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Last Year at BCB/WABI

Almost exactly one year ago (Sept. 7, 2019) I gave a tutorial at
the BCB/WABI conference on Integer Linear Programming in
computational and systems biology.

To Recap:

Integer (Linear) Programming, abbreviated “ILP”, is a versatile
modeling and optimization technique, increasingly used in
computational and systems biology in non-traditional ways.

ILP is often (but not always) very effective in solving instances of
hard biological problems.



ILP Outreach

My book:

Integer Linear Programming in Computational and Systems
Biology,

published last year, aims to convince people, particularly biologists,
of the efficacy of ILP, and to teach them how to start using it to
address computational problems in biology.

The book explores over fifty problems in computational and
systems biology where ILP has been used, or surely could be used
to solve practical instances of hard problems in computational
biology.

Most of the problem instances I examined were successfully
handled by ILP, but there were a few notable failures.



Also, In the Proposal for my Final NSF Grant

The last thing I said I would do was ”Examine the efficiency of
SAT-solving, compared to ILP, for problems in computational
biology”, since SAT-solving is not widely used in computational
biology.

Of course, this was the kind of “I-hope-to” item that one rarely
gets to, but with the help of two very talented undergraduate
students (Hannah Brown and Lei Zuo) we actually did examine
this question.

I fully expected to see that SAT-solving has no magic (and
probably less) than ILP-solving has, to address hard computational
problems. After all, SATISFIABILITY has very little structure
compared to the beautiful and deep structure of LINEAR
ALGEBRA.

But, contrary to my biased expectation, I learned something (never
too old?), and I want to pass that on here.



Heresy, Hypocricy?

This talk is a somewhat Heretical at an Algorithms conference.
ILP and SAT-solving are Big, Crude Hammers compared to the
clever, nimble, artistic, even poetic algorithms presented at
meetings such as ALGO and WABI. But it is easier to learn to
hammer than to learn fine calligraphy.

Also, this talk highlights deficiencies of ILP, and yet I am
(shamelessly) promoting my book on ILP - No hypocrisy - ILP in
very valuable and effective in a huge number of problems in
computational biology, but now we have a complementary tool:
SAT-solving.



Three Types of Problems

We will look at three types of problems where SAT-solving looks
increasingly better than ILP.

But first, I need to explain some basic things in case some of the
participants are new to SAT.



CNF and SATISFIABILITY

A CNF formula contains Boolean variables (which can be set to
either TRUE or FALSE); and a set of clauses, where each clause
contains negated or un-negated variables, connected by OR
relations. Example:

(X ∨ Y ∨ Z ) ∧ (X ∨ Z ) ∧ (Y ∨ Z)

The formula is satisfiable if and only if there are (TRUE/FALSE)
values for the variables that make the formula evaluate to TRUE.



ILP and SAT introduced through The Maximum Clique
Problem
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Figure : A clique K is a subset of nodes with an edge between every pair
of nodes in K . This graph has a max-clique of size three.



The Max Clique Problem

Given an undirected graph G , select a set of nodes that forms a
maximum-size clique in G .

The maximum-clique problem is a general
combinatorial-optimization problem, but it actually has very broad
and explicit application in computational biology. Many of the
problems I discuss in my book involve cliques and near-cliques.



A Random Sample from PubMed Search using “Clique” in
the Title

A too-long list - skip once you are convnced that cliques are
important in computational biology.

! Functional Cliques in the Amygdala and Related Brain
Networks Driven by Fear Assessment Acquired During Movie
Viewing”,

! Cliques for the identification of gene signatures for colorectal
cancer across populations

! The Identification and Analysis of mRNA–lncRNA–miRNA
Cliques From the Integrative Network of Ovarian Cancer

! Predicting interactions in protein networks by completing
defective Cliques

! Combining Parallel Gibbs Sampling with Maximal Cliques for
Hunting DNA Motif

! Identifying Cliques of Convergent Characters: Concerted
Evolution in the Cormorants and Shags



More Cliques

! Exploring biological interaction networks with tailored
weighted quasi-biCliques

! Predicting disease-related proteins based on Clique backbone
in protein-protein interaction network

! Amino-Acid Network Clique Analysis of Protein Mutation
Non-Additive Effects: A Case Study of Lysozme

! Clique-Based Neural Associative Memories with Local Coding
and Precoding.

