
Number Name Use

$0 always holds the value 0

$1 $at reserved by the assembler

$2 … $3 $v0 … $v1 expression evaluation and function results

$4 … $7 $a0 … $a3 *first 4 function parameters

$8 … $15 $t0 … $t7 *temporaries

$16 … $23 $s0 … $s7 saved values

$24 … $25 $t8 … $t9 *temporaries

$26 … $27 $k0 … $k1 reserved for use by operating system

$28 $gp global pointer

$29 $sp stack pointer

$30 $s8 saved value

$31 $ra return address

MIPS Architecture

Registers

The MIPS processor has 32 general-purpose registers, plus one for the program counter (called

PC) and two for the results of the multiplication and division operations, called HI and LO, for the

high 32 bits and the low 32 bits of the answer. The following chart summarizes the registers’ usage.

A * in the use column means the values in those registers are not preserved across procedure calls.

Opcode Formats

The MIPS processor uses 3 different types of instructions.

I-Type (Immediate) Instructions

bits 31 … 26 opcode

bits 25 … 21 source register

bits 20 … 16 target (destination) register

bits 15 … 0 immediate operand

J-Type (Jump) Instructions

bits 31 … 26 opcode

bits 25 … 0 target (destination) offset

R-Type (Register) Instructions

bits 31 … 26 opcode

bits 25 … 21 source register

bits 20 … 16 target (source) register

bits 15 … 11 destination register

bits 10 … 6 shift amount

bits 5 … 0 function information

Assembler Directives

.data [addr] : Indicates beginning of data section. If addr is provided, then the location counter is set to addr.

.text [addr]: Indicates beginning of code section. If addr is provided, then the location counter is set to addr.

.asciiz <string> : Allocates memory for string of chars. Terminated with ‘\0’, and padded with ‘\0’ to word boundary.

.space <number> : Allocates <number> of bytes of memory. <number> is increased to word boundary

.word [value] : Allocates a word. If value is provided, then the word is set to that value.

.end : Indicates end of program. (This is ignored).

Selection from MIPS-32 Instruction Set

Load/Store Instructions

LB Load Byte

LBU Load Byte Unsigned

LH Load Halfword

LHU Load Halfword Unsigned

LW Load Word

LWL Load Word Left

LWR Load Word Right

SB Store Byte

SH Store Halfword

SW Store Word

SWL Store Word Left

SWR Store Word Right

Multiply/Divide Instructions

MULT Multiply

MULTU Multiply Unsigned

DIV Divide

DIVU Divide Unsigned

MFHI Move From HI

MTHI Move To HI

MFLO Move From LO

MTLO Move to LO

Jump & Branch Instructions

J Jump

JAL Jump and Link

JR Jump to Register

JALR Jump and Link Register

BEQ Branch on Equal

BNE Branch on Not Equal

BLEZ Branch on Less than or Equal to Zero

BGTZ Branch on Greater than Zero

BLTZ Branch on Less than Zero

BGEZ Branch on Zero

BLTZAL Branch on Less than Zero and Link

BGEZAL Branch on Zero and Link

Arithmetic Instructions

(ALU Immediate)

ADDI Add Immediate

ADDIU Add Immediate Unsigned

SLTI Set on Less Than Immediate

SLTIU Set on Less than Immediate Unsigned

ANDI AND Immediate

ORI OR Immediate

XORI Exclusive OR Immediate

LUI Load Upper Immediate Arithmetic Instructions

(3-operand, Register Type)

ADD Add

ADDU Add Unsigned

SUB Subtract

SUBU Subtract Unsigned

SLT Set on Less Than

SLTU Set on Less Than Unsigned

AND Bitwise And

OR Bitwise OR

XOR Bitwise exclusive OR

NOR NOR

Shift and Special Instructions

SLL Shift Left Logical

SLLV Shift Left Logical, Variable

SRA Shift Right Arithmetic

SRAV Shift Right Arithmetic, Variable

SRL Shift Right Logical

SRLV Shift Right Logical, Variable

BREAK Break

SYSCALL System Call

Rules on Delays and Interlocks

• There is one delay slot after any branch or jump instruction, i.e., the following instruction is executed even if the

branch is taken. That following instruction must not be itself a jump or branch.

