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Abstract

Phylogeneticnetworksare modelsof sequenceevolution that go beyondtrees,allowing biological
operationsthatarenotconsistentwith tree-likeevolution.Oneof themostimportantof thesebiological
operationsis (single-crossover)recombinationbetweentwosequences.Anestablishedproblem[14, 15,
28,27, 29, 19,17] is to find a phylogeneticnetworkthat derivesan input setof sequences,minimizing
the numberof recombinationsused. No efficient, general algorithm is knownfor that problem. An
efficient algorithm doesexist for the problemwhenthe networkis constrained to be a “galled-tree”,
and the ancestral sequencefor the galled-treeis specifiedin advance[9, 11, 10]. However, the more
biologically realistic caseis that no ancestral sequenceis knownin advance,and the only previous
algorithmicsolutionfor that casetakesexponentialtime.

In this paperwegivean efficient solutionto thegalled-treeproblemwhenno ancestral sequenceis
knownin advance,and showthat the solutionproducedhasvery strong global optimality properties.
We also indicatehow theseresultsgeneralize to other complex biological phenomenasuch as gene-
conversion,lateral genetransfer, hybridspeciation,andback andrecurrentmutation.

1 Intr oduction to PhylogeneticNetworks and Problems

With the growth of genomicdata,muchof which doesnot fit ideal evolutionary-treemodels,and
the increasingappreciationof the genomicrole of suchphenomenaas recombination,recurrentand
backmutation,horizontalgenetransfer, cross-specieshybrid speciation,geneconversion,andmobile
geneticelements,thereis greaterneedto understandthealgorithmicsandcombinatoricsof phylogenetic
networkson which extant sequenceswerederived [24, 25]. Recombinationis particularly important
in deriving chimericsequencesin a populationof individualsof the samespecies.Recombinationin
populationsis thekey elementunderlyingtechniquesthatarewidely hopedto locategenesinfluencing
geneticdiseases.
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Hein[14, 15,28,27] introducedthephylogeneticnetworkproblem(with recombination): Constructa
phylogeneticnetworkthatderivesa givensetof binarysequences,minimizing thenumberof recombi-
nationsused.No efficient,generalalgorithmis known for thatproblem,andit is claimedto beNP-hard
[29]. Theminimizationcriteriais motivatedby thegeneralutility of parsimony in biologicalproblems,
andbecausemostevolutionaryhistoriesarethoughtto containasmallnumberof observablerecombina-
tions.Theassumptionthatthesequencesarebinaryis motivatedtoday, in studiesof populations(where
theindividualsareall from thesamespecies),by theimportanceof SNPdata.In SNPdata,eachsitecan
takeonatmosttwo states(alleles)[4]. At thecross-specieslevel, theassumptionthatthesequencesare
binaryis motivatedby theevolution of macroevolutionarytraits,which areeitherpresentor absentin a
species[6].

Wanget al. [29] focusedon a specialcaseof thephylogeneticnetworkproblem,wheretheancestral
sequencefor the networkis assumedto be knownin advance, andwherethe phylogeneticnetworkis
requiredto bea“galled-tree”(definedbelow), whereall recombinationsinvolveonly single-crossovers.
Gusfieldet al. [9, 11] gave a completeandefficient algorithmto determineif the input sequencescan
bederivedon a galled-tree.Underthoseconditions,thatpapersolvesthemostgeneral,special-caseof
thephylogeneticnetworkproblemthathasa known efficient solution. However, themorebiologically
importantcaseis that theancestralsequenceis not known in advance.Then,theproblemis to find (if
oneexists)asequence� , suchthatthereis agalled-treewith ancestralsequence� thatderivestheinput
sequences.Onecanof courserun theprior algorithm[9, 11] anexponentialnumberof times,oncefor
eachpossiblechoiceof ancestralsequence,but that is impracticalin general.Moreover, we would like
to allow multiple-crossover recombinations.In this paper, we addressthe problemwhenno ancestral
sequenceis known, andwhenmultiple-crossover recombinationsareallowed.

1.1 Formal definition of a phylogeneticnetwork

Therearefour componentsneededto specifya phylogeneticnetworkthatallows multiple-crossover
recombination(seeFigure1).

A phylogeneticnetwork � is built ona directedacyclic graphcontainingexactly onenode(theroot)
with no incomingedges,a setof internalnodesthathave both incomingandandoutgoingedges,and
exactly � nodes(theleaves)with nooutgoingedges.Eachnodeotherthantheroothaseitheroneor two
incomingedges.A node� with two incomingedgesis calleda recombinationnode.

Eachinteger(site)from 1 to � is assignedto exactlyoneedgein � , but for simplicity of exposition,
noneareassignedto any edgeenteringa recombinationnode. Theremaybeadditionaledgesthatare
assignedno integers.We usetheterms“column” and“site” interchangeably.

Eachnodein � is labeledby an � -lengthbinarysequence,startingwith therootnodewhichis labeled
with somesequence� , calledthe“root” or the “ancestral”sequence.Since � is acyclic, thenodesin
� canbe topologicallysortedinto a list, whereevery nodeoccursin the list only after its parent(s).
Usingthatlist, wecanconstructively definethesequencesthatlabelthenon-rootnodes,in orderof their
appearancein thelist, asfollows:

a) For anon-recombinationnode� , let 	 bethesingleedgecominginto � . Thesequencelabeling � is
obtainedfrom thesequencelabeling � ’sparentby changingthestate(from 0 to 1, or from 1 to 0) of the
valueatsite 
 , for every integer 
 onedge	 . Thiscorrespondsto amutationatsite 
 occurringonedge	 .

b) For the recombinationat node � , let � and �
� denotethe two � -lengthsequenceslabelingthe
parentsof � . Thenthe “recombinantsequence”� labeling � canbeany � -lengthsequenceprovided
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thatateverysite 
 , thecharacterin � is equalto thecharacteratsite 
 in (at least)oneof � or �
� .
The recombination“event” that creates� from � and �
� is calleda “multiple-crossover recombi-

nation”. To fully specify the recombinationevent, we must specify for every position 
 whetherthe
characterin � “comesfrom” � or ��� . This specificationis forcedwhenthecharactersin � and �
� at
position 
 aredifferent. Whenthey arethe same,a choiceof � or �
� mustbe specified.For a given
event,we saythata crossoveroccursat position 
 if thecharactersat positions 
���� and 
 comefrom
differentparents.It is easyto determinetheminimum numberof crossoversneededto create� by a
recombinationof � and �
� .

The sequenceslabeling the leaves of � are the extant sequences,i.e., the sequencesthat can be
observed. We saythatan ��������� -phylogeneticnetwork � derives(or explains)a setof � sequences�
if andonly if eachsequencein � labelsoneof theleavesof � .

With thesedefinitions, the classic“perfect phylogeny” [7] is a phylogeneticnetwork without any
recombinations.That is, eachsite mutatesexactly oncein the evolutionary history, and thereis no
recombinationbetweensequences.