! Tumor stratification by a novel graph-regularized bi-Clique
finding algorithm.

! Gene differential coexpression analysis based on biweight
correlation and maximum Clique.

! Organizing principles of real-time memory encoding: neural
Clique assemblies and universal neural codes.



Even More Cliques

! RCPred: RNA complex prediction as a constrained maximum
weight Clique problem.

! Nested-Clique Network Model of Neural Associative Memory.

! Brain EEG Time-Series Clustering Using Maximum-Weight
Clique.

! Protein-protein interactions prediction based on iterative
Clique extension with gene ontology filtering.

! Estimating landscape carrying capacity through maximum
Clique analysis.

! Identifying protein complexes in protein-protein interaction
networks by using Clique seeds and graph entropy.



You Want More Cliques? Because I’ve Got Them

! Identifying protein complexes from interaction networks based
on Clique percolation and distance restriction.

! Viral quasispecies assembly via maximal Clique enumeration.

! Clique topology reveals intrinsic geometric structure in neural
correlations.

! Clique-Based Clustering of Correlated SNPs in a Gene Can
Improve Performance of Gene-Based Multi-Bin Linear
Combination Test.

! A novel protein complex identification algorithm based on
Connected Affinity Clique Extension (CACE).

! Common pharmacophore identification using frequent Clique
detection algorithm.

! Protein side-chain packing problem: a maximum edge-weight
Clique algorithmic approach.



I’ve Got All the Best Cliques!

! Biased Clique shuffling reveals stabilizing mutations in
cellulase Cel7A.

! Chemical structure elucidation from NMR chemical shifts:
efficient data processing using bipartite matching and maximal
Clique algorithms.

! Efficient similarity search in protein structure databases by
k-Clique hashing.

! Protein threading with profiles and distance constraints using
Clique based algorithms.

! Disease outbreak detection through Clique covering on a
weighted ICPC-coded graph.

! Visualizing plant metabolomic correlation networks using
Clique-metabolite matrices.

! Cliques I Have Known and Loved



Too Many Cliques

! Clique-based data mining for related genes in a biomedical
database.

! Finding a Maximum Common Subgraph from Molecular
Structural Formulas through the Maximum Clique Approach
Combined with the Ising Model.

! Clique-finding for heterogeneity and multidimensionality in
biomarker epidemiology research: the CHAMBER algorithm.

! Finding Friends in the Crowd: Three-Dimensional Cliques of
Topological Genomic Domains.

! Interaction graph mining for protein complexes using local
clique merging

! What to Expect When you Are Expecting Cliques



Back to ILP and SAT for Clique Finding

So, we want to use ILP and SAT-solving to select a set of nodes
that form a clique in a graph.

How do we know that a set of selected nodes forms a clique?

A Necessary condition: For every pair of nodes i and j , if (i , j) is
not an edge in G , then we must not select both nodes i and j .

The condition is also sufficient.

Fact: Any (non-empty) set of nodes that satisfies the above
condition will be a clique in G . But, it need not be a
maximum-sized clique.



Specifying a Clique with ILP

With the above NASC, we have:
The variables
One Binary variable, C (i), for each node i of G .

Variable C (i) indicates whether or not node i will be selected to be
in a set K . If C (i) is set to 1 we put node i into K ; and if C (i) is
set to 0, we do not.

The ILP inequalities
For each pair of nodes (i , j) in G , we create the following inequality
if (and only if) there is no edge in G between nodes i and j .