• There is one delay slot after a “load” no matter what size is being loaded. That is, the instruction after a “load”

must not use the register being loaded.

• Multiplication will place its results in the LO and HI registers after an undefined number of following

instructions have executed. There’s a hardware interlock to stall further multiplications, divisions, or move from

LO or HI to execute until the operation is finished.

• Division is like multiplication but most likely slower.

MIPS Opcodes and Formats

These are synopses of many of the core MIPS instructions. Not all instruction s are listed; in

pa r t i cu la r , those involving traps, floats, or memory management are omitted.

ADD rd, rs, rt add Opcode: 000000 Func: 100000

Adds rs and rt, puts resul t into rd. Exception on overflow.

ADDI rt, rs, immediate add, immediate Opcode: 001000

Sign-extends the 16-bit immediate to 32 bits , adds i t to rs, puts result into rt. Exception on

overflow.

ADDIU rt, rs, immediate add, unsigned immediate Opcode: 001001

Sign-extends the 16-bit immediate to 32 bits , adds i t to rs, puts result into rt. Never causes an

overflow.

ADDU rd, rs, rt add, unsigned Opcode: 000000 Func: 100001

Adds rs and rt, puts resul t into rd. Never causes an overflow.

AND rd, rs, rt and Opcode: 000000 Func: 100100

Bitwise and’s rs and rt, puts result into rd.

ANDI rt, rs, immediate and, immediate Opcode: 001100

Sign-extends the 16-bit immediate to 32 bi ts , bitwise ands i t wi th rs, puts result into rt.

BEQ rs, rt, offset branch equal Opcode: 000100

I f rs == rt, branches to offset [after executing the following instruction] . For most assemblers, offset

is a label.

BGEZ rs, offset branch greater-equal-zero Opcode: 000001 rt: 00001

If rs  0, branches to offset [after executing the following instruction] . For most assemblers, offset

is a label.

BGEZAL rs, offset branch greater-equal-zero, and link Opcode: 000001 rt: 10001

If rs  0, branches to offset [after executing the following instruction] . For most assemblers,

offset is a label. Always places address of fol lowing inst ruct ion into r31. Note that rs may not

itself be r31. (This is a subroutine call instruction)

BGTZ rs, offset branch greater-than-zero Opcode: 000111

If rs > 0, branches to offset [after executing the following instruction] . For most assemblers, offset

is a label.

BLEZ rs, offset branch less-equal-zero Opcode: 000110

If rs  0, branches to offset [after executing the following instruction] . For most assemblers, offset

is a label.

BLTZ rs, offset branch less-than-zero Opcode: 000001 rt: 00000

If rs < 0, branches to offset [after executing the following instruction] . For most assemblers, offset

is a label.

BLTZAL, rs offset branch less-than-zero, and link Opcode: 00001 rt: 10000

If rs < 0, branches to offset [after executing the following instruction].

For most assemblers, offset is a label. Always places address of following inst ruct ion into r31.

Note that rs may not itself be r31. (T h i s i s a su b r o u t i n e c a l l f u n c t io n .)

BNE rs, rt, label branch not-equal Opcode: 000101

I f r s  r t branches to offset [after executing the following instruction].

For most assemblers, offset is a label.

BREAK break Opcode: 000000 func: 001101

Causes a Breakpoint exception that transfers control to the exception handler.

DIV rs, rt divide Opcode: 000000 func: 011010

Divides rs by rt, treating both as (signed) 2’s complement numbers. Quotient goes into special

register LO and remainder into special register HI. Get them via the MFHI and MFLO instructions.

No overflow exception occurs, and the result is undefined if r t c ontains 0.

Note that divides take an undefined amount of time; other instructions will execute in parallel .

MFHI and MFLO will interlock until the division is complete.

