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Abstract

Phylogenetimetworksare modelsof sequencevolution that go beyondtrees,allowing biological
opeiationsthat are not consistentith tree-likeevolution. Oneof the mostimportantof thesebiological
opemtionsis (single-cossoveryecombinatiorbetweenwo sequencesAn establishegroblem[14, 15,
28,27,29, 19, 17] is to find a phylogenetimetworkthat derivesan input setof sequencesninimizing
the numberof recombinationsised. No efficient, geneal algorithm is knownfor that problem. An
efficient algorithm doesexist for the problemwhenthe networkis constainedto be a “galled-tree”,
andthe ancestal sequencdor the galled-treeis specifiedn advance]9, 11, 10]. However, the more
biologically realistic caseis that no ancestal sequencas knownin advance,and the only previous
algorithmicsolutionfor that casetakesexponentialtime

In this paperwe give an efficient solutionto the galled-treeproblemwhenno ancestal sequenceés
knownin advance and showthat the solution producedhas very strong global optimality properties.
W& also indicate how theseresultsgenealize to other comple biological phenomenaud as gene-
conversion lateral genetransfey hybrid speciationandbad andrecurent mutation.

1 Intr oduction to PhylogeneticNetworks and Problems

With the growth of genomicdata, much of which doesnot fit ideal evolutionary-treemodels,and
the increasingappreciationof the genomicrole of suchphenomenas recombinationrecurrentand
back mutation, horizontalgenetransfer cross-speciebybrid speciationgenecorversion,and mobile
geneticelementsthereis greatemeedto understandhe algorithmicsandcombinatoricof phylogenetic
networkson which extant sequencesvere derived [24, 25]. Recombinationis particularlyimportant
in deriing chimeric sequences a populationof individuals of the samespecies.Recombinatiorin
populationss the key elementunderlyingtechniqueghatarewidely hopedto locategenesnfluencing
geneticdiseases.

tDepartmenobf ComputerScience 3051Engineerindl, Universityof California,OneShieldsAvenue Davis, CA 95616.
Email: gusfield@cs.ucdés.eduResearctsupportedoy NSFgrantEIA-0220154. Thanksto C. Langley andS. Eddhuand
D. Hickersonfor helpful corversationsn this topic.



Hein[14, 15,28, 27] introducedhe phylogenetimetworkproblem(with recombination) Constructa
phylogenetimetworkthatderivesa givensetof binary sequencesninimizing the numberof recombi-
nationsused.No efficient, generaklgorithmis known for thatproblem,andit is claimedto be NP-hard
[29]. Theminimizationcriteriais motivatedby the generalutility of parsimoty in biological problems,
andbecausenostevolutionaryhistoriesarethoughtto containa smallnumberof obsenablerecombina-
tions. Theassumptiorthatthe sequencearebinaryis motivatedtoday in studiesof populationgwhere
theindividualsareall from thesamespecies)by theimportanceof SNPdata.ln SNPdata,eachsitecan
takeon atmosttwo stateqalleles)[4]. At thecross-specielevel, theassumptiorthatthe sequenceare
binaryis motivatedby the evolution of macro&olutionarytraits, which areeitherpresenbor absenin a
specieg6].

Wangetal. [29] focusedon a specialcaseof the phylogenetimetworkproblem,wherethe ancestral
sequencédor the networkis assumedo be knownin advance andwherethe phylogeneticnetworkis
requiredto be a“galled-tree”(definedbelow), whereall recombinationgnvolve only single-crosseers.
Gusfieldetal. [9, 11] gave a completeandefficient algorithmto determineif the input sequencesan
be derivedon a galled-tree.Underthoseconditions that papersolvesthe mostgeneral special-casef
the phylogenetimetworkproblemthat hasa known efficient solution. However, the morebiologically
importantcaseis thatthe ancestrakequenceés not known in advance. Then,the problemis to find (if
oneexists)asequence, suchthatthereis a galled-treewith ancestrabequence thatderivestheinput
sequencesOnecanof courserun the prior algorithm[9, 11] anexponentialnumberof times,oncefor
eachpossiblechoiceof ancestrabequencehut thatis impracticalin general.Moreover, we would like
to allow multiple-crosswer recombinations.In this paper we addresghe problemwhenno ancestral
sequencés known, andwhenmultiple-crosswer recombinationsreallowed.

1.1 Formal definition of a phylogeneticnetwork

Therearefour componentsieededo specifya phylogenetimetworkthat allows multiple-crosswer
recombinatior(seeFigurel).

A phylogenetimetwork V is built onadirectedacgyclic graphcontainingexactly onenode(theroot)
with no incomingedgesa setof internalnodesthat have bothincomingandandoutgoingedgesand
exactly n nodegtheleaves)with no outgoingedges Eachnodeotherthantheroot haseitheroneor two
incomingedges A nodez with two incomingedgesds calleda recombinatiomode.

Eachinteger (site)from 1 to m is assignedo exactly oneedgein N, but for simplicity of exposition,
noneareassignedo ary edgeenteringa recombinatiomode. Theremay be additionaledgesthatare
assignedo integers.We usetheterms“column” and“site” interchangeably

Eachnodein N islabeledoy anm-lengthbinarysequencestartingwith therootnodewhichis labeled
with somesequencei, calledthe“root” or the “ancestral’sequenceSince N is agyclic, the nodesin
N canbe topologically sortedinto a list, whereevery nodeoccursin the list only after its parent(s).
Usingthatlist, we canconstructvely definethe sequencethatlabelthenon-rootnodesjn orderof their
appearanca thelist, asfollows:

a) For anon-recombinatiomodev, let e bethesingleedgecominginto v. Thesequencéabelingv is
obtainedirom the sequencéabelingv’s parentby changingthe state(from O to 1, or from 1 to 0) of the
valueatsites, for everyinteger: onedgee. Thiscorrespond$o a mutationat site: occurringon edgee.

b) For the recombinationat nodex, let 7 and 7’ denotethe two m-lengthsequencefabelingthe
parentsof x. Thenthe “recombinantsequence’X labelingx canbe ary m-lengthsequencerovided
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thatatevery site:, thecharactein X is equalto the characteatsite: in (atleast)oneof Z or 7’.

The recombinatiornt‘event” that createsX from Z and 7’ is called a “multiple-cross@er recombi-
nation”. To fully specifythe recombinationevent, we mustspecify for every position: whetherthe
characteiin X “comesfrom” Z or Z'. This specifications forcedwhenthe charactersn 7 and 7’ at
position: aredifferent. Whenthey arethe same,a choiceof 7 or Z’ mustbe specified. For a given
event,we saythata crossoveroccursat position: if the characterat positions: — 1 and: comefrom
differentparents.lt is easyto determinethe minimum numberof crosseersneededo createX by a
recombinatiorof 7 and7’.