C (i) + C (j) ≤ 1 (1)



Specifying a Clique with CNF

With the above NASC, we have:
The variables
One Boolean variable, C (i), for each node i of G .

Variable C (i) indicates whether or not node i will be selected to be
in a set K . If C (i) is set to True, we put node i into K ; and if
C (i) is set to False, we do not.

The CNF clauses
For each pair of nodes (i , j) in G , we create the following clause
if (and only if) there is no edge in G between nodes i and j .

C (i) ∨ C (j) (2)



Good, But we Want a Maximum-Sized Clique

So, integer linear inequalities, and related Boolean clauses can
easily specify the conditions for a set of nodes, K , to be a clique.
But how do we find a maximum-sized clique?

For ILP, the size of the chosen clique is simply:

i=n∑

i=1

C (i).

So to maximize the size of the clique, we simply add the Objective
Function:

Maximize
n∑

i=1

C (i),

and let an ILP-solver rip.



Using SAT-solving to Count the Nodes in a Clique

If we generate the CNF clauses described above, and pass them to
a SAT-solver, it will set some C (i) variables to True, so that their
associated nodes must form a clique. But how big will that clique
be? That is (equating “True” with “1” and “False” with “0”)
what will

∑
C (i) be?

Using CNF formulas and SAT-solving, it is not as simple to
determine the size of the chosen clique as it is in ILP.

But, we can’t maximize
∑

C (i) if we can’t determine it. This
“counting problem” is the Big Achilles Heel of SAT-solving.

Still, there are several ways to use SAT to count. Here is the
(simple) approach I generally use:



Using CNF to Count the Nodes in a Clique

Let n denote the number of nodes in G . Think of counting the
number of C () variables set True by doing a sequential scan
through the variables, examining the value of each C (i), for i from
1 to n. But, we can’t actually specify such a sequential scan in
CNF. Instead,

For each i from 1 to n+ 1, create i Boolean variables, T (i , d),
where d runs from 0 to i − 1. So for i = 1, there is only one
variable, T (1, 0); and for i = n, there are n variables
T (n, 0), ...,T (n, n − 1).

We interpret T (i , d) as the proposition:

At least d variables in the set {C (j) : j < i} are set
True.

Note the phrase “At least”. Do not confuse it for “Exactly”.



The Clauses that Count

Remember that T (i , d) represents the proposition:
At least d variables in {C (j) : j < i} are set True. So to begin, for

each i , we create the single-variable clause:

T (i , 0),

which forces variable T (i , 0) to be True, and means that at least
zero of the C (j) variables, for j < i , are set True (duh!).



More Clauses that Count

We also create clauses that say:

T (i , d) => T (i + 1, d),

which in CNF is
T (i + 1, d) ∨ T (i , d),

meaning that if at least d variables, C (j), for j < i are set True,
then at least d variables, C (j), for j < i+1, are set True (again,
duh!).

(Recall that A ==> B is equivalent to B ∨ A)



Clauses the Really Count

Now the important clauses: For each of the variables, T (i , d), for i
from 1 to n, we need a clause to implement:

IF T (i , d) is True, AND C (i) is True, THEN
T (i + 1, d + 1) must be True.

which is equivalent to the CNF clause:

T (i + 1, d + 1) ∨ T (i , d) ∨ C (i).



Are we There Yet? No!

With these clauses: If
∑

C (i) ≥ d , then T (n + 1, d) will be set
True.

But, what keeps T (n + 1, d) from being set True even when∑
C (i) < d?

For that direction, we need:

For each i from 1 to n:

(∗) T (i + 1, d) => T (i , d) OR [T (i , d − 1) AND C (i)].



Say it in CNF

Boolean formula (*) is equivalent to:

(∗∗) T (i , d) ∨ [T (i , d − 1) ∧ C (i)] ∨ T (i + 1, d)

But, the second phrase has a ∧ in it, so is not in CNF. What to do?



