
Algorithm Name Video on ECS60 Site Dv =

distance to vertex

ADT Notes Sample uses General Steps Big-Oh explanation

Critical Path

Analysis Using

Topological Sort

Video: 11-09

Time: 08:00

n/a Queue For graphs that are weighted, directed

and acyclic. Schedule, dependency.

Building a house has many

steps. Some tasks can be done

simultaneously and some depend

on others being done. Determine

what tasks are most critical to do.

1. Convert Activity Node Graph

(weighted verticies) to Event Node

Graph (weighted edges)

2. Use Topological sort (O(V + E)

which is very fast) to determine

CRITICAL PATH

3. Go left to right to determine

EARLIEST START times

4. Go right to left to determine

LATEST COMPLETION times

O(V + E)

Unweighted

Shortest Path

Video 11-09

Time: 30:25

1 + DISTw Queue For unweighted graphs (unbeatably

fast big-Oh)

 Similar to level-order-traversal but

done on a graph

Manhattan distances where all

edges are the same

1. Use three column table: verticies,

pv and dv

2. Start at distinguished vertex, get

adjacent verticies, add to queue

O(V + E)

because you are putting each

vertex into the queue and are

looking at every edge

Articulation Points Video: 11-18

Time: 14:00

n/a Stack of recursion if a graph is not bi-connected, the

verticies whose removal would

disconnect the graph are Articulation

Points.

A problem with bridges that act

as bottlenecks

1. Pick starting vertex

2. Number verticies using DFS

3. low min:

 a. num(v)

 b. lowest low of children of v

 c. num of a backedge of v

O(V + E)

Dijkstra's Video: 11-09

Time: 28:40

(he then talks about

Breadth First Search

so can skip to 36:00)

Video: 11-13

Time: 13:00

COSTvw + DISTw

cost of edge from v to w

+ distance to w

(cumulative)

Min Heap, Min Heap

w/Hash, or None.

For weighted graphs

Shortest path: Given a distinguished

vertex (so different from MST) and

want to determine minimum path to all

other verticies

Cumulative is key

- uses a min heap

There are a bunch of connected

train stations and train cars

scattered at the stations that

need to go to a different station.

You need to determine the best

way to pick up and deliver the

cars to their destinations.

1. Use four column table: verticies,

known, pv and dv

2. Start at distinguished vertex,

update adjacent verticies

Prim's Video: 11-13

Time: 36:30

COSTvw

cost of edge from v to w

(non-cumulative)

Same as Dijkstras - Builds MST (note that MST uses an

arbitrary starting vertex, unlike Dijkstra

which is used for shortest path so uses

a distinguished vertex)

- Greedy Algorithm

- same as Dijkstra's except non-

cumulative

1. Choose ARBITRARY vertex

2. Select closest vertex

Kruskal's Video: 11-16

Time: 06:00

n/a Find Union - Build disjoint sets of MST and

combine them.

- Choose either Kruskal or Prim's based

on Big-Oh

1. Sort all edges by weights from

low to high

2. Choose union by height or union

by size

3. Accept or reject

4. stop when V-1 edges completed

O(E log E)

because it is O(E log V) to accept

and reject all edges

and O(E log E) to sort all edges

NetWork Flow

(Ford-Fulkerson)

Video: 11-16

Time: 28:30

minimum(Cvw, Dw)

minimum of capacity of

edges from v to w and the

flow that was into w itself

Max Heap