The sequencesabeling the leaves of N are the extant sequencesi.e., the sequenceshat can be
obsened. We saythatan (n, m)-phylogenetimetwork N derives(or explains)a setof n sequences/
if andonly if eachsequencén M labelsoneof theleavesof N.

With thesedefinitions, the classic“perfect phylogery” [7] is a phylogeneticnetwork without ary
recombinations.That is, eachsite mutatesexactly oncein the evolutionary history, and thereis no
recombinatiorbetweersequences.

Therearetwo restrictedormsof recombinatiorthatareof particularbiologicalinterest.Oneis where
X isformedfrom aprefixof oneof its parentsequence§” or Z’) followedby a sufix of theotherparent
sequenceThisis called“single-crosswer recombination’sinceit usesexactly onecrosseer, andit is
thedefinitionof recombinatiorusedin [9, 11]. In thatcase the parentsequenceontributing the prefix
canbe denotedP, andthe parentsequenceontributing the sufiix canbe denotedS, andthe labels
P and S usedin Figure 1 shav which parentis the P-parentand which is the S-parent. The other
caseof restrictedrecombinations when X is formedfrom a prefix of one parentsequencefollowed
by aninternalsegmentof the otherparentsequencefollowedby a suffix of the first parentsequence.
Thisis atwo-crossoer recombinatiorandwhenit occursin meiosis,it is called“gene-corersion”. In
gene-cowmersion,the segmentfrom the secondparentis short,around300 basepairs. It is believed[3]
that during meiosis,single-crosseer recombinations the dominantform of recombinatiornoccurring
in intervalsof DNA containedbetweemeighboringgeneswhile gene-comersionis the dominantform
of recombinationin intervals of DNA containedinside a single gene. Genecorversionis known to
be a very importantmolecularandgeneticohenomenonbut it hasbeenhardto studybecausef the
lack of analyticaltools andthe lack of fine-scaledata. In a differentbiological context, whatwe have
definedastwo-crosseoerrecombinatiormodelsthebiologicalphenomenaf “lateral gene-transferand
“hybridizationspeciation”.

Whatwe have definedhereasa phylogenetimetworkwith single-crosseer recombinations the di-
graphpartof thestochastigprocessalledan“ancestrafecombinatiorgraph”in the populationgenetics
literature(see[23] for example). We shouldnotethat meioticrecombinatioris a phenomenomnhat oc-
cursinside a single specieswhile the term “phylogery” mostcorrectly refersto evolutionary history
involving severalspeciesThereforejt is notcompletelycorrectto usetheterm“phylogeneticnetwork”
for a history of meioticrecombinationsThetermis morecorrectfor a history of hybridizations since
thoseoccurbetweenspecies.However, in the ComputerScienceliterature(andin somepartsof Bi-
ology), the term “phylogery” hascometo be synonomouswith “evolutionarytree”, regardlessof the
actualdatabeing studied. Similarly, the term “phylogeneticnetwork” hasbeenintroducedin earlier
paperdo referto evolutionarytreeswith theincorporationof recombination We continuethe aluseof
theterm“phylogenetic”in this paper

The phylogeneticnetwork problemsstudiedin [17, 19, 14, 15, 28, 27, 11] all assume&hat recom-
binationis single-crosseer recombination.For continuity with thosepaperswe will first developan
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algorithmthat producesetworksthatonly usesingle-crosseer recombination However, the optimal-
ity of the networksproducedby that algorithmwill be provenin comparisornto networksthat allow
multiple-crosswer recombinations.n the last sectionof the paper we indicatehow to generalizehe
algorithmandthe main resultto allow multiple-crosswer recombinationsand discussthe biological
utility of suchrecombinations.
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Figure 1. A phylogenetic network that derives the set of sequences M. The two recombinations
shown are single-cr osso ver recombinations, and the crossover point is written above the recombi-
nation node. In general the recombinant sequence exiting a recombination node may be on a path
that reaches another recombination node, rather than going directl y to a leaf. Also, in general, not
every sequence labeling a node also labels a leaf.

1.2 Rootedand Root-Unknown problems

Hein’s phylogenetimetworkproblemis to constructa networkthatderivestheinput setof sequences,
M, minimizingthe numberof single-crosseer recombinationsised. That problemcanbe addressed
eitherin therootedcase or theroot-unknavn case.

In therootedphylogenetimetworkproblem,a requiredroot or ancestrabequencer for the network
is specifiedin adwance. In the root-unknowrphylogeneticnetworkproblem,no ancestrasequences
specifiedn adwance andtheproblemis to selectanancestratequencé, sothata phylogenetimetwork
for M with ancestrabequence? minimizesthe numberof recombinatiomodesover all phylogenetic
networksfor M, andary choiceof ancestrabequence.

Since no efficient generalsolution is known to Hein’s problem, Wang et al. [29] introduceda
biologically-motiatedstructuralrestrictionof the problem.

1.3 A structural restriction

In aphylogenetimetwork NV, let w beanodethathastwo pathsoutof it thatmeetatarecombination
nodex. Thosetwo pathstogetherdefinea “recombinationcycle” (). Nodew is calledthe “coalescent
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node”of ), andx is therecombinatiomodeof (). In Figurel, thecoalescenhodeof thetoprecombina-
tion cycleis labeledd0000 andthe coalescenhodeof the bottomrecombinatiorcycle is labeled00100.
A recombinationcycle in a phylogeneticnetwork that sharesno nodeswith ary otherrecombination
cycleis calleda“gall” (imagineawasps gall in atree). We saya site: “appears’or “mutates”or “is
contained”on a gall @) if : labelsone of the edgesof (). A phylogeneticmetworkis calleda “galled-
tree” if every recombinatiorcycle is agall, andonly single-cossoverecombinationsreallowed. The
phylogenetimetworkin Figurel is agalled-tree.

If M cannotbe derived on a perfectphylogery, we would like to deviate from a tree by aslittle
asnecessary Ratherthan having a phylogeneticnetworkwith a comple interleaving of cycles, it is
preferablg(if possible}o have atreewith a few extra edgesgachcreatinga disjoint cycle. Thatis, we
would like a galled-treeif possible,particularlyif it doesnot usemorerecombinationghanareused
by morecomple phylogenetimetworks. Simulationshave shavn thatwhenthe recombinatiorrateis
low or moderategalled-treesare frequentlyobsered [5], particularlywhenno ancestrasequences
specifiedin advance. For example,whenn = m = 30 andthe recombinationparameter- is setto
1 in Hudsons MS coalescensimulationprogram[16], about85% of the datasetsare derivableon a
galledtree,andwhenr is setto 2, about70% of the datasethave galled-trees.See[9, 11] for further
motivationfor galled-trees.