How do we Transform [T (i , d − 1) ∧ C (i)] to CNF?

By Tseytin encoding, we can create a new Boolean variable
Q(i , d − 1), and create three short clauses that make Q(i , d − 1)
equivalent to [T (i , d − 1) ∧ C (i)].

T (i , d) ∨Q(i , d − 1)

C (i) ∨Q(i , d − 1)

T (i , d) ∨ C (i) ∨Q(i , d − 1)

(3)

Then, we can implement (**) in CNF as

T (i , d) ∨ Q(i , d − 1) ∨ T (i + 1, d).



Maximizing, using a SAT-solver

We have established that
∑

C (i) will be equal to the largest d
such that T (n + 1, d) is set True.

So, if we have a target t and want to test if there is a clique in G
of size at least t, we simply add the single-variable clause:

T (n + 1, t),

and let a SAT-solver determine if the CNF-formula is satisfiable or
not.

With the ability to test if there is a clique of size (at least) t, we
can find a maximum-size clique by forming and testing a series of
CNF formulas where t is varied. Binary search is possible, but not
advised! Why?



Live Demo - I hope!

Figure : Yeast Protein-Protein Interaction Graph (hairball) with only 209
nodes and 1776 edges. Can you spot a Max-clique by eye? Both ILP and
SAT-solving found a clique of size 12 and proved that it is maximum, in
about one second. That is very impressive to me.



Results in a Random Graph with One-Thousand Nodes

In a typical example, a random graph with one-thousand nodes
and edge density of 0.2 was generated.

The ILP for maximum clique in this graph found a clique of size 7
after about 4.5 minutes, at which point the upper-bound was
about 42.

Then after about three more hours, the largest clique found was
still 7, and the upper bound 33.

After five hours and five minutes, Gurobi found a clique of size 8,
and the upper bound was fifteen. After five hours and 30 minutes,
Gurobi terminated with an optimal, maximum-sized clique of size 8.



SAT-Solver Results on This Graph

Tests with a target of 6 by three different SAT-solvers
(CryptominiSAT5, Glucose-Syrup, pLingeling) found a clique of
size 6, in 4 seconds, 11.7 and 8 seconds, respectively.

Tests with a target of 7 found a clique of size 7, in 9 seconds, 12
seconds, and 11.5 seconds, respectively.

Tests with a target of 8 found a clique of size 8, in 38 minutes, 55
seconds (and again in 10 minutes), and 43 minutes, respectively.

Tests with a target of 9 found the problem UNSATISFIABLE in
2736, 821 and 9807 seconds, respectively.



An Integrated Run

Starting with a target of three and incriminating by one until an
UNSATISFIABLE target was found, the SAT-solver
(Glucose-Syrup) determined that the maximum-size clique is of
size 8, in about 28 minutes. Most of the time was for the UNSAT
target of 9.

Compare the SAT-solver time to the five hour 30 mins. time for
ILP. Hence, in this larger test, SAT-solving won.



Problem 2: Transforming Gene Order by Reversals

There are important biological phenomena that occur at a scale
larger than individual nucleotides, e.g. at chromosomal or genomic
scales. For example: long chromosomal reversals (inversions).

If we represent each gene by a distinct integer, the interval with
ten genes: 1 10 4 5 2 6 3 9 8 7 becomes: 1 10 6 2 5 4 3 9 8 7
when the interval containing 4 5 2 6 is reversed.

The computational problem of interest is:

The Sorting-by-Reversals Problem: Given two permutations, P1

and P2 of the integers 1 to n, find the minimum number of interval
reversals that transforms P1 to P2.