DIVU rs, rt divide, unsigned Opcode: 000000 func: 011011

Divides rs by rt, treating both as unsigned numbers. Quotient goes into special register LO and

remainder into special register HI. Get them via the MFHI and MFLO instructions. No overflow

exception occurs, and the result is undefined if r t contains 0.

Note that divides take an undefined amount of time; other instructions will execute in parallel .

MFHI and MFLO will interlock until the division is complete. This instruction never causes an

exception.

J label jump Opcode: 000010

Jump to label [after executing the following instruction].

JAL label jump and link Opcode: 000011

Jump to label [after executing the following instruction]. Places the address of the following instruction

into r31. (This is a subroutine-call instruction.)

JALR rd, rs jump and link, register Opcode: 000000 func: 001001

Jump to address contained in rs [af ter execut ing the following instruction]. Places address of

following instruction into rd. Note that rs and rd may not be the same register. If rd is omitted in the

assembly language, it is register 31. (This is a subroutine-call instruction.)

JR rs jump, register Opcode: 000000 func: 001000

Jump to address contained in rs [after executing the following instruction].

LA rt, addr load address into register Pseudo instruction

This is a a pseudo inst ruction that is translated into :

lui $rt , addr(16..31) followed by ori $rt , $rt , addr(0..15)

LB rt, offset(rs) load byte Opcode: 100000

Sign-extend the 16-bit offset to 32 bits, and add it to rs to get an effective address. Load the byte

from this address into rt and sign-extend i t to f i l l the en t i r e reg is te r .

LBU rt, offset(rs) load byte, unsigned Opcode: 100100

Sign-extend the 16-bit offset to 32 bits, and add it to rs to get an effective address. Load the byte

from this address into rt and zero-extend i t to f i l l the en t i r e reg is te r .

LH rt, offset(rs) load halfword Opcode: 100001

Sign-extend the 16-bit offset to 32 bits, and add it to rs to get an effective address. Load the

halfword (16 bits) from this address into r t a n d s i g n -e x t e n d i t t o f i l l t h e e n t i r e r e g i s t e r .

E x c e p t i o n i f o d d a d d r e s s .

LHU rt, offset(rs) load halfword, unsigned Opcode: 100101

Sign-extend the 16-bit offset to 32 bits, and add it to rs to get an effective address. Load the

halfword (16 bits) from this address into rt and zero-extend it to fil l the entire register.

Exception if odd address.

LI rt, immediate load a 32-bit immediate into a register Pseudo instruction

This is a a pseudo inst ruction that is translated into:

lui $rt , immediate(16..31) followed by ori $r t , $rt , immediate(0..15)

LUI rt, immediate load upper immediate Opcode: 001111

Put 16-bi t immediate in the top half of rt and fi l l the bottom half wi th zeros.

LW rt, offset(rs) load word Opcode: 100011

Sign-extend the 16-bit offset to 32 bits, and add it to rs to get an effective address. Load the

word (32 bits) from this address into rt. Exception if address is not word-aligned.

MFHI rd move from HI Opcode: 000000 func: 010000

Move contents of special register HI into rd. Neither of the two instructions following this may

modify the HI register! Note that multiplication and division put results into HI. MFHI stalls unti l

that operation is complete.

MFLO rd move from LO Opcode: 000000 func: 010010

Move contents of special register LO into rd. Neither of the two instructions following this may

modify the LO register! Note that multiplication and division put results into LO. MFLO stalls

until that operation is complete.

MTHI rs move to HI Opcode: 000000 func: 010001

Move contents of rs into special register HI. May cause contents of LO to become undefined; no need

to get specific here; just be sure to do MTLO too.

MTLO rs move to LO Opcode: 000000 func: 010011

Move contents of rs into special register LO. May cause contents of HI to become undefined; no

need to get specific here; just be sure to do MTHI too.