TheGalled-TreeProblem s to determinevhetheror notaninput setof sequences/ canbederived
on a galled-tree whenthe ancestrakequences known in advance. Wanget al. [29] introducedthe
problem,and provided an efficient algorithmthat solvesit in some,but not all, caseqsee[11] for a
discussiorof this).

In [9] we developedan efficient algorithm (O(rnm + n®)-time) that solvesthe galled-treeproblem.
Further we shavedin [11], thatwhenthereis a galled-tredor input M, with agivenancestrakequence
A, thealgorithmcreatesa galled-treghatusesthe minimumnumberof recombinationsover all phylo-
geneticnetworksfor M with *in [11] but wasnot alwaysstatedexplicitly there. This resultholdseven
if multiple-crosswerrecombinationsreallowedin the competingohylogenetimetworks.

1.4 The Main Problem: The Ancestral Sequenceés Usually Unknown

Usually, we do not know whattheancestrabequencés, andthe existenceof a galled-treefor M can
dependnthespecificancestratequencéhatis used.For example thereis no galled-treavith ancestral
sequencd 1000for the matrix M shavn in Figurel, while, asshown, thereis onewhenthe ancestral
sequences 00000.Moreover, whenthereis morethanoneancestrasequencavhich allowsagalled-tree
for M, theminimumnumberof recombinationmeededfor specificancestrabequenceandiffer. For
example,the sequencef1, 11, 10 canbe derived on a perfectphylogery without any recombinations,
if ary of thosethreesequences the ancestrasequencebut if 00 is the ancestrasequencethenone
recombinations neededHencewe have thefollowing two problemswhich we addressn this paper:

The Root-Unknown Galled-TreeProblem: Given M, find a sequence suchthatthereis a galled-
treefor M with ancestrabequence, or determinghatthereis none.

The Optimal Root-Unknown Galled-TreeProblem: If thereis a galled-treefor M, find onethat
minimizesthenumberof recombinationsverall galled-treesor M, andoverall choicesof theancestral

This lastconditionis implicit ancestrasequencet.



sequenceThe solutionis calledan “optimal galled-tree’for M. Theancestrasequencef anoptimal
galled-tredor M is calledan“optimal ancestrabequencefor M.

A secondargeficieng in theexisting methodis thatwe would alsolike to handlea broaderangeof
biologicalphenomenghansingle-crosseer recombination.

1.5 Main Results

We efficiently solve the Root-Unknavn Galled-Tree Problemwith an algorithmthat alsosolvesthe
Optimal Root-Unknavn Galled-Tree Problem. The algorithmrunsin O(rnm + »?*) time. We alsoes-
tablishthe strongerresultthat an optimal galled-treefor M minimizesthe numberof recombinations
over all phylogenetimetworksfor M (notjustgalled-treespndall choicesof ancestrasequenceThis
is true evenif multiple-crosswer recombinationsreallowedin the competingnetwork. The algorithm
developedfor single-crosseer recombinatiorcanbe extendedto handlebiologicalphenomenauchas
multiple-crossweer, gene-cowuersion lateralgenetransferandrecurrentmutations.

2 Intr oduction to Toolsand Solutions

Themaintoolsthatwe useto solve theroot-unknavn galled-tregoroblemaretwo graphsrepresenting
“incompatibilities” and“conflicts” betweersites.We introducethesegraphshere.

Givenasetof input sequencesd/, two columns: andj in M aresaidto beincompatibleif andonly
if therearefour rowsin M wherecolumns: and; containall four of theorderedpairs0,1;1,0;1,1;and
0,0. For example,in Figurel columnsl and3 of M areincompatiblebecaus®f rowsa, b, ¢, d. Thetest
for the existenceof all four pairsis calledthe"four-gameteest”in the populationgeneticditerature.

Givenasequencé, two columns: and; in M aresaidto conflict(relativeto S) if andonly if columns
i and; containall threeof theabove four pairsthatdiffer from the:, ; pairin S 2.

Clearly, if a pairof columns:, 5 areincompatiblethen:, ; conflict relative to ary sequence'. How-
ever, ¢,  mayconflictrelatveto somesequencé, eventhough:, ; arenotincompatible Finally, obsene
thatif S isin M, thenapair of columnsconflictrelativeto S if andonly if they areincompatible.

2.1 Incompatibility and Conflict Graphs

We definethe “incompatibility graph” /(M) for M asagraphcontainingonenodefor eachcolumn
(site)in M, andanedgeconnectingwo nodes: and; if andonly if columns: and; areincompatible.
Similarly, givena sequence’, we definethe “conflict graph” Gs(M) for M (relative to 5) asa graph
containingone nodefor eachcolumnin A, andan edgeconnectingtwo nodes: andj if andonly if
columns; and; conflictrelativeto S. Figurel shavs theconflictgraphrelativeto theall-zerosequence
S. This conflictgraphis alsotheincompatibility graphfor M.

A “connecteccomponent{or “component”for short),C’, of agraphis amaximalsubgraptsuchthat
for any pair of nodesin C' thereis at leastone pathbetweenthosenodesin the subgraph.A “trivial”
componentiasonly onenode,andno edges.The conflict graphin Figure 1 hastwo componentsLet
ces(M) andee( M ) bethenumberof non-trivial componentsn G's(M) andG/(M ) respectiely.

2In [9, 11], S wasassumedo be the all-0 sequenceandthe definition of conflict wasspecializedo that case but the
definitionabove is consistentvith thatearlierdefinition.



2.2 Prior structural results
Themainstructuralresultestablishedn [9, 11]is

Theorem 2.1 If 7' is anygalled-treefor M with ancestal sequencet, thenanygall in 7" that contains
a sitefroma non-trivial component” of (G4 (M) containsall the sitesof €', and containsno sitesfrom
any othernon-trivial componentFurther any sitefroma trivial componenthatis ona gall ) canbe
movedo someedgetouching ¢, withoutotherwisechanging(@.

Clearly, if a gall hasno sites,it canbe contractedo a single node(if not eliminatedentirely), so
we assumehateachgall containssomesites. We saythata galled-treds a “reduced’galled-tredf no
gall containsa site from a trivial componenof GG 4(M ). Every reducedgall hasat leasttwo sites,and
at leastthreeedgeddirectedoff of it. Theorem2.1 establisheshatif thereis a galled-treefor M with
ancestrabequenced, thenthereis areducedyalled-tre€el” for M with ancestrasequenced, andthere
is a one-onecorrespondencbetweenthe non-trivial componentof G4 (M) andthe gallsof 7. The
algorithmin [9, 11] producesareducedyalled-tree Theorem2.1 alsoleadsto

Corollary 2.1 Everyreducedyalled-treefor M, with ancestal sequencel, hasexactlycc4 (M) recom-
binationnodes.