Turnips to Cabbage Example
In the classic Turnips to Cabbage dataset with ten genes, the
problem is to transform

1 10 4 5 2 6 3 9 8 7

to

1 2 3 4 5 6 7 8 9 10

The optimal sequence requires four reversals:

1 10 4 5 |2 6| 3 9 8 7

1 |10 4 5 6 2 3 9 8 7|

1 |7 8 9 3 2| 6 5 4 10

1 2 3 |9 8 7 6 5 4| 10

1 2 3 4 5 6 7 8 9 10



The Signed Variant

In the signed variant of the problem, each integer in P1 has a
positive or negative sign, and all integers in P2 have a positive sign.

Whenever an interval is reversed, the sign of each integer in the
interval changes to the opposite sign. Then, the goal is to
transform P1 to the all-positive P2, using the minimum number of
reversals.



Algorithmic Status

The (unsigned) Sorting-by-Reversals problem is NP-hard.

But (amazingly), there are polynomial-time algorithms for the
signed version of the problem! These algorithms are complex, and
are the result of deep and hard thinking over many years by top
algorithmists. I consider them subtle and poetic. We should not
expect the average algorithmist or biologist to come up with such
algorithms.

So, what can the Big Hammers, which are tools for the masses,
do? It is easy to formulate the unsigned and signed versions of the
problem, using either ILP or SAT. This involves a fairly
straight-forward translation of the meaning of a tranformation, into
integer inequalities (see chapter 18 of the book) or into CNF
clauses. Lei Zuo implemented and explored the SAT-solving
approach.



First Results

Gurobi 8.1 solved the Turnips to Cabbage problem in fifteen
seconds, and the SAT formulation was generated and solved in five
seconds.

In a second classic dataset, the Field Mustard to Black Mustard
dataset of length twelve, the ILP formulation was solved by Gurobi
8.1 in about 102 minutes, but earlier in only 33 minutes by Gurobi
8.0 (go figure!).

The SAT approach solved the Field Mustard to Black Mustard
problem in about 3 minutes, 25 seconds. So again, a win for
SAT-solving.



Random Data

Results from the examination of random permutations of length up
to eight is consistent with the tests on plant genomes.

Table : Times (rounded to the nearest tenth of a second) taken by
Gurobi and pLingeling with ten randomly generated unsigned sequences
of length eight

Sequence number 1 2 3 4 5 6 7 8 9 10

pLingeling 1.3 3.1 2.5 1.3 1.5 1.7 2.8 1.6 12.9 1.3

Gurobi 5.0 13.5 11.2 9.0 6.2 10.5 9.1 3.0 74.0 8.7



The Signed Variant

We also compared running times for the ILP and SAT approaches
to the signed variant. There, the overall running times were longer
for both problem variants, but more interestingly, there were
substantial differences in the times:

Table : Times (rounded to the nearest second) taken by Gurobi and
pLingeling with ten randomly generated signed sequences of length eight

Sequence number 1 2 3 4 5 6 7 8

pLingeling 57 463 56 11 50 430 54 58 1

Gurobi 30381 36387 7095 7855 3294 62050 6282 22293 3



Where are We?

So, we have seen one problem Maximum Clique where SAT-solving
performed better than ILP, for large graphs, but ILP was still of
use.

We then saw The Unsigned Gene Reversal Problem where
SAT-solving was faster, but ILP was still impressive. But in the
Signed Gene Reversal Problem ILP was significantly slower than
SAT-solving.

Next, we will see two related problems where ILP was essentially
useless, but SAT-solving performed acceptably.



Problem 3: Evolutionary Trees and Phylogenetic Networks

Trees are the traditional way to think about and represent
evolution, due to branching, but trees are often too simplistic, both
for biological and methodological reasons.

Instead, there a now many evolutionary problems that are framed
in terms of finding networks (usually DAGs) that represent more
complex evolution than trees do.

But, often the networks are required to contain known trees, or
reflect partial information about trees.



Directed Acyclic Graphs (DAGs) and Trees
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Figure : DAG D contains four subtrees that reach all of the leaves.
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Figure : A subtree of D that reaches all leaves. The leaves reached from
node v are {c,d,e}.