Therearetwo restrictedformsof recombinationthatareof particularbiologicalinterest.Oneis where
� is formedfrom aprefixof oneof its parentsequences( � or �
� ) followedby asuffix of theotherparent
sequence.This is called“single-crossover recombination”sinceit usesexactly onecrossover, andit is
thedefinitionof recombinationusedin [9, 11]. In thatcase,theparentsequencecontributing theprefix
canbe denoted� , and the parentsequencecontributing the suffix canbe denoted� , and the labels
� and � usedin Figure1 show which parentis the � -parentandwhich is the � -parent. The other
caseof restrictedrecombinationis when � is formedfrom a prefix of oneparentsequence,followed
by an internalsegmentof the otherparentsequence,followedby a suffix of thefirst parentsequence.
This is a two-crossover recombinationandwhenit occursin meiosis,it is called“gene-conversion”. In
gene-conversion,thesegmentfrom thesecondparentis short,around300basepairs. It is believed[3]
that during meiosis,single-crossover recombinationis the dominantform of recombinationoccurring
in intervalsof DNA containedbetweenneighboringgenes,while gene-conversionis thedominantform
of recombinationin intervals of DNA containedinside a singlegene. Geneconversionis known to
be a very importantmolecularandgeneticphenomenon,but it hasbeenhardto studybecauseof the
lack of analyticaltoolsandthe lack of fine-scaledata. In a differentbiologicalcontext, whatwe have
definedastwo-crossoverrecombinationmodelsthebiologicalphenomenaof “lateralgene-transfer”and
“hybridizationspeciation”.

Whatwe have definedhereasa phylogeneticnetworkwith single-crossover recombinationis thedi-
graphpartof thestochasticprocesscalledan“ancestralrecombinationgraph”in thepopulationgenetics
literature(see[23] for example).We shouldnotethatmeioticrecombinationis a phenomenonthatoc-
cursinsidea singlespecies,while the term “phylogeny” mostcorrectly refersto evolutionaryhistory
involving severalspecies.Therefore,it is notcompletelycorrectto usetheterm“phylogeneticnetwork”
for a historyof meioticrecombinations.The termis morecorrectfor a historyof hybridizations,since
thoseoccurbetweenspecies.However, in the ComputerScienceliterature(and in somepartsof Bi-
ology), the term “phylogeny” hascometo be synonomouswith “evolutionarytree”, regardlessof the
actualdatabeingstudied. Similarly, the term “phylogeneticnetwork” hasbeenintroducedin earlier
papersto refer to evolutionarytreeswith the incorporationof recombination.We continuetheabuseof
theterm“phylogenetic”in thispaper.

The phylogeneticnetworkproblemsstudiedin [17, 19, 14, 15, 28, 27, 11] all assumethat recom-
binationis single-crossover recombination.For continuity with thosepapers,we will first developan
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algorithmthatproducesnetworksthatonly usesingle-crossover recombination.However, theoptimal-
ity of the networksproducedby that algorithm will be proven in comparisonto networksthat allow
multiple-crossover recombinations.In the last sectionof the paper, we indicatehow to generalizethe
algorithmandthe main result to allow multiple-crossover recombinations,anddiscussthe biological
utility of suchrecombinations.
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Figure 1. A phylogenetic network that derives the set of sequences � . The two recombinations
shown are single-cr osso ver recombinations, and the crosso ver point is written above the recombi-
nation node . In general the recombinant sequence exiting a recombination node may be on a path
that reaches another recombination node, rather than going directl y to a leaf. Also, in general, not
every sequence labeling a node also labels a leaf.

1.2 Rootedand Root-Unknown problems

Hein’sphylogeneticnetworkproblemis to constructanetworkthatderivestheinputsetof sequences,
� , minimizingthe numberof single-crossover recombinationsused. That problemcanbe addressed
eitherin therootedcase,or theroot-unknown case.

In therootedphylogeneticnetworkproblem,a requiredroot or ancestralsequence� for thenetwork
is specifiedin advance. In the root-unknownphylogeneticnetworkproblem,no ancestralsequenceis
specifiedin advance,andtheproblemis to selectanancestralsequence� , sothataphylogeneticnetwork
for � with ancestralsequence� minimizesthenumberof recombinationnodesover all phylogenetic
networksfor � , andany choiceof ancestralsequence.

Since no efficient generalsolution is known to Hein’s problem, Wang et al. [29] introduceda
biologically-motivatedstructuralrestrictionof theproblem.

1.3 A structural restriction

In aphylogeneticnetwork � , let � beanodethathastwo pathsoutof it thatmeetata recombination
node � . Thosetwo pathstogetherdefinea “recombinationcycle” � . Node � is calledthe “coalescent
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node”of � , and � is therecombinationnodeof � . In Figure1, thecoalescentnodeof thetoprecombina-
tion cycle is labeled��� � ��� andthecoalescentnodeof thebottomrecombinationcycle is labeled���!�"��� .
A recombinationcycle in a phylogeneticnetworkthat sharesno nodeswith any other recombination
cycle is calleda “gall” (imaginea wasp’s gall in a tree). We saya site 
 “appears”or “mutates”or “is
contained”on a gall � if 
 labelsoneof the edgesof � . A phylogeneticnetworkis calleda “galled-
tree” if every recombinationcycle is a gall, andonly single-crossoverrecombinationsareallowed. The
phylogeneticnetworkin Figure1 is a galled-tree.

If � cannotbe derived on a perfectphylogeny, we would like to deviate from a tree by as little
asnecessary. Ratherthanhaving a phylogeneticnetworkwith a complex interleaving of cycles, it is
preferable(if possible)to have a treewith a few extra edges,eachcreatinga disjoint cycle. That is, we
would like a galled-treeif possible,particularly if it doesnot usemorerecombinationsthanareused
by morecomplex phylogeneticnetworks.Simulationshave shown thatwhentherecombinationrateis
low or moderate,galled-treesarefrequentlyobserved [5], particularlywhenno ancestralsequenceis
specifiedin advance. For example,when �$#%� #'& � and the recombinationparameter( is set to
1 in Hudson’s MS coalescentsimulationprogram[16], about85% of the datasetsarederivableon a
galledtree,andwhen ( is setto 2, about70%of thedatasetshave galled-trees.See[9, 11] for further
motivationfor galled-trees.

TheGalled-TreeProblem is to determinewhetheror notaninputsetof sequences� canbederived
on a galled-tree,whenthe ancestralsequenceis known in advance. Wanget al. [29] introducedthe
problem,andprovided an efficient algorithmthat solves it in some,but not all, cases(see[11] for a
discussionof this).