It wasalsoprovedin [11] thatif thereis a galled-treefor M, thenevery phylogenetimetwork N for
M with ancestrabequencel (N neednot bea galled-treeusesat leastcc 4 (M ) recombinatiomodes.
This holdsevenif multiple-crossger recombinationsreallowedin N. Hence whenthereis a galled-
treefor M with ancestrakequenced, we can efficiently solve Hein’s phylogeneticnetwork problem
for M, (minimizing thenumberof recombinations)put only over networksthathave thesameancestral
sequencel.

The algorithmic consequencef Theorem2.1 is that whentrying to constructa galled-treefor M
with known ancestrabequencel, we canfocuson eachnon-trivial component” of G 4 (M) separately
Then,for eachsuchcomponent” of G4(M ), we mustdeterminehow the sitescanbe arrangedon a
singlegall; we mustdeterminenow the gallscanbe connectedogetherin atreestructure;andwe must
determinevhereto placethesitesfrom trivial componentsAll of theseproblemswveresolvedefficiently
in [9, 11], assumingnancestrabequencel wasknown

2.3 Moving to the Root-Unknown problem

We would like to follow the sameapproacHor the root-unknavn galled-tregproblem. However, the
algorithmin [9, 11] dependgritically onknowningtheancestrasequenceT hefirst,andmain,difficulty
now is thatfor ary two sequences’ and.S’, the conflict graphsGis(M) andG's/ (M) may be different
from eachother Hencewithout knowing which ancestrakequenceallow a galled-tregor if any will),
we cannoteventakethefirst stepof the previousalgorithm,i.e., building the appropriateconflict graph
to identify its componentsWe focusnext on thatdifficulty.

Theorem 2.2 If there is a galled-tree for M with someancestal sequencethenthere is an optimal
galled-treefor M wheee the (optimal) ancestal sequencés oneof thesequencem M.



Proof Let 7T beanoptimalgalled-tredor M, andlet A betheancestrasequencéor 7'. By definition,
every gall containsonerecombinationandby the optimality of 7', every gall @ in 7" mustcontaina pair
of sitesthatconflictrelatveto A. Further asestablishedn [9, 11], every gall Q musthave atleastthree
edgedranchingoff of it (i.e.,eachbranchingedgeis directedfrom anodeon ) to a nodeoff of ()), and
thefactthattheremustbeat leasttwo branche®dgess eveneasierto establish.So,thereis aleastone
edgebranchingoff of () from anodev which is notthe recombinatiomodeof Q. It followsthatthere
isapathP in T from therootto someleaf = which doesnot containary recombinatiomodes.Let 7,
bethe sequencéabelingleaf z. SinceT' is agalled-tredor M, Z, isin M.

Now considerrerooting7’ at nodez, making 7, the ancestrabequenceandreversingthe directions
of all edgeson path P. Eachsuchreversalof anedgee alsochangeshedirectionof the mutationon e,
sofor exampleif the original mutationhadbeenfrom 0 to 1, it is now from 1 to 0. Thesereversalsdo
notchangeary of thelabelsof nodesin 7', nor dothey changewhich nodeis therecombinatiomodeon
ary gall. Hence themodifiedgalled-treecall it 77, alsoderives M. Theancestrabequencef 7" is 7.,
amemberof M. SinceT is optimal,and7” containsthe samenumberof gallsas?’, 7" is alsooptimal.
O

Notethatit is nottruethatevery sequencén M canbeusedasanancestrasequencef somegalled-
treefor M. We cancompletelycharacterizavhich sequences M cansene asancestrakequences,
but omit thatfrom this paper It is alsonot truethatif sequence’ in M is the ancestrabequencdor
somegalled-treefor M, thenZ is anoptimal sequenceStill, Theorem2.2 impliesthatboththe Root-
Unknown Galled-Tree Problemandthe Optimal Root-Unknavn Galled-TreeProblemcanbe solvedin
O(rn*m+n*) timeby trying eachsequencén M astheancestrabequenceysingthe previousalgorithm
from [9, 11]. But, afasteralgorithm,andmoreinsightful resultis possible usingthefollowing

Theorem 2.3 If there is a galled-treefor M, thenthere is an optimal (reduced)galled-treefor M with
ancestal sequencel in M, whee thegraphsG 4(M) andG(M) areidentical.

This followsimmediatelyfrom Theorem2.2 andthe fact thatfor ary sequence in M, Gs(M) and
G/(M) areidentical.

Define M, asthe minimum numberof recombinatiomodesusedin ary phylogeneticnetworkde-
riving M, over ary choiceof ancestrasequencegven allowing multiple-crosswer recombinationst
arny recombinatiomode.

Theorem 2.4 If thereis a galled-treefor M, then M, = ce(M ), thenumberof non-trivial connected
componentsf G(M).

Proof It wasshavn in [12, 1], thatcce(M) is alower boundon M,,. By Theorem2.3, thereis a
reducedgalledtree 7" with ancestraequenced, wherecc4 (M) = cc(M), andby Corollary 2.1, the
numberof recombinatiomodesin 7' is exactly cc4(M). Hence,I' is optimaland M = ce(M). O

Hencewe canefficiently determineM ;; evenwithoutknowing anoptimalancestrasequencdf there
is agalled-trefor M.

3 Solvingthe Optimal Root-Unknown Galled-TreeProblem

In whatfollows, we assumeéhat M canbe derived on a galled-treeandlet 7* denotean arbitrary
optimal galled-trefor M with optimalancestrabequencet*, whereG 4~ andG/(M ) areidentical. By
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Theorem2.3, sucha sequencel* exists, andwe canfind the non-trivial component®f G 4+ (M) even
thoughwe don't know A* or 7*. By Theorems2.1 and2.3, eachgall in 7* containsall andonly the
sitesof onenon-trivial component” of GG( M), sowe canalsoefficiently determinethe sitesthatgo on
eachgallin 7*. Thisis thefirst stepin solvingthe Optimal Root-Unknavn Galled-TreeProblem.

3.1 How to Connectthe Galls of 7™

We next describea methodto determinehow the gallsareconnectedogetheiin 7, withoutknowing
T* or theinternalarrangementf the siteson ary gall. To dothis, wefirst defineatreeT’, (conceptually)
createdrom 7. For ary sequence andary setof sitesonacomponent” of G(M ), definesequence
S(C') asthesequencé restrictedo the sitesin C'.