The Central Definition

Let S be a set of n leaf labels.

A Directed Acyclic Graph (DAG) D with n leaves labeled S ,
displays a subset s of S if:

a) There is some tree Ts embedded in D that reaches all of the
leaves of D, and

b) There is a node v in Ts , where the leaves of Ts that are
reachable from v have exactly the labels in s.

Such a subset s is called a cluster.
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Figure : DAG D.



v

a

b

c

d

e

Figure : The tree displays cluster {c , d , e}, and other clusters.



Reticulation Networks

As above, let S be a set of labels, and now let F be a family of
subsets (clusters) of S .

A DAG that displays every cluster of F is called a Reticulation
Network for S ,F .

Any node in a reticulation network with in-degree more than one is
called a reticulation node.



Reticulation Networks
For example, let S = {a, b, c , d , e}, and
F = {a, b}, {b, c}, {d , e}, {b, c , d , e}.

DAG D
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Figure : DAG D, displaying the shown subsets of {a,b,c,d,e}.



Minimum-Reticulation

The Minimum-Reticulation Problem: Given S and F , construct a
reticulation network for S ,F , with the fewest reticulation nodes,
over all reticulation networks for S ,F where every reticulation node
has in-degree two.

Solving Minimum-Reticulation with ILP My PhD student (now,
Dr. Julia Mastieva, PhD) and I, developed three different ILP
formulations for this problem, but none of them could solve
anything more than trivial problem instances.

The ILP solver would typically find OK, but not optimal DAGs that
displayed the clusters in F . And even when they had an optimal
solution in hand, there would be a huge gap between the solution
value and the lower bound that the solver found.

I conjecture that this is a somewhat general problem that ILP has
for network design problems.



Solving Minimum-Reticulation with SAT

So, Hannah Brown and I explored SAT-solving for this problem.
The CNF formulation we developed is a fairly straight-forward
translation of the problem definitions into CNF. The resulting CNF
formulation is involved (45 types of clauses), but not surprising.

Again, the counting problem was the most difficult aspect of the
implementation.

One thing that helps: there is a fast Upper Bound on the minimum
number of reticulations needed, computed by program SHRUB
(developed at UC Davis by Yun Song). We use that to choose the
first target number of reticulations to test.



Prior, Related Work

Before discussing empirical results for the Minimum-Reticulation
problem, there is a related problem that was tackled earlier by
SAT-solving in a paper (Ulyantsev and Melnik, ALCOB 2015).

In that problem, the input is not a set of clusters, but a set of trees:

Hybridization Network Problem: Given a set of rooted binary
trees, T1,T2, ...,Tk , each with the same set of n labeled leaves,
construct a DAG D with a single root and with each node of
in-degree at most two, that displays each of the trees T1, ...,Tk ,
minimizing the number of reticulation nodes.



Results

They showed that they can successfully solve most of the problem
instances they explored, with up to five binary trees and n up to
40, and with the number of reticulation nodes up to 13. However,
their method was not pure SAT-solving. It also used combinatorial
insights developed for the Hybridization problem.

Their CNF-formulation is very complex, with 68 different types of
clauses, and is limited to binary trees.



Can we Reduce the Hybridization Problem to the
Reticulation Problem?

No, and Yes.

The first attempt is to take each input tree Ti , and create the set
of n − 1 clusters, each defined by a distinct non-leaf node v in Ti .
Then this collection of clusters can be used as input to the
Minimum Reticulation Problem.

The resulting DAG will display all of the clusters in the input trees,
but it will not be guaranteed to display the actual trees T1, ...,Tk .



An Easy Fix

Recall that in the Minimum Reticulation Problem, for each input
cluster s ⊂ S , a SAT solution must specify a directed tree Ts

containing all n of the S-labeled leaves; and Ts must have a node
v that reaches exactly the leaf labels in s.