In [9] we developedan efficient algorithm( )*�+�,�.-/�10"� -time) that solvesthe galled-treeproblem.
Further, weshowedin [11], thatwhenthereis agalled-treefor input � , with agivenancestralsequence2

, thealgorithmcreatesagalled-treethatusestheminimumnumberof recombinations,over all phylo-
geneticnetworksfor � with 1 in [11] but wasnot alwaysstatedexplicitly there. This resultholdseven
if multiple-crossoverrecombinationsareallowedin thecompetingphylogeneticnetworks.

1.4 The Main Problem: The Ancestral Sequenceis Usually Unknown

Usually, we donot know whattheancestralsequenceis, andtheexistenceof a galled-treefor � can
dependonthespecificancestralsequencethatis used.For example,thereis nogalled-treewith ancestral
sequence11000for thematrix � shown in Figure1, while, asshown, thereis onewhentheancestral
sequenceis 00000.Moreover, whenthereis morethanoneancestralsequencewhichallowsagalled-tree
for � , theminimumnumberof recombinationsneeded(for specificancestralsequences)candiffer. For
example,thesequences01, 11, 10 canbederivedon a perfectphylogeny without any recombinations,
if any of thosethreesequencesis theancestralsequence,but if 00 is theancestralsequence,thenone
recombinationis needed.Hencewe have thefollowing two problems,whichwe addressin thispaper:

The Root-Unknown Galled-TreeProblem: Given � , find a sequence� suchthatthereis a galled-
treefor � with ancestralsequence� , or determinethatthereis none.

The Optimal Root-Unknown Galled-TreeProblem: If thereis a galled-treefor � , find onethat
minimizesthenumberof recombinationsoverall galled-treesfor � , andoverall choicesof theancestral

1This lastconditionis implicit ancestralsequence3 .
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sequence.Thesolutionis calledan“optimal galled-tree”for � . Theancestralsequenceof anoptimal
galled-treefor � is calledan“optimal ancestralsequence”for � .

A secondarydeficiency in theexistingmethodis thatwewouldalsolike to handleabroaderrangeof
biologicalphenomenathansingle-crossover recombination.

1.5 Main Results

We efficiently solve theRoot-Unknown Galled-TreeProblemwith an algorithmthatalsosolvesthe
Optimal Root-Unknown Galled-TreeProblem.The algorithmrunsin )*���4�.-5�60"� time. We alsoes-
tablishthe strongerresult that an optimal galled-treefor � minimizesthe numberof recombinations
over all phylogeneticnetworksfor � (not just galled-trees)andall choicesof ancestralsequence.This
is trueevenif multiple-crossover recombinationsareallowedin thecompetingnetwork.Thealgorithm
developedfor single-crossover recombinationcanbeextendedto handlebiologicalphenomenasuchas
multiple-crossover, gene-conversion,lateralgenetransferandrecurrentmutations.

2 Intr oduction to Toolsand Solutions

Themaintoolsthatweuseto solvetheroot-unknowngalled-treeproblemaretwographsrepresenting
“incompatibilities”and“conflicts” betweensites.We introducethesegraphshere.

Givena setof input sequences� , two columns
 and 7 in � aresaidto be incompatibleif andonly
if therearefour rows in � wherecolumns
 and7 containall four of theorderedpairs0,1;1,0;1,1;and
0,0.For example,in Figure1 columns1 and3 of � areincompatiblebecauseof rows 81��9:��;<�>= . Thetest
for theexistenceof all four pairsis calledthe”four-gametetest” in thepopulationgeneticsliterature.

Givenasequence� , twocolumns
 and7 in � aresaidto conflict(relativeto � ) if andonly if columns

 and7 containall threeof theabove four pairsthatdiffer from the 
?��7 pair in � 2.

Clearly, if a pair of columns
@��7 areincompatible,then 
?�+7 conflict relative to any sequence� . How-
ever, 
?��7 mayconflictrelativetosomesequence� , eventhough
?��7 arenot incompatible.Finally, observe
thatif � is in � , thenapair of columnsconflict relative to � if andonly if they areincompatible.

2.1 Incompatibility and Conflict Graphs

We definethe“incompatibility graph” A*�B��� for � asa graphcontainingonenodefor eachcolumn
(site) in � , andanedgeconnectingtwo nodes
 and 7 if andonly if columns
 and 7 areincompatible.
Similarly, givena sequence� , we definethe“conflict graph” ADC1�E��� for � (relative to � ) asa graph
containingonenodefor eachcolumnin � , andan edgeconnectingtwo nodes
 and 7 if andonly if
columns
 and7 conflict relativeto � . Figure1 shows theconflict graphrelativeto theall-zerosequence
� . Thisconflict graphis alsotheincompatibilitygraphfor � .

A “connectedcomponent”(or “component”for short), F , of agraphis amaximalsubgraphsuchthat
for any pair of nodesin F thereis at leastonepathbetweenthosenodesin thesubgraph.A “tri vial”
componenthasonly onenode,andno edges.The conflict graphin Figure1 hastwo components.Let
;G;GCH�E��� and ;I;:�E�J� bethenumberof non-trivial componentsin ADC6�B��� and AK�B��� respectively.

2In [9, 11], L wasassumedto be theall-0 sequence,andthe definition of conflict wasspecializedto that case,but the
definitionabove is consistentwith thatearlierdefinition.
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2.2 Prior structural results

Themainstructuralresultestablishedin [9, 11] is

Theorem2.1 If M is anygalled-treefor � with ancestral sequence
2

, thenanygall in M that contains
a sitefroma non-trivial componentF of AONP�E��� containsall thesitesof F , andcontainsno sitesfrom
anyothernon-trivial component.Further, anysite froma trivial componentthat is on a gall � canbe
movedto someedgetouching � , withoutotherwisechanging � .

Clearly, if a gall hasno sites,it canbe contractedto a singlenode(if not eliminatedentirely), so
we assumethateachgall containssomesites.We saythata galled-treeis a “reduced”galled-treeif no
gall containsa site from a trivial componentof AQNP�E��� . Every reducedgall hasat leasttwo sites,and
at leastthreeedgesdirectedoff of it. Theorem2.1 establishesthat if thereis a galled-treefor � with
ancestralsequence

2
, thenthereis a reducedgalled-treeM for � with ancestralsequence

2
, andthere

is a one-onecorrespondencebetweenthe non-trivial componentsof A N �B��� andthe galls of M . The
algorithmin [9, 11] producesareducedgalled-tree.Theorem2.1alsoleadsto

Corollary 2.1 Everyreducedgalled-treefor � , with ancestral sequence
2

, hasexactly ;G;RNP�E��� recom-
binationnodes.

It wasalsoprovedin [11] that if thereis a galled-treefor � , thenevery phylogeneticnetwork � for
� with ancestralsequence

2
( � neednot bea galled-tree)usesat least ;G;RN��B��� recombinationnodes.

This holdsevenif multiple-crossover recombinationsareallowedin � . Hence,whenthereis a galled-
treefor � with ancestralsequence

2
, we canefficiently solve Hein’s phylogeneticnetworkproblem

for � , (minimizing thenumberof recombinations),but only overnetworksthathave thesameancestral
sequence

2
.