WedefineT by conceptuallytransformingl™ into 7. Withoutlossof generalitywe assumehatevery
nodev onary gall @ in 7™ is incidentwith exactly oneedgewhoseotherendis off of (). Suchanedge
is calledan“off-edge”,andmight bedirectedinto or out of v. To satisfythis assumptionwe mayneed
to makesmall, local modificationsto 7*. For example,in thetop gall in Figure 1, the nodev labeled
00100is incidentwith two edgesvhoseotherendis off thatgall. To remedythis, we cansimply create
anew edge(v, w) from v to w, andthenhave two edgesrom w to thetwo endpointsof thetwo original
edgesout of v. If v is alsotheroot of 7™, we createa new root nodeand connectit to v. The edge
betweerthemis the off-edgetouchingv. We alsoassumewithoutlossof generality thateachnodeon
@) hasadistinctsequencéabelingit. We canalwaysmodify () sothatit hasthis property

For ary nodev onagall Q in 7™, let S, denotethe sequencdabeling v, andlet C, denotethe
componenin GG( M ) whosesitesareon (). Labelthesingleoff-edgetouchingv in 7 with (C,, S, (C,)).
Note thatif anedgeconnectswo galls, thenthe edgewill have two suchlabels. Thoselabelsarein
additionto ary site (in atrivial componenbf GG( M)) thatmightbeonthatedgein 7*. Finally, contract
eachgall ©Q in 7™ to asinglenodeg, label ¢ with anidentifierfor the component” associatedavith @,
andmakeevery edgeundirected Theresultingundirectedreeis 7. Figure2 shovs T derivedfrom the
treein Figurel.

Clearly, T specifieshow the galls of 7* areconnectedo eachother althoughit doesnot shav the
internalarrangemenof the siteson ary gall, nor doesit shav wheretherootof 7 is. But, if we know
T, we know a substantiamountabout7™.

3.2 Constructing 7'

We definedT (conceptuallyfrom 7, but algorithmicallywe will goin the otherdirection. We will
constructl’ from M and (M), withoutknowning 7 or A*. To dothis, we usea classictheoremabout
treereconstruction.

Let 7" beatreewhereeachleafis labeled. The removal of any edgefrom 7' createswo connected
subtreesandpartitionstheleavesof 7' into two sets(eachsetis in oneof thetwo subtrees) Eachsuch
bi-partitionis calleda “split”, andeachedgein 7' definesadistinctsplit. For atree7’, let S P(T') bethe
family of all the splits,onefor eachedge.Theclassicsplitstheoemis:

Theorem 3.1 Thefamily of splits, S P(7'), uniquelydeterminedree'.

10



Therearemary proofsof Theorem3.1. Oneis obtainedmmediatelyfrom Theorem3.1.4(p. 44) in
[26]. Also, if T hasm leavesandrn edgesthenT canbeuniquelyreconstructedrom SP(7') in O(nm)
time[7, 26].

Given Theorem3.1, the approachto constructing? is to learn S P(T'). The full explanationwill
involve reasoningaboutboth 7 and 7™, so first obsere that every edgein 7 is in T, andthat every
split definedby an edgee in T' definesthe samebi-partition of the leavesin 7, whene is removed
from 7. Althoughtheterm®split” is only definedfor atree,we will alsouseit whenreferringto these
bi-partitionsin 7.

Thefollowing theoremis the key obsenationaboutGalled-Treesthat makesit possibleto construct
S P(T), eventhoughwe don't know 7' or T*.

Theorem 3.2 Supposen off-edgee in 7' is labeledwith (C,, S,(C,)). ThenS(C,) = S,(C,) for every
sequence labeling a leaf of 7 on onesideof the split of 7 definedby ¢, and 5'(C,) # S5,(C,) for
everysequence labelinga leaf onthe othersideof thesplit. Hence the sameis true for 7.

Proof For notation,suppose: is the off-edgetouchingnodeq in 7, andgq is derivedfrom gall Q) in
T*, whichis associatedvith connecteccomponent” in G(M ). Nodew is anodeon ¢, sowe focuson
@ and7™. Lete = (v,v") in T*, andlet A* betheancestrakequencén 7.

We will prove thefirst partof thetheoremfor eachnodein (), andthenprove the secondpartof the
theorem.

Considerthecasethatwv is the coalescenhodeof () in 7*, soe is directedfrom v’ to v and S,(C,) =
A*(C,). Thatis, sequence, restrictedto C', is the sameasthe ancestrasequencel* restrictedto ..
Moreover, sinceall themutationgor sitesin €', occurin @, S(C,) = A*(C,) for ary sequence which
is on theroot sideof the splitin 7 definedby e. Thatsamesplit occursin T', so S(C,) = S,(C,) for
every sequences labelingaleafof 7= or T ontherootsideof the split definedby e.

Now considerthe casethat v is not the coalescenhodeof (), soe is directedfrom v to v’. Clearly,
Sy (Cy,) = S,(C,) sinceno sitein €, canmutateon e. Let N’ be the subgraphof 7 rootedat v’.
Sinceall mutationsof sitesin ', occuron edgesin (2, no sitesin C, mutatein N’. Now let z bea
recombinatiomodein N’ which is reachedrom v’ without passingthroughary otherrecombination
nodes.Restrictedo thesitesin C',, the sequencekbelingthetwo parentf « areidentical,andsothe
recombinatiorat z producesaarecombinansequencavhichis identicalto the parentsequencesyhen
restrictedto the sitesin C,. Hence,S,(C,) = S,(C,). It follows thenby inductionon the numberof
recombinationgncounterean the pathfrom v, that S, (C,) = S5,(C,) for every nodeu in N’, andin
particular for every leaf sequence in N’. This provesthefirst partof thetheorem.

To prove thesecondpartof thetheoremnotethatfor ary site: notin (7, thestateof site: is thesame
ateverynodein (). Thisisimmediatefor every nodeotherthantherecombinatiomodez of (), because
site; doesnotmutateon (). It remaingrueat z, becausehestateof : is thesamen thesequencéabels
of bothparentf =, sotherecombinatiormustretainthe stateof site:. It follows that, restrictedto the
sitesnoton C,, all nodeson () arelabeledwith the samesequenceNow if S,(C,) = S,(C,) for two
nodes andu on@, thensS, = S,, whichwe assumeearliercouldnothappenSoevery nodeon () has
a distinct sequencéabel, restrictedto thesitesin ',. This fact, andthefirst part of the theorem,now
establisithe secondpartof thetheorem ™

It is alsotruethatif e is labeledwith asite: from atrivial componenof G( M), thenall thesequences
ononesideof thesplit have avalueof 1 for site:, andall theothersequencebave a O for site:.
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Theorem3.2is importantbecausét saysthatinformationaboutthe nodelabelson agall is reflected
in thesequenceattheleaves,andhencethatinformationis containedn extantsequences.