To use Minimum-Reticulation to solve the Hybridization-Network
Problem, we change the CNF to enforce the following:

If two clusters s and s ′ come from the same input tree T
(in the Hybridization problem), then the created trees, Ts

and Ts′ , specified by a SAT solution (to the Reticulation
problem), must be identical.

These forced equalities are actually more easily implemented than
what is suggested by the above statement. (Homework problem)



Why Does this Work?

The Fundamental Theorem of Trees:
The set of clusters derived from a directed tree T
uniquely specifies T .

So, when all of the clusters from an input tree T must use the
same tree T in the created DAG D, Tmust be T .

Take Home Quiz: Why doesn’t the first attempt work?



Some Empirical Examples

data #trees, #leaves, UB target RET HYB
3PhytRpocits 3, 20, 9 9 1.33s 57s

8 42s 5m 8s
7 33s 7m 26s
6 T 1000s T 2000s

2NdhfWaxy 2, 20, 7
9 58s
8 42s
7 1.8s 55s
6 30s 52s
5 T 3000s 8m 18s UNSAT

3NdhfPhytWaxy 3, 15, 4
6 0.4s
5 2.99s
4 0.8s 17.8s
3 T 31,000s 9m 4s UNSAT

Table : Results of experiments with different datasets.



Results

ILP is essentially useless for these network problems. For the first
dataset above, ILP found a feasible solution with 12 reticulations,
and a lower-bound of zero, and was terminated after three hours.

This Reticulation approach to the Hybridization-Network Problem
is simpler and more flexible than the SAT approach in the 2015
paper. It allows the input of non-binary trees; or hybrid problems
more constrained than the Min Reticulation problem, but less
constrained than the Hybridization-Network Problem; or problems
where the clusters don’t come from trees. But, the SAT
formulation still has forty-five types of clauses.

Running time comparisons of the alternative CNF-formulations are
not possible using the earlier software, because it uses non-SAT
algorithmic insights to simplify each problem instance.



Lessons Learned

! SAT-solving for optimization problems works well for problems
with binary variables, and where the value of an optimal
solution is an integer; and where the range of possible solution
values is small.

Those conditions are common in optimization problems that
arise in computational biology. So SAT-solving is attractive
for computational biology applications. But, ILP is attractive
for a much wider range of conditions, particularly when the
range of solution values is large.

! UNSAT is much harder than SAT.

! Debugging CNF is really, miserably hard. I blame DIMACS.
ILP is much easier to debug.

! Similar problems and similar formulations can have very
different empirical behaviors - both in ILP and in SAT.



Lessons Learned

! Expect little or incorrect documentation for SAT-solvers. It
took me months of search to even find a list of the 300+
options in Lingeling. I finally found a list, but no explanations.
It’s the wild-west compared to ILP.

! Running times for SAT-solvers have Huge variance. ILP
solvers have very low variance in comparison.

! There is no “best” SAT-solver - huge variance again, based on
the type of problem. Contrast this to the uniform dominance
of Gurobi and Cplex compared to other ILP-solvers.

! Several “obviously slam-dunk” ideas for speeding up
SAT-solving failed miserably. Why?

! The “beauty vs strength” debate for what makes ILP solve
fast is unresolved - much conflicting evidence, and some
misleading theory. I don’t accept the current “wisdom” that
strength is better than beauty.



Final Cleanup

We have seen problems where SAT-solving is more effective than
ILP-solving. And this illustrates the main point of this talk:

SAT-solving is another powerful computational tool that
should be explored and exploited in computational
biology.

However, the particular problems we explored were selected
because ILP efforts had not worked as well as desired. For most of
the problems considered in my book, and many others in the
literature, ILP is a very successful tool. And, in this project we also
looked at a problem (protein folding under the HP model) where
ILP did better than SAT; and at another problem where neither
SAT nor ILP worked well (History Bound using Networks). (See
our paper, Brown et al, at ALCOB 2020, in LNCS 12099).



Thank You

Questions?