The algorithmicconsequenceof Theorem2.1 is that whentrying to constructa galled-treefor �
with known ancestralsequence

2
, wecanfocusoneachnon-trivial componentF of A N �E��� separately.

Then,for eachsuchcomponentF of A N �B��� , we mustdeterminehow the sitescanbe arrangedon a
singlegall; we mustdeterminehow thegallscanbeconnectedtogetherin a treestructure;andwemust
determinewhereto placethesitesfrom trivial components.All of theseproblemsweresolvedefficiently
in [9, 11], assuminganancestralsequence

2
wasknown.

2.3 Moving to the Root-Unknown problem

We would like to follow thesameapproachfor theroot-unknown galled-treeproblem.However, the
algorithmin [9, 11] dependscritically onknowningtheancestralsequence.Thefirst,andmain,difficulty
now is that for any two sequences� and ��� , theconflict graphsADC6�B��� and ADC:ST�B��� maybedifferent
from eachother. Hencewithout knowing which ancestralsequencesallow a galled-tree(or if any will),
we cannoteventakethefirst stepof thepreviousalgorithm,i.e., building theappropriateconflict graph
to identify its components.Wefocusnext on thatdifficulty.

Theorem2.2 If there is a galled-tree for � with someancestral sequence,then there is an optimal
galled-treefor � where the(optimal)ancestral sequenceis oneof thesequencesin � .
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Proof Let M beanoptimalgalled-treefor � , andlet
2

betheancestralsequencefor M . By definition,
everygall containsonerecombination,andby theoptimalityof M , everygall � in M mustcontainapair
of sitesthatconflict relative to

2
. Further, asestablishedin [9, 11], everygall � musthaveat leastthree

edgesbranchingoff of it (i.e.,eachbranchingedgeis directedfrom anodeon � to anodeoff of � ), and
thefact thattheremustbeat leasttwo branchesedgesis eveneasierto establish.So,thereis a leastone
edgebranchingoff of � from a node � which is not therecombinationnodeof � . It follows that there
is a path � in M from theroot to someleaf U which doesnot containany recombinationnodes.Let ��V
bethesequencelabelingleaf U . Since M is a galled-treefor � , ��V is in � .

Now considerrerooting M at node U , making ��V theancestralsequence,andreversingthedirections
of all edgeson path � . Eachsuchreversalof anedge	 alsochangesthedirectionof themutationon 	 ,
sofor exampleif theoriginal mutationhadbeenfrom 0 to 1, it is now from 1 to 0. Thesereversalsdo
notchangeany of thelabelsof nodesin M , nordothey changewhichnodeis therecombinationnodeon
any gall. Hence,themodifiedgalled-tree,call it M
� , alsoderives � . Theancestralsequenceof M
� is �WV ,
a memberof � . Since M is optimal,and M
� containsthesamenumberof gallsas M , M
� is alsooptimal.X

Notethatit is not truethateverysequencein � canbeusedasanancestralsequenceof somegalled-
treefor � . We cancompletelycharacterizewhich sequencesin � canserve asancestralsequences,
but omit that from this paper. It is alsonot true that if sequence� in � is theancestralsequencefor
somegalled-treefor � , then � is anoptimalsequence.Still, Theorem2.2 implies thatboth theRoot-
Unknown Galled-TreeProblemandtheOptimalRoot-Unknown Galled-TreeProblemcanbesolvedin
)*�+�,Y��Z-[�6\"� timeby trying eachsequencein � astheancestralsequence,usingthepreviousalgorithm
from [9, 11]. But, a fasteralgorithm,andmoreinsightful resultis possible,usingthefollowing

Theorem2.3 If there is a galled-treefor � , thenthere is an optimal(reduced)galled-treefor � with
ancestral sequence

2
in � , where thegraphs AONP�E��� and AK�B��� are identical.

This follows immediatelyfrom Theorem2.2andthefact thatfor any sequence� in � , ADCH�E�J� and
A*�B��� areidentical.

Define ]_^ astheminimumnumberof recombinationnodesusedin any phylogeneticnetworkde-
riving � , over any choiceof ancestralsequence,even allowing multiple-crossover recombinationsat
any recombinationnode.

Theorem2.4 If there is a galled-treefor � , then ]_^`#$;G;<�B��� , thenumberof non-trivial connected
componentsof A*�E��� .

Proof It wasshown in [12, 1], that ;I;:�E�J� is a lower boundon ]_^ . By Theorem2.3, thereis a
reducedgalledtree M with ancestralsequence

2
, where ;G;�Na�E�J�K#b;I;:�E�J� , andby Corollary 2.1, the

numberof recombinationnodesin M is exactly ;G;RN��B��� . Hence,M is optimaland ]_^c#/;G;<�B��� . X
Hencewecanefficientlydetermine]_^ evenwithoutknowinganoptimalancestralsequence,if there

is a galled-treefor � .

3 Solving the Optimal Root-Unknown Galled-TreeProblem

In what follows, we assumethat � canbe derived on a galled-tree,andlet MQd denotean arbitrary
optimalgalled-treefor � with optimalancestralsequence

2 d , where AON6e and A*�B��� areidentical.By
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Theorem2.3, sucha sequence
2 d exists,andwe canfind thenon-trivial componentsof AON e �B��� even

thoughwe don’t know
2 d or MQd . By Theorems2.1 and2.3, eachgall in MQd containsall andonly the

sitesof onenon-trivial componentF of A*�E�J� , sowe canalsoefficiently determinethesitesthatgoon
eachgall in MQd . This is thefirst stepin solvingtheOptimalRoot-Unknown Galled-TreeProblem.

3.1 How to Connectthe Galls of M d

Wenext describeamethodto determinehow thegallsareconnectedtogetherin M d , withoutknowing
M d or theinternalarrangementof thesitesonany gall. To dothis,wefirst defineatree M , (conceptually)
createdfrom M d . For any sequence� andany setof siteson a componentF of A*�E��� , definesequence
�f�BFK� asthesequence� restrictedto thesitesin F .

WedefineM by conceptuallytransformingM d into M . Without lossof generality, weassumethatevery
node� on any gall � in M d is incidentwith exactly oneedgewhoseotherendis off of � . Suchanedge
is calledan“off-edge”,andmight bedirectedinto or outof � . To satisfythis assumption,we mayneed
to makesmall, local modificationsto MOd . For example,in the top gall in Figure1, the node � labeled
00100is incidentwith two edgeswhoseotherendis off thatgall. To remedythis,we cansimplycreate
anew edge���1���g� from � to � , andthenhave two edgesfrom � to thetwo endpointsof thetwo original
edgesout of � . If � is alsothe root of M d , we createa new root nodeandconnectit to � . The edge
betweenthemis theoff-edgetouching � . We alsoassume,without lossof generality, thateachnodeon
� hasadistinctsequencelabelingit. We canalwaysmodify � sothatit hasthis property.

