallest
position in the quartet.

Then, to incorporate a count of the number of stacked quartets in
the fold, we change the objective function from

Maximize
∑

i<j

P(i , j)

to

Maximize
∑

i<j

[P(i , j) + Q(i , j)].

Weighting stacked quartets in a nested pairing

The next, and perhaps the most important, extension of the
chemical model is to incorporate weights into the objective
function for each stacked quartet in a stack.
Then the objective function is given as:

Maximize
i=n∑

i=1

[W (i , j)× Q(i , j)],

where W (i , j) is a positive constant that depends on which four
nucleotides are in the stacked quartet (i , i + 1, j , j − 1).

Quartet weights
Extensive chemical studies have been done to determine good
weights for stacked quartets, based on the specific nucleotides that
the stacked quartet contains.
The following table shows the weights for stacked quartets used in
a program called Fold-Align:

A C G U

U G C A

A | 9 21 24 13

U |

C | 22 33 34 24
G |

G | 21 24 33 21

C |

More elaborate models of RNA folding

The two most important features of RNA folding are
complementary pairing, and base stacking. Those two features,
along with appropriate weights for matched pairs and stacked
quartets, were adequate to explain both the central ideas in RNA
fold prediction, and the formulation of ILPs for RNA fold
prediction.

However, many additional features and refinements of RNA folds
have been incorporated into fold prediction methods. In one
software package for RNA folding, there are close to two hundred
parameter choices that the user can specify to guide the folding
algorithm.
In some models of RNA folding, the weight given to stacked
quartet depends both on the specific nucleotides in the quartet,
and on where the stacked quartet is in a stack. The main
distinction is whether the stacked quartet is the first quartet, the
last quartet, or a middle quartet in a stack.

Hence, we need to extend the ILP formulation to recognize where
a stacked quartet appears in a stack. Let F (i , j) be an ILP variable
that will be set to 1 if and only if the stacked quartet
(i , i + 1, j − 1, j) is the first stacked quartet in a stack. We use:

Q(i , j)− Q(i − 1, j + 1)− F (i , j) ≤ 0

and

2F (i , j) − Q(i , j) + Q(i − 1, j + 1) ≤ 1.

Exercise: Crossing matched pairs

Up until now, we have required that pairings be nested,
non-crossing, since they are thought to model the secondary
structure of most tRNA molecules.
However, a limited number of crossing matched pairs are
sometimes observed in RNA secondary structure, particularly for
RNA molecules that are not tRNA molecules.

Suppose we now change the definition of a pairing to allow some
crossing matched pairs.
Let C (i , i ′, j , j ′) be an ILP variable that is set to value 1 if and only
if (i , j) and (i ′, j ′) are matched pairs that cross.

Develop ILP inequalities to properly implement the definition of
C (i , i ′, j , j ′). Once the C variables are implemented, we we can
add an inequality that limits the number of crossing matched pairs
to a fixed number, or to a fixed percentage of the number of
matched pairs in the pairing, etc.

Pseudo-Knots
One of the most important features (we have not discussed) of
some RNA folds is called a pseudo-knot. Pseudo-knots generalize
crossing pairs. If two sets of crossing matched pairs are organized
into two stacks, they form a single pseudo-knot, and should be
considered a single feature.

Exercise

Let PS(i , i ′), for i < i ′, be a binary ILP variable that will be set to
1 if and only if there is a pseudo-knot whose two stacks begin at
positions i and i ′ respectively.

Develop ILP inequalities that correctly implement the definition of
the variables PS(i , i ′), for each i < i ′. Then suggest and develop
inequalities that allow a few pseudo-knots, or balance the inclusion
of pseudo-knots with an increase in the number of stacked pairs.

Ending Comments

! ILP formulations benefit both from faster computers, and from
faster solvers. Clever algorithms only benefit from the former.

! “What” is easier than “How”. An ILP formulation is often a
statement of what we want the optimal to look like. It rarely
describes how to obtain it. We express the what in terms of a
Huge number of inequalities with a Huge number of variables,
and then let the ILP solver do the heavy lifting. At first, this
seems unlikely to be practical (e.g., using millions of
inequalities and tens of thousands of variables to encode a
small problem instance), but it often is.

! How ILPs for Computational Biology differ from ILPs for
traditional applications: Reductions!

! The virtue of NP-hardness: Expressibility!

! Why ILP and not some other NP-hard problem? In theory,
any NP-hard problem will do. In practice, there is an ILP
industry which invests, maintains, and supports. There is no
similar industry for any other NP-hard problem. SAT-solvers
might be competitive for decision problems, but they don’t
optimize or even count.