MULT rs, rt multiply Opcode: 000000 func: 011000

Mult ipl ies rs by rt, treating both as (signed) 2’s complement numbers. Low word of result goes

into special register LO and high word into special register HI. Get them via the MFHI and MFLO

instructions. No over-flow exception occurs.

Note that multiplies take an undefined amount of time; other instructions will execute in

parallel. MFHI and MFLO will interlock until the mult ip l icat ion is complete .

MULTU rs, rt multiply, unsigned Opcode: 000000 func: 011001

Mult ipl ies rs by rt, treating both as unsigned numbers. Low word of result goes into special

register LO and high word into special register HI. Get them via the MFHI and MFLO instructions.

No overflow exception occurs. Note that multiplies take an undefined amount of time; other

instructions will execute in parallel . MFHI and MFLO will interlock until the multiplication is

complete. This instruction never causes an exception.

NOP no-op Pseudo instruction

Do nothing for one cycle; good for filling a delay slot. Assemblers often use sll $0, $0, 0.

NOR rd, rs, rt nor Opcode: 000000 func: 100111

Performs bitwise logical nor of rs and rt, putt ing resul t into rd.

OR rd, rs, rt or Opcode: 000000 func: 100101

Performs bitwise logica l or of rs and rt, put t ing resul t into rd.

ORI rt, rs, immediate or, immediate Opcode: 001101

Zero-extends 16-bit immediate to 32 bi ts , and bi twise ors i t wi th rt, put t ing resul t into rd.

SB rt, offset(rs) store byte Opcode: 101000

Sign-extend the 16-bit offset to 32 bits, and add it to rs to get an effective address. Store least

significant byte from rt into this address.

SH rt, offset(rs) store halfword Opcode: 101001

Sign-extend the 16-bit offset to 32 bits, and add it to rs to get an effective address. Store least

significant byte from rt into this address. Exception if odd address.

SLL rd, rt, sa shift left logical Opcode: 000000 func: 000000

Shift contents of rt left by the amount indicated in sa, insertion zeroes into the emptied low order bits. Put

the result into rd.

SLLV rd, rs, rt shift left logical, variable Opcode: 000000 func: 0001000

Shift contents of r t left by the amount indicated in the bottom five bits of rs (0..4), inserting

zeros into the low order bits . Put resul t into rd.

SLT rd, rs, rt set on less-than Opcode: 000000 func: 101010

I f rs < rt with a signed comparison, put 1 into rd. Otherwise put 0 into rd.

SLTI rt, rs, immediate set on less-than, immediate Opcode: 001010

Sign-extend the 16-bit immediate to a 32-bit value. If rs is less than this value with a signed

comparison, put 1 into rt. Otherwise put 0 into rt.

SLTIU rt, rs immediate set on less-than, immediate unsigned Opcode: 001011

Sign-extend the 16-bit immediate to a 32-bit value. If rs is less than this value with an unsigned

comparison, put 1 into rt. Otherwise put 0 into rt.

SLTU rd, rs, rt set on less-than, unsigned Opcode: 000000 func: 101011

If rt < rs with an unsigned comparison, put 1 into rd. Otherwise put 0 into rd.

SRA rd, rt, sa shift right arithmetic Opcode: 000000 func: 000011

Shift contents of rt right by the amount indicated by sa , sign-extending the high order bits.

Put result into rd.

SRAV rd, rs, rt shift right arithmetic, variable Opcode: 000000 func: 000111

Shift contents of rt right by the amount indicated in the bottom five bits of rs (0..4), sign-

extending the high order bits. Put result into rd.

SRL rd, rt, sa shift right logical Opcode: 000000 func: 000010

Shift contents of rt right by the amount indicated in sa , zero-fi l l ing the high order bits . Put

result into rd.

SRLV rd, rs, rt shift right logical, variable Opcode: 000000 func: 000110

Shift contents of rt right by the amount indicated in the bottom five bits of rs(0..4), zero-fil ling

the high order bits. Put result into rd.

SUB rd, rs, rt subtract Opcode: 000000 func: 100010

Put rs – rt into rd. Exception if overflow.