For any node � on a gall � in MOd , let �1h denotethe sequencelabeling � , and let Fih denotethe
componentin A*�E��� whosesitesareon � . Labelthesingleoff-edgetouching� in MOd with �EFih:�G�1h �BFih"�?� .
Note that if an edgeconnectstwo galls, then the edgewill have two suchlabels. Thoselabelsare in
additionto any site(in a trivial componentof A*�E��� ) thatmight beon thatedgein MOd . Finally, contract
eachgall � in MQd to a singlenode j , label j with anidentifier for thecomponentF associatedwith � ,
andmakeevery edgeundirected.Theresultingundirectedtreeis M . Figure2 shows M derivedfrom the
treein Figure1.

Clearly, M specifieshow the gallsof MOd areconnectedto eachother, althoughit doesnot show the
internalarrangementof thesiteson any gall, nor doesit show wheretheroot of MQd is. But, if we know
M , we know a substantialamountabout MOd .

3.2 Constructing M

We definedM (conceptually)from MOd , but algorithmicallywe will go in theotherdirection.We will
constructM from � and A*�E�J� , withoutknowning MOd or

2 d . To do this,weuseaclassictheoremabout
treereconstruction.

Let M bea treewhereeachleaf is labeled.The removal of any edgefrom M createstwo connected
subtrees,andpartitionstheleavesof M into two sets(eachsetis in oneof thetwo subtrees).Eachsuch
bi-partitionis calleda“split”, andeachedgein M definesa distinctsplit. For a tree M , let �i�*��Mg� bethe
family of all thesplits,onefor eachedge.Theclassicsplitstheoremis:

Theorem3.1 Thefamily of splits, �k�*�+Ml� , uniquelydeterminestree M .

10



Therearemany proofsof Theorem3.1. Oneis obtainedimmediatelyfrom Theorem3.1.4(p. 44) in
[26]. Also, if M has� leavesand � edges,then M canbeuniquelyreconstructedfrom �k�*�+Ml� in )*���,���
time [7, 26].

Given Theorem3.1, the approachto constructingM is to learn �k�*� MQ� . The full explanationwill
involve reasoningaboutboth M and MOd , so first observe that every edgein M is in MOd , andthat every
split definedby an edge 	 in M definesthe samebi-partition of the leaves in MOd , when 	 is removed
from MQd . Althoughtheterm“split” is only definedfor a tree,we will alsouseit whenreferringto these
bi-partitionsin MQd .

Thefollowing theoremis thekey observationaboutGalled-Treesthatmakesit possibleto construct
�i�*� MQ� , eventhoughwe don’t know M or M d .

Theorem3.2 Supposeanoff-edge	 in M is labeledwith �EFih��I�1h:�EFih"�@� . Then �f�EFih"�i#/�1h �BFih"� for every
sequence� labelinga leaf of MOd on onesideof thesplit of MQd definedby 	 , and ���m�BFih<�on#p�1h:�EFih"� for
everysequence� labelinga leafon theothersideof thesplit. Hence,thesameis true for M .

Proof For notation,suppose	 is theoff-edgetouchingnode j in M , and j is derivedfrom gall � in
MOd , which is associatedwith connectedcomponentF in A*�E��� . Node � is a nodeon � , sowe focuson
� and MOd . Let 	g#��+�6�>�q�r� in MOd , andlet

2 d betheancestralsequencein MOd .
We will prove thefirst partof thetheoremfor eachnodein � , andthenprove thesecondpartof the

theorem.
Considerthecasethat � is thecoalescentnodeof � in MQd , so 	 is directedfrom �q� to � and �1h:�EFih"�i#2 dI�EFih"� . Thatis, sequence�1h restrictedto Fih is thesameastheancestralsequence

2 d restrictedto Fih .
Moreover, sinceall themutationsfor sitesin Fih occurin � , �f�EFih"�i# 2 d �EFih:� for any sequence� which
is on theroot sideof thesplit in MQd definedby 	 . Thatsamesplit occursin M , so �f�EFih"�O#c�1h��EFih"� for
everysequence� labelinga leafof MOd or M on therootsideof thesplit definedby 	 .

Now considerthecasethat � is not thecoalescentnodeof � , so 	 is directedfrom � to �q� . Clearly,
�1h@Ss�EFih:�t#u�1h:�BFih<� sinceno site in Fih canmutateon 	 . Let �t� be the subgraphof MOd rootedat �v� .
Sinceall mutationsof sitesin Fih occuron edgesin � , no sitesin Fih mutatein � � . Now let � be a
recombinationnodein �t� which is reachedfrom �q� without passingthroughany otherrecombination
nodes.Restrictedto thesitesin Fih , thesequenceslabelingthetwo parentsof � areidentical,andsothe
recombinationat � producesaarecombinantsequencewhich is identicalto theparentsequences,when
restrictedto thesitesin Fih . Hence, �1wv�EFih:�g#`�1h:�BFih<� . It follows thenby inductionon thenumberof
recombinationsencounteredon thepathfrom � , that �1xy�EFih"�D#c�1h �BFih"� for every node z in �t� , andin
particular, for every leaf sequence� in � � . Thisprovesthefirst partof thetheorem.

To prove thesecondpartof thetheorem,notethatfor any site 
 not in F h , thestateof site 
 is thesame
ateverynodein � . This is immediatefor everynodeotherthantherecombinationnode� of � , because
site 
 doesnotmutateon � . It remainstrueat � , becausethestateof 
 is thesamein thesequencelabels
of bothparentsof � , sotherecombinationmustretainthestateof site 
 . It follows that,restrictedto the
sitesnot on Fih , all nodeson � arelabeledwith thesamesequence.Now if �1h:�EFih:�Q#c�1xy�BFih"� for two
nodes� and z on � , then �1hg#��1x , whichweassumedearliercouldnothappen.Soeverynodeon � has
a distinct sequencelabel, restrictedto thesitesin Fih . This fact, andthefirst part of the theorem,now
establishthesecondpartof thetheorem.

X
It is alsotruethatif 	 is labeledwith asite 
 from atrivial componentof AK�B��� , thenall thesequences

ononesideof thesplit havea valueof 1 for site 
 , andall theothersequenceshave a 0 for site 
 .
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Theorem3.2 is importantbecauseit saysthat informationaboutthenodelabelson a gall is reflected
in thesequencesat theleaves,andhencethatinformationis containedin extantsequences.

3.2.1 Finding the splits family �i�*� MQ�
For eachcomponentF (trivial or non-trivial) in A*�E��� , define �$�EF*� to bematrix � restrictedto the
sitesin F . Theimportanceof Theorem3.2 is two-fold. First eachsequence�1h:�BFK� (which wasdefined
relativeto treesM and MOd , whichwedonotknow), showsupasasequencein �$�BFK� , andeachsequence
in �{�EFK� is asequence�1h �BFK� for somenode� onthegall associatedwith F . Second,therowsin �$�EF*�
thatcontainsequence�1h��EFK� , identify exactly thesplit associatedwith theoff-edge 	 touching � in M .