3.2.1 Finding the splits family SP(T)

For eachcomponent” (trivial or non-trivial) in G(M), defineM (C') to be matrix M restrictedto the
sitesin C'. Theimportanceof Theorem3.2is two-fold. Firsteachsequence, (C') (which wasdefined
relativeto treesT’ and 7™, whichwe do notknow), shavs up asasequencén M (C'), andeachsequence
in M(C) isasequence,(C) for somenodev onthegall associatesvith C'. Secondtherowsin M (C')
thatcontainsequence, ('), identify exactly the split associateavith the off-edgee touchingv in T'.

We exploit this obsenationasfollows: eachdistinctsequence’ in M (C') definesasplitin 7 andin
T Onesideof thesplit definedby 7 is the setof row indicesin M (C') whoserows containsequence?,
andthe otherside of the split is the setof remainingrow indices. When(' is a trivial componentthis
approacldefineshesamesplit twice, but thatcauseso problem,andoneof thecopiescanbedeletedf
desired.Hence all of the splitsof 7 andT thatcomefrom labelededgesn 7' canbeefficiently found
from M andG(M). T mayalsosohave unlabelededgeshput ary unlabelecedgeis incidentwith a leaf
of T, andhencecorrespondo splitswith onesite on onesideandthe remainingsiteson the otherside.
We call these'leaf-splits”. Recall,thata splitsfamily from atreeuniquelydefinesthetree,andthatthe
treecanbeefficiently reconstructedrom the splitsfamily. Soin summary

Theorem 3.3 TreeT (includingits required edgelabels)can be efficiently createdfrom M and G(M)
by first creating a family of splits S P(T) consistingof onesplit for eac distinct sequencen M (C),
for eadh non-trivial connecteccomponent” of GG(M), and oneor two identical splits for ead trivial
componenbf G(M ), andoneleaf-splitfor eac sitein M.

For example,with M from Figurel, thetwo setsof restrictedsequences/(C,) and M (C), andthe
computed!” areshavn in Figure2.SinceT is unique,we have thefollowing

Theorem 3.4 TreeT is invariantoverall optimalgalled-treesfor M.

3.3 From7 backtowards 7™

The next stepin the solutionof the Root-Unknavn Galled-Tree Problemis to “re-inflate” the nodes
in T thatrepresengallsin 7.

We first needto identify every nodein 7' thatwascreated(conceptually)oy contractinga gall Q in
T* to a singlenodeq. Thekey to this processis to notethat eachsuchnodeq in 7' is incidentwith
morethanoneedgein 7', andthatevery edgeincidentwith ¢ hasalabel (C, Z), wherethe identifier C
is the sameon eachedgeincidentwith ¢. Furthet thisis truefor no othernodesin 7'. Using thatfact,
we canconstructvely andefficiently identify thosenodesin 7' thatmustbe expandedo becomea gall.
Moreover, from C', we know which sitesare on the gall, andwe know M (C'), the setof C'-restricted
nodelabelsonthegall.
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Figure 2. The sites of M are partitioned into two components of M(G) and each is used to create a
set of splits, along with the leaf-splits defined by each leaf (row in M). The tree T’ is the unique tree
defined by these splits.

3.3.1 Arranging the sitesof C' on

We now describehow to arrangehessitesof C' onagall Q. Sincetheremaybe somevariability in how
the sitescanbe arrangedWe won't be ableto reconstructhe original galled-treel™ for sure,but we
will still reconstrucainoptimalgalled-treefor M from T'. (Note however, it wasshowvn in [11] thatthe
variability is very small).

Themethodto arrangehesiteson () is asmallmodificationof themethoddescribedn [9, 11] for the
RootedGalled-Tree Problem,andis specializedo the casethat only single-crosseer recombinations
areallowed. Given (' it is easyto determinea recombinatiorpoint » thatcould be usedon the gall ¢
containingthesitesof C'. Seeg[9, 11] for moredetails.

To understandhe methodfor arranginghesites,(conceptuallyfocuson agivenarrangementf sites
of C'ongall @ in T™*, in isolation of the restof 7*. Now remove the recombinatiomodex from Q,
remove the two edgesenteringz, and makethe edgesundirected. The resultinggraphconsistsof a
single pathcontainingall thesitesin C'. Let « andy denotethe endsof this path. For eachnodev on
this path,addanedgefrom v branchingoff the path,andlabelits leaf endwith 5, (C'). Theresultis an
undirectedperfectphylogety, denoted/'(C'), thatby definitionderivesthesequencekbelingtheleaves
of T'(C'). Further S,.(C') canbe formedby a single-crosseer recombinatiorof the sequences’, (C')
ands,(C).

It follows from Theorem3.2, thatthe leaf labelsof 7'(C') areexactly the sequences M (C'), other
thanthe sequences,.(C). Thatis, 7'(C) is an undirectedperfectphylogetry for all the sequenced
M(C) otherthanS,(C'). Hence we have

Theorem3.5 If there is a galled-tree for M, thenthere is a sequenceX in M(C'), sud that after
removalof all copiesof X, there is anundirectedperfectphylogenyfor theresultingmatrix; thelabeled
edgesof that perfectphylogenycontainall sitesin €' organizedinto onepath; and a single-cossover
recombinatiorof thetwo “end” sequences,(C') and S,(C') createssequenceX .
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It isaclassidheorenthatif asetof sequencesanbederivedonanundirectederfectphylogety, then
thatperfectphylogety is unique(exceptfor the orderof sitesthatareon the sameedge).See[7, 8] for
oneexposition. Hence,given M and(, if we couldguesghesequenceX, we could createthe unique
undirectedperfectphylogety, which thenwould indicatea way to arrangethe siteson (. However, if
weremove all copiesof adifferentsequencé’, andyetthereis anundirectedperfectphylogety for the
resultingmatrix, whereall thesitesin C' arecontainedn onepath,andtherecombinatiorof thetwo end
sequencesreatesy’, thenthis otherperfectphylogely canalsobe usedto arrangethe siteson ). We
summarizéheseobsenationin the following algorithm.

Site-ArrangementAlgorithm for gall ¢ correspondingto component('

1) Let M (C') bematrix M restrictedo thesitesin C'.

2) For eachdistinctsequenceX in M(C') do:

3) Let M(C, X) be M(C) after the removal of all rows with sequenceX. Checkif thereis an
undirectedperfectphylogery 7'(C') for M (C, X), whereall siteson C arecontainedn onepathwhose
endsequencesanberecombinedwith asingle-crosseer) to createsequencey .

If theansweitis “yes”, thenoutputthe pair (X, 7'(C)).