SUBU rd, rs, rt subtract unsigned Opcode: 000000 func: 100011

Put rs – rt into rd. Never causes exception.

SW rt, offset(rs) store word Opcode: 101011

Sign-extend the 16-bit offset to 32 bits, and add it to rs to get an effective address. Store rt into

this address. Exception if address is not word-aligned.

SYSCALL system call Opcode: 000000 func: 001100

Causes a System Call exception. For ECS 50 the response is based on the value in $v0. 1 =

print_int , 10 = exit.

XOR rd, rs, rt exclusive or Opcode: 000000 func: 100110

Performs bitwise exclusive xor of rs and rt, putt ing resul t into rd.

XORI rt, rs, immediate xor immediate Opcode: 001110

Zero-extends 16-bit immediate to 32 bits , and bitwise exclusive xors i t wi t h rs, put t ing resul t

into rt.

MIPS Example: Initializing an Array

This shows an assembly language program which initializes the integer array arr such that each of its ten

elements is equal to the index of that element. It also prints the value after it is inserted in the array.

Written by: Matt Bishop and adapted by Sean Davis

Registers used:

$0 -- to get a 0 (standard usage)

$a0 –- to choose system service

$t0 -- index of arr

$t1 -- offset of current element from base of arr

$t2 -- temporary (usually holds result of comparison)

.data 0x40 # set start address of data section

arr: .space 40 # allocate 10 words

.text 0 # set start address of instructions

init: addu $t0, $0, $0 # initialize index of array

loop: sll $t1, $t0, 2 # go to offset of next element

sw $t0, arr($t1) # store integer into element

add $a0, $t0, $0 # copy from $t0 to $a0

addi $v0, $0, 1 # set $v0 to print_integer code for syscall

syscall # print the integer in $a0

addiu $t0, $t0, 1 # add one to current array index

slti $t2, $t0, 10 # see if the index is 10 yet

bne $t2, $0, loop # nope -- go back for another

nop # for the delay slot

addiu $v0, $0, 10 # set $v0 to exit code for syscall

syscall # exit

.end

opcode

bits 31..29

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 SPECIAL δ REGIMM δ J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0 δ COP1 δ COP2 θδ COP1X1 δ BEQL φ BNEL φ BLEZL φ BGTZL φ

3 011 β β β β SPECIAL2 δ JALX ε ε SPECIAL32 δ⊕

4 100 LB LH LWL LW LBU LHU LWR β

5 101 SB SH SWL SW β β SWR CACHE

6 110 LL LWC1 LWC2 θ PREF β LDC1 LDC2 θ β

7 111 SC SWC1 SWC2 θ ∗ β SDC1 SDC2 θ β

function

bits 5..3

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 000 SLL1
 MOVCI δ SRL δ SRA SLLV ∗ SRLV δ SRAV

1 001 JR2
 JALR2

 MOVZ MOVN SYSCALL BREAK ∗ SYNC

2 010 MFHI MTHI MFLO MTLO β ∗ β β

3 011 MULT MULTU DIV DIVU β β β β

4 100 ADD ADDU SUB SUBU AND OR XOR NOR

5 101 ∗ ∗ SLT SLTU β β β β

6 110 TGE TGEU TLT TLTU TEQ ∗ TNE ∗

7 111 β ∗ β β β ∗ β β

rt

bits 20..19

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

0 00 BLTZ BGEZ BLTZL φ BGEZL φ ∗ ∗ ∗ ε

1 01 TGEI TGEIU TLTI TLTIU TEQI ∗ TNEI ∗

2 10 BLTZAL BGEZAL BLTZALL φ BGEZALL φ ∗ ∗ ∗ ∗

3 11 ∗ ∗ ∗ ∗ ε ε ∗ SYNCI ⊕

MIPS32 Encoding of the Opcode Field

bits 28..26

MIPS32 SPECIAL Opcode Encoding of Function Field

bits 2..0

MIPS32 REGIMM Encoding of rt Field

bits 18..16