Weexploit thisobservationasfollows: eachdistinctsequence� in �$�EF*� definesa split in MQd andin
M : Onesideof thesplit definedby � is thesetof row indicesin �$�BFK� whoserowscontainsequence� ,
andtheothersideof thesplit is thesetof remainingrow indices. When F is a trivial component,this
approachdefinesthesamesplit twice,but thatcausesnoproblem,andoneof thecopiescanbedeletedif
desired.Hence,all of thesplitsof M d and M thatcomefrom labelededgesin M canbeefficiently found
from � and A*�E��� . M mayalsosohaveunlabelededges,but any unlabelededgeis incidentwith a leaf
of M , andhencecorrespondto splitswith onesiteon onesideandtheremainingsiteson theotherside.
We call these“leaf-splits”. Recall,thata splitsfamily from a treeuniquelydefinesthetree,andthatthe
treecanbeefficiently reconstructedfrom thesplitsfamily. Soin summary,

Theorem3.3 Tree M (including its requirededgelabels)canbeefficientlycreatedfrom � and A*�E���
by first creatinga family of splits �i�*� MQ� consistingof onesplit for each distinct sequencein �$�BFK� ,
for each non-trivial connectedcomponentF of A*�E�J� , andoneor two identicalsplits for each trivial
componentof AK�B��� , andoneleaf-split for each sitein � .

For example,with � from Figure1, thetwo setsof restrictedsequences�{�EF
|�� and �$�EF Y � , andthe
computedM areshown in Figure2.Since M is unique,we have thefollowing

Theorem3.4 Tree M is invariantoverall optimalgalled-treesfor � .

3.3 From M back towards MQd

Thenext stepin thesolutionof theRoot-Unknown Galled-TreeProblemis to “re-inflate” thenodes
in M thatrepresentgallsin MQd .

We first needto identify every nodein M thatwascreated(conceptually)by contractinga gall � in
MOd to a singlenode j . The key to this processis to notethat eachsuchnode j in M is incidentwith
morethanoneedgein M , andthatevery edgeincidentwith j hasa label �BFg�I�D� , wherethe identifier F
is thesameon eachedgeincidentwith j . Further, this is truefor no othernodesin M . Using that fact,
we canconstructively andefficiently identify thosenodesin M thatmustbeexpandedto becomea gall.
Moreover, from F , we know which sitesareon the gall, andwe know �$�EF*� , the setof F -restricted
nodelabelson thegall.
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Figure 2. The sites of � are par titioned into two components of �$�EA}� , and each is used to create a
set of splits, along with the leaf-splits defined by each leaf (row in � ). The tree M is the unique tree
defined by these splits.

3.3.1 Arranging the sitesof F on �
We now describehow to arrangethesitesof F on a gall � . Sincetheremaybesomevariability in how
thesitescanbe arranged,We won’t be ableto reconstructthe original galled-treeMOd for sure,but we
will still reconstructanoptimalgalled-treefor � from M . (Notehowever, it wasshown in [11] thatthe
variability is very small).

Themethodto arrangethesiteson � is asmallmodificationof themethoddescribedin [9, 11] for the
RootedGalled-TreeProblem,andis specializedto the casethat only single-crossover recombinations
areallowed. Given F it is easyto determinea recombinationpoint ( that couldbeusedon thegall �
containingthesitesof F . See[9, 11] for moredetails.

To understandthemethodfor arrangingthesites,(conceptually)focusonagivenarrangementof sites
of F on gall � in M d , in isolationof the restof M d . Now remove the recombinationnode � from � ,
remove the two edgesentering � , andmakethe edgesundirected. The resultinggraphconsistsof a
singlepathcontainingall thesitesin F . Let z and ~ denotetheendsof this path. For eachnode � on
this path,addanedgefrom � branchingoff thepath,andlabel its leaf endwith �1h:�EFK� . Theresultis an
undirectedperfectphylogeny, denotedM}�EFK� , thatby definitionderivesthesequenceslabelingtheleaves
of M��BFK� . Further, �1wv�BFK� canbe formedby a single-crossover recombinationof the sequences�1xy�EF*�
and �1� �BFK� .

It follows from Theorem3.2, that the leaf labelsof M��BFK� areexactly thesequencesin �$�BFK� , other
than the sequence�1wv�EF*� . That is, M��BFK� is an undirectedperfectphylogeny for all the sequencesin
�{�EFK� otherthan �1wv�EF*� . Hence,we have

Theorem3.5 If there is a galled-tree for � , then there is a sequence� in �{�EFK� , such that after
removalof all copiesof � , there is anundirectedperfectphylogenyfor theresultingmatrix; thelabeled
edgesof that perfectphylogenycontainall sitesin F organizedinto onepath; anda single-crossover
recombinationof thetwo “end” sequences�1xy�EFK� and �1�:�BFK� createssequence� .
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It is aclassictheoremthatif asetof sequencescanbederivedonanundirectedperfectphylogeny, then
thatperfectphylogeny is unique(exceptfor theorderof sitesthatareon thesameedge).See[7, 8] for
oneexposition. Hence,given � and F , if we couldguessthesequence� , we couldcreatetheunique
undirectedperfectphylogeny, which thenwould indicatea way to arrangethesiteson � . However, if
weremoveall copiesof adifferentsequence� , andyet thereis anundirectedperfectphylogeny for the
resultingmatrix,whereall thesitesin F arecontainedin onepath,andtherecombinationof thetwo end
sequencescreates� , thenthis otherperfectphylogeny canalsobeusedto arrangethesiteson � . We
summarizetheseobservationin thefollowing algorithm.

Site-ArrangementAlgorithm for gall � correspondingto component F
1) Let �$�EF*� bematrix � restrictedto thesitesin F .
2) For eachdistinctsequence� in �{�EFK� do:
3) Let �$�EFD�?��� be �{�EFK� after the removal of all rows with sequence� . Check if there is an

undirectedperfectphylogeny M}�EFK� for �$�BFg�?��� , whereall siteson F arecontainedin onepathwhose
endsequencescanberecombined(with asingle-crossover) to createsequence� .