Thefirst partof Step3) is implementedy usingthe algorithmin [7] or [8] thattestsif M (C, X') can
bederivedby aperfectphylogery 7'(C). If T(C') hastwo endpoints,labeledby sequences, (C') and
S,(C), we cantestif X canbe createdby a recombinatiorof S,(C') and S, (C') asfollows: Find the
lengthof thelongestprefix of S, (C') thatmatchesa prefix of X, andfind thelengthof thelongestsuffix
of S,(X) thatmatchesa sufiix of X. Letp, ands, denotethesetwo lengths. Similarly, find p, and
sy, Which aredefinedfor sequences,(C') andS,(C). Thenif X haslengthn, X canbe obtainedby
recombiningS, (C') andS,(C) if andonly if p,(C) + s,(C) > n or p,(C) 4 s,(C) > n.

Sincewe assumedhereis a galled-treefor M, the Site-Arrangemenalgorithm will find andoutput
atleastonepair (X, 7(C')). However, a pair (X, 7'(C')) doesnotfully specifythe arrangemenof gall
@, becausehe choiceof coalescenhodehasnot beenmade. But (X, 7'(C')) doesdefinethe parents
of therecombinatiomodeon ), andhencedoesdefinethe recombinatiomodex, andalsodefinesthe
circularorderof thesiteson (. It is easyto seethatanynodev on @), otherthantherecombinatiomode
x, canactasthe coalescennhodefor ¢) with thatcirculararrangementsimply directthe edgeson @) to
form two disjointdirectedpathsfrom v to =. At thatpoint, ) is fully specified.The particularchoiceof
coalescenhodewill bemadeata laterpointin thealgorithm.

3.4 Choosingthe arrangementsand the root node

For eachnodeq in T thatrepresents gall Q in 7, we mustreplaceg with @, andarrangethe sites
on @ usingoneof thepairs( X, 7'(C)) foundby the Site-Arrangemenflgorithm, andwe mustchoose
a coalescenhodefor the arrangement.Of course,we mustbe carefulto connectthe nodeson () to
the correctedges:ary nodev on ) whoseC'-restrictednodelabelis S,(C') mustbe connectedo the
(unique)edgeincidentwith ¢ thathaslabel (C, S,(C)) in T. We mustalsochoosea root for the galled-
tree.However, thechoicedor thearrangementsf thegalls,andthechoicefor theroot placemenarenot
independentpnechoicecanconstrainthe others. The problemis thatall edgesn thefinal galled-tree
T* mustbedirectedawayfrom theroot,andno edgecanbedirectedinto arecombinatiomnodeof agall.
Sincethearrangemendf agall specifiesherecombinatiomode thesechoicesarenotindependentThe
arrangementsf thegalls (whenthereis a choice)mustbe coordinatedvith the choiceof theroot node.
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We solve the coordinationproblemby directingsomeedgesn 7', asfollows. Supposehatfor nodeq
representing gall Q in 7', the Site-Arrangemenglgorithm finds only onepair (X, 7(C)). Thenin T,
we directthe (unique)edgein 7' thatis labeled(C, X) avay from ¢. This recordsthe informationthat
thereis only onerecombinatiomodepossiblefor (), andthe off-edgeincidentwith thatrecombination
nodemustbe directedout of thatnode. After directingall suchedgesary nodev in 7' canbe chosen
astherootof 7, if andonly if every nodein (the partially directed)”' canbe reachedrom v usinga
paththatdoesnot go oppositeto the directionof ary directededge.Sothealgorithmmustfind all such
permittedpointson 7' or declarethattherearenone.

After picking a permittedroot point (if thereis one), direct all of the edgesin 7' away from the
root. Theneachnodein 7' will have at mostoneedgedirectedinto it, andif a nodeq hasonedirected
edgeinto it andis expandedto a gall , the incoming edgedefinesthe uniquecoalescenhodew of
Q. Finally, for ary gall  (associatedvith connecteccomponent’ in G(M)), chooseary (X, T(C))
foundfor C' by the Site-Arrangemenflgorithm, wherethe recombinatiomodeis not w. Add thenode
z, labeledwith sequenceX, to 7'(C') anddirectedtwo edgesinto = from thetwo end-node®f 7'(C').
Thatrecombinatiorcycle, alongwith the choiceof coalescenhodefully specifiesthe arrangemenof
gall , anddoingthis for every gall completeghe constructiorof 7.

3.5 Correctnessand Time Complexity

Eachstepof the algorithmhasbeenproven correcton the assumptiorthat thereis a galled-treefor
M. Thegalled-treecreatechasexactly ccy; gallsandrecombinatiomodesandhenceis optimalusing
the lower boundmentionedearlierthat M, > ccps. If thereis no galled-treefor A, theneithersome
stepof the algorithmwill not be executableasdescribedpr the algorithmwill terminatebut the graph
producedwill not be a galled-treefor M. So, algorithmically, onecansimply checkthe outputto see
whetherit is a galled-treederiving M. If it is not, thenthereis no galled-treefor M. However, closer
examinationof the algorithm shavs that when all stepscomplete,the graph producedis an optimal
galled-tree.If thereis no galled-tredfor M, oneof the stepsof the algorithmwill not be executableas
describedandthealgorithmwill correctlyconcludethatthereis no galled-treefor M.

For ann by m input matrix M, all of the stepsof the algorithmcanbeimplementedn O(nm + n?)
time. Thefirst O(nm) termis for aradix sortof the columnsof A to grouptogetheridenticalcolumns.
It was establishedn [29] that whenthereis a galled-treefor A, the numberof edgesin it, andthe
numberof distinctcolumnsin M canbe at mosttwice the numberof distinctrows. Soafterremoval of
identicalcopies the numberof columnsis O(r). The O(r?) termis for finding the O(r?*) incompatible
pairsin M andbuilding the graphG(M). Thatworst-caséboundcanbereducedn theorybecauset
is known [13, 2] how to to find all the pairsin the time neededo multiply two »n by » matrices.The
numberof splitsdefinedby M is O(n) becausd’ hasO(n) edges.T canbeconstructedn O(n?) time
[7, 8], from then by n matrix describingthe splits. Given M (C, X'), the uniqueperfectphylogery 7'
for M(C, X) (if thereis one)canbefoundin O(r?) time by the samealgorithm[7, 8], andtestingif X
canbe formedby the recombinatiorof the two endsequencesf 7' canbe donein O(r) time. All the
remainingstepstakeO(r?) time. Hence

Theorem 3.6 Givenann by m input matrix M, an optimal galled-treefor M (if there is a galled-tree
for M) canbefoundin O(rm + n?*) time

Thealgorithmhasbeenimplementedn a Perlprogramgalledtree.plwhichis availableat

15



wwwecsif.cs.ucdeais.edu’ gusfield/galledtree.tar

4 Extensionsto other complexbiological phenomenaand structur edrecombina-
tion

So far, recombinationin a galled-treewas assumedo be single-crosseer recombinationandthe
solutionto the Optimal Root-Unknavn Galled-Tree Problemwasdevelopedonly for single-crosseer
recombination. This was donefor continuity with earlier papers. However, the algorithmis easily
extendedto allow multiple-crosswer recombinatiorat ary recombinatiomode,andmultiple-crossger
recombinatiorcanbe usedto modelmary comple biological phenomenaWhenmultiple-crosswers
are allowed at recombinationnodes,but all recombinationcycles are disjoint, we call the resulting
networka “multiple-crosseer galled-tree”.

To modify thealgorithm,we simply changeStep3) of the Site-Arrangemenflgorithm asfollows:

3)Let M (C, X) beM (C) aftertheremoval of all rowswith sequence’. Checkif thereisan
undirectedperfectphylogery 7'(C') for M(C, X'), whereall siteson C' arecontainedn one
pathwhoseendsequencesanberecombinedallowing multiple-ciossoverecombinatioi
to createsequenceX .

Let S,(C) andS,(C) denotethetwo endsequencesWe cantestif X canbe createdoy a multiple-
crosseer recombinatiorof S, (C') and.S,(C'), startingwith a prefix of S, (C'), asfollows:

Set: to 1, andsetZ to S, (C).
Until (: is greaterthanthelengthof X) {

Find the longestsubstringof 7 startingat position: thatmatchesa substringof X starting
atposition:. If thereis none,thenstop,andreturn“No”. Otherwiseset: to oneposition
pasttheright endof thosematchingsubstringslif 7 is S,(C'), setZ to S,(C'), elsesetZ to
SL(C).

}

Return“Yes”.

We can similarly testif X canbe createdby a multiple-crosseer event, startingwith a prefix of
S,(C), andhencetestif X canbecreatedby arecombinatiorof 5,(C') andS,(C). If bothtestsreturn
“Yes”, thenthe one using the fewest numberof crosseers also determineghe minimum numberof
crosseerspossibleto createX from S,(C') andS,(C), andin someapplicationst maybe desirableto
usethatone.Thetime for the modifiedStep3) is clearlyO(n). For differentbiologicalapplicationsyve
canputaboundonthe numberof crosseersallowed.

Clearly, whenthe modifiedalgorithmproducesa multiple-crosswer galled-tredor M, thenumberof
recombinatiomodesusedis ccy;, Which is M, by the lower boundresultmentionedearlier Sothe
algorithmproducesa phylogenetimetworkthatis optimalwith respecto the numberof recombination
nodeqor events)thatoccur It is not necessarilyptimalwith respecto the numberof crosseersused.

Corversely supposéhereis a multiple-crosswer galled-treel” for M with someancestraequence.
Theorems2.1,2.2,2.3,2.4, 3.4,and 3.5 arethe keys to proving the correctnessnd optimality of the
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solutionto the Root-Unknavn Optimal Galled-TreeProblem whenonly single-crosseersareallowed.
Eachof thosetheoremss easilymodifiedto extendto the casewhenmultiple-crosseer recombinations
areallowed. We leave the detailsto thereader In summary

Theorem4.1 If there is a multiple-clossovergalled-treefor M, thenthe modifiedalgorithmwill find
one,andit will usethe minimumnumberof recombinatiomodesoverall phylogenetimetworksfor M
andall choicesof ancestal sequenceThetimeboundfor thealgorithmremainsO(nm + n?).

Thealgorithmto find a multiple-crosswer galled-treefor M, or to determinethatthereis none,has
beenmplementedistheprogranmulticross.pbhndcanbefoundatwwwcsif.cs.ucdais.edu’ gusfield/galledtree.tar

4.1 Multiple-cr ossoveranodel complexbiological phenomena

We have previously mentionedthat “gene corversion” [3] can be viewed as a multiple-crosswer
recombinatiorwith exactly two crosseers. Gene-cowersionoccursduring meiosis,andis obsened
in populationdata(i.e., sequencetakenfrom individualsof the samespecies).Throughvery different
biologicalmechanismsandoftenat a differentbiological scale,“hybrid speciation”’and“lateral gene-
transfer”causethe movementof geneticmaterialbetweentwo sequencegoften betweenwo species)
[22, 21, 18]. However, mathematically(but not biologically) thesephenomenéook like whatwe have
definedas multiple-crosswer recombination.Hence,the algorithmto find multiple-crosswer galled-
treescan be usedto derive a setof sequencesbelieved to have beencreatedby mutationand hybrid
speciatioror] lateralgene-transfeiThesemodelsalsohave applicationin areasoutsideof biology, such
asin linguistics[20].

Multiple-cross@errecombinatiortanalsobeusedo model‘back-mutation’or “recurrent-mutation”.
Back-mutationoccurswhenthe stateof a site mutatesbackto its ancestraktate. Recurrent-mutation
occurswhenthe stateof a siteis permittedto mutatefrom its ancestraktatemorethanoncein anevolu-
tionary history. Eachsuchmutationcanbe modeledasatwo-crossoerrecombinatiorin a phylogenetic
network. For example,a single back-mutationat site : in a sequence” canbe modeledby the two-
cross@er recombinatiorof theancestrabequencel andsequence’, wherethe prefix andsuffix come
from Z, andonly site; comedrom A. If thenumberof back-mutationgs small,thenthe“recombination
cycles” createdoy this modelingof back-mutationsnay be disjoint. We canmodify Step3) of the Site-
Arrangemen#lgorithm to only allow arecombinansequenceX to bederivedfrom theendsequences
of T'(C') by asingleback-mutatior(or perhapseveral back-mutationsit differentsites,if thatis mean-
ingful). Onecanagainprove thatif thereis a phylogenetimetworkwith back-mutationsvhereall the
recombinatiorcyclesaredisjoint, thenthe modifiedalgorithmwill in factfind onewhich minimizesthe
numberof back-mutation®ver all evolutionary historiesthat allow back-mutationandall choicesof
ancestrabequenceRecurrent-mutationsanalsobe handledin a similar way, andmoregenerally the
algorithmcanbe modifiedto allow generakecombinationback-mutatiorandrecurrent-mutation an
evolutionaryhistory.

Thusthealgorithmfor solvingthe Root-Unknavn Optimal Galled-TreeProblemis actuallya general
framework for efficiently minimizing the numberof deviationsfrom the perfectphylogery model,pro-
videdthatthereis anevolutionaryhistoryfor the sequencewherethe “recombinationycles” (usedto
modelthe deviations)aredisjoint. Disjointnesss likely to occurwhenthe numberof deviationsfrom
theperfectphylogery modelis modest.Thus,we have describedn this paperageneraklgorithmictool
for studyingcomplex evolutionaryphenomenawhenthe numberof nonperfeciphylogeneticeventsis
modest.
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