If theansweris “yes”, thenoutputthepair ( ����M}�EF*�?� .
Thefirst partof Step3) is implementedby usingthealgorithmin [7] or [8] thattestsif �$�BFg�@��� can

bederivedby a perfectphylogeny M}�EF*� . If M}�EF*� hastwo endpoints,labeledby sequences�1xv�BFK� and
�1���EF*� , we cantest if � canbe createdby a recombinationof �1xv�BFK� and �1���EF*� asfollows: Find the
lengthof thelongestprefixof �1xy�EFK� thatmatchesaprefixof � , andfind thelengthof thelongestsuffix
of �1x!����� thatmatchesa suffix of � . Let �!x and �"x denotethesetwo lengths. Similarly, find �!� and
�"� , which aredefinedfor sequences�1�:�EF*� and �1� �BFK� . Thenif � haslength � , � canbeobtainedby
recombining� x �EFK� and � � �EF*� if andonly if � x �BFK�,-�� � �BFK�i�/� or � � �EF*��-�� x �BFK�i�/� .

Sincewe assumedthereis a galled-treefor � , theSite-ArrangementAlgorithm will find andoutput
at leastonepair �T����M}�EFK�@� . However, a pair �����>M��BFK�?� doesnot fully specifythearrangementof gall
� , becausethe choiceof coalescentnodehasnot beenmade. But �T����M��BFK�@� doesdefinethe parents
of therecombinationnodeon � , andhencedoesdefinetherecombinationnode � , andalsodefinesthe
circularorderof thesiteson � . It is easyto seethatanynode� on � , otherthantherecombinationnode
� , canactasthecoalescentnodefor � with thatcirculararrangement:simply direct theedgeson � to
form two disjointdirectedpathsfrom � to � . At thatpoint, � is fully specified.Theparticularchoiceof
coalescentnodewill bemadeata laterpoint in thealgorithm.

3.4 Choosingthe arrangementsand the root node

For eachnode j in M that representsa gall � in MQd , we mustreplacej with � , andarrangethesites
on � usingoneof thepairs �����>M��BFK�?� foundby theSite-ArrangementAlgorithm, andwe mustchoose
a coalescentnodefor the arrangement.Of course,we mustbe careful to connectthe nodeson � to
thecorrectedges:any node � on � whose F -restrictednodelabel is � h �EFK� mustbeconnectedto the
(unique)edgeincidentwith j thathaslabel �BFg�I� h �BFK�@� in M . We mustalsochoosea root for thegalled-
tree.However, thechoicesfor thearrangementsof thegalls,andthechoicefor therootplacementarenot
independent;onechoicecanconstraintheothers.Theproblemis thatall edgesin thefinal galled-tree
MOd mustbedirectedawayfrom theroot,andnoedgecanbedirectedinto arecombinationnodeof agall.
Sincethearrangementof agall specifiestherecombinationnode,thesechoicesarenot independent.The
arrangementsof thegalls(whenthereis achoice)mustbecoordinatedwith thechoiceof theroot node.
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Wesolve thecoordinationproblemby directingsomeedgesin M , asfollows. Supposethatfor nodej
representinga gall � in M , theSite-ArrangementAlgorithm findsonly onepair �T����M��BFK�@� . Thenin M ,
we direct the(unique)edgein M that is labeled �EFD�?��� away from j . This recordsthe informationthat
thereis only onerecombinationnodepossiblefor � , andtheoff-edgeincidentwith that recombination
nodemustbedirectedout of thatnode. After directingall suchedges,any node � in M canbechosen
asthe root of M , if andonly if every nodein (the partially directed) M canbereachedfrom � usinga
paththatdoesnot go oppositeto thedirectionof any directededge.Sothealgorithmmustfind all such
permittedpointson M or declarethattherearenone.

After picking a permittedroot point (if there is one), direct all of the edgesin M away from the
root. Theneachnodein M will have at mostoneedgedirectedinto it, andif a node j hasonedirected
edgeinto it and is expandedto a gall � , the incomingedgedefinesthe uniquecoalescentnode � of
� . Finally, for any gall � (associatedwith connectedcomponentF in AK�B��� ), chooseany �T����M}�EFK�@�
foundfor F by theSite-ArrangementAlgorithm, wheretherecombinationnodeis not � . Add thenode
� , labeledwith sequence� , to M��BFK� anddirectedtwo edgesinto � from thetwo end-nodesof M}�EF*� .
That recombinationcycle, alongwith thechoiceof coalescentnodefully specifiesthearrangementof
gall � , anddoingthis for everygall completestheconstructionof MQd .

3.5 Correctnessand Time Complexity

Eachstepof the algorithmhasbeenproven correcton theassumptionthat thereis a galled-treefor
� . Thegalled-treecreatedhasexactly ;G;�^ gallsandrecombinationnodes,andhenceis optimalusing
the lower boundmentionedearlierthat ]_^_��;G;R^ . If thereis no galled-treefor � , theneithersome
stepof thealgorithmwill not beexecutableasdescribed,or thealgorithmwill terminatebut thegraph
producedwill not bea galled-treefor � . So,algorithmically, onecansimply checktheoutputto see
whetherit is a galled-treederiving � . If it is not, thenthereis no galled-treefor � . However, closer
examinationof the algorithm shows that when all stepscomplete,the graphproducedis an optimal
galled-tree.If thereis no galled-treefor � , oneof thestepsof thealgorithmwill not beexecutableas
described,andthealgorithmwill correctlyconcludethatthereis nogalled-treefor � .

For an � by � input matrix � , all of thestepsof thealgorithmcanbeimplementedin )*���,��-�� 0 �
time. Thefirst )*���4��� termis for a radix sortof thecolumnsof � to grouptogetheridenticalcolumns.
It wasestablishedin [29] that when thereis a galled-treefor � , the numberof edgesin it, andthe
numberof distinctcolumnsin � canbeat mosttwice thenumberof distinctrows. Soafterremoval of
identicalcopies,thenumberof columnsis )*�+��� . The )*���60:� termis for finding the )*���,Y"� incompatible
pairsin � andbuilding thegraph A*�E��� . That worst-caseboundcanbereducedin theorybecauseit
is known [13, 2] how to to find all the pairsin the time neededto multiply two � by � matrices.The
numberof splitsdefinedby � is )K�+��� becauseM has )*����� edges.M canbeconstructedin )*�+�,Y"� time
[7, 8], from the � by � matrix describingthesplits. Given �$�BFg�?��� , theuniqueperfectphylogeny M
for �{�EFD�?��� (if thereis one)canbefoundin )*��� Y � timeby thesamealgorithm[7, 8], andtestingif �
canbe formedby therecombinationof thetwo endsequencesof M canbedonein )*����� time. All the
remainingstepstake )*��� Y � time. Hence

Theorem3.6 Givenan � by � input matrix � , an optimalgalled-treefor � (if there is a galled-tree
for � ) canbefoundin )*���4��-�� 0 � time.

Thealgorithmhasbeenimplementedin aPerlprogramgalledtree.pl,which is availableat
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wwwcsif.cs.ucdavis.edu/̃ gusfield/galledtree.tar.

4 Extensionsto other complexbiological phenomenaand structur edrecombina-
tion

So far, recombinationin a galled-treewas assumedto be single-crossover recombination,and the
solutionto the Optimal Root-Unknown Galled-TreeProblemwasdevelopedonly for single-crossover
recombination. This was donefor continuity with earlier papers. However, the algorithm is easily
extendedto allow multiple-crossover recombinationat any recombinationnode,andmultiple-crossover
recombinationcanbeusedto modelmany complex biologicalphenomena.Whenmultiple-crossovers
are allowed at recombinationnodes,but all recombinationcycles are disjoint, we call the resulting
networka “multiple-crossovergalled-tree”.

To modify thealgorithm,wesimplychangeStep3) of theSite-ArrangementAlgorithm asfollows:

3)Let �$�EFD�?��� be �$�EF*� aftertheremovalof all rowswith sequence� . Checkif thereisan
undirectedperfectphylogeny M��BFK� for �$�BFg�?��� , whereall siteson F arecontainedin one
pathwhoseendsequencescanberecombined(allowing multiple-crossoverrecombination)
to createsequence� .

Let �1x��EFK� and �1�:�EF*� denotethetwo endsequences.We cantestif � canbecreatedby a multiple-
crossover recombinationof �1xv�BFK� and �1�:�EFK� , startingwith a prefix of �1xv�EF*� , asfollows:

Set 
 to 1, andset � to �1xv�BFK� .
Until ( 
 is greaterthanthelengthof � ) �
Find the longestsubstringof � startingat position 
 thatmatchesa substringof � starting
at position 
 . If thereis none,thenstop,andreturn“No”. Otherwise,set 
 to oneposition
pasttheright endof thosematchingsubstrings.If � is �1x��EFK� , set � to �1� �BFK� , elseset � to
�1xv�EF*� .
�

Return“Yes”.

We can similarly test if � can be createdby a multiple-crossover event, startingwith a prefix of
� � �EF*� , andhencetestif � canbecreatedby a recombinationof � x �BFK� and � � �EF*� . If bothtestsreturn
“Yes”, then the oneusing the fewestnumberof crossoversalsodeterminesthe minimum numberof
crossoverspossibleto create� from � x �EF*� and � � �EF*� , andin someapplicationsit maybedesirableto
usethatone.Thetimefor themodifiedStep3) is clearly )K�+��� . For differentbiologicalapplications,we
canput aboundon thenumberof crossoversallowed.

Clearly, whenthemodifiedalgorithmproducesamultiple-crossovergalled-treefor � , thenumberof
recombinationnodesusedis ;I;�^ , which is ]_^ by the lower boundresultmentionedearlier. So the
algorithmproducesaphylogeneticnetworkthatis optimalwith respectto thenumberof recombination
nodes(or events)thatoccur. It is notnecessarilyoptimalwith respectto thenumberof crossoversused.

Conversely, supposethereis a multiple-crossovergalled-treeM for � with someancestralsequence.
Theorems2.1, 2.2, 2.3, 2.4, 3.4, and3.5 arethe keys to proving thecorrectnessandoptimality of the
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solutionto theRoot-Unknown OptimalGalled-TreeProblem,whenonly single-crossoversareallowed.
Eachof thosetheoremsis easilymodifiedto extendto thecasewhenmultiple-crossoverrecombinations
areallowed.We leave thedetailsto thereader. In summary,

Theorem4.1 If there is a multiple-crossovergalled-treefor � , thenthemodifiedalgorithm will find
one,andit will usetheminimumnumberof recombinationnodesoverall phylogeneticnetworksfor �
andall choicesof ancestral sequence. Thetimeboundfor thealgorithmremains)*���4��-�� 0 � .

Thealgorithmto find a multiple-crossover galled-treefor � , or to determinethat thereis none,has
beenimplementedastheprogrammulticross.plandcanbefoundatwwwcsif.cs.ucdavis.edu/̃ gusfield/galledtree.tar.

4.1 Multiple-cr ossoversmodelcomplexbiological phenomena

We have previously mentionedthat “gene conversion” [3] can be viewed as a multiple-crossover
recombinationwith exactly two crossovers. Gene-conversionoccursduring meiosis,and is observed
in populationdata(i.e., sequencestakenfrom individualsof thesamespecies).Throughvery different
biologicalmechanisms,andoftenat a differentbiologicalscale,“hybrid speciation”and“lateral gene-
transfer”causethemovementof geneticmaterialbetweentwo sequences(oftenbetweentwo species)
[22, 21,18]. However, mathematically(but not biologically) thesephenomenalook like whatwe have
definedasmultiple-crossover recombination.Hence,the algorithmto find multiple-crossover galled-
treescanbe usedto derive a setof sequencesbelieved to have beencreatedby mutationandhybrid
speciationor ] lateralgene-transfer. Thesemodelsalsohaveapplicationin areasoutsideof biology, such
asin linguistics[20].

Multiple-crossoverrecombinationcanalsobeusedto model“back-mutation”or “recurrent-mutation”.
Back-mutationoccurswhenthe stateof a site mutatesbackto its ancestralstate. Recurrent-mutation
occurswhenthestateof asiteis permittedto mutatefrom its ancestralstatemorethanoncein anevolu-
tionaryhistory. Eachsuchmutationcanbemodeledasa two-crossoverrecombinationin aphylogenetic
network. For example,a singleback-mutationat site 
 in a sequence� canbe modeledby the two-
crossover recombinationof theancestralsequence

2
andsequence� , wheretheprefix andsuffix come

from � , andonly site 
 comesfrom
2

. If thenumberof back-mutationsis small,thenthe“recombination
cycles” createdby thismodelingof back-mutationsmaybedisjoint. We canmodify Step3) of theSite-
ArrangementAlgorithm to only allow a recombinantsequence� to bederivedfrom theendsequences
of M��BFK� by asingleback-mutation(or perhapsseveralback-mutationsatdifferentsites,if thatis mean-
ingful). Onecanagainprove that if thereis a phylogeneticnetworkwith back-mutationswhereall the
recombinationcyclesaredisjoint, thenthemodifiedalgorithmwill in fact find onewhichminimizesthe
numberof back-mutationsover all evolutionaryhistoriesthatallow back-mutationsandall choicesof
ancestralsequence.Recurrent-mutationscanalsobehandledin a similar way, andmoregenerally, the
algorithmcanbemodifiedto allow generalrecombination,back-mutationandrecurrent-mutationin an
evolutionaryhistory.

Thusthealgorithmfor solvingtheRoot-Unknown OptimalGalled-TreeProblemis actuallyageneral
framework for efficiently minimizing thenumberof deviationsfrom theperfectphylogeny model,pro-
videdthatthereis anevolutionaryhistoryfor thesequenceswherethe“recombinationscycles” (usedto
modelthedeviations)aredisjoint. Disjointnessis likely to occurwhenthenumberof deviationsfrom
theperfectphylogeny modelis modest.Thus,wehavedescribedin thispaperageneralalgorithmictool
for studyingcomplex evolutionaryphenomena,whenthenumberof nonperfectphylogeneticeventsis
modest.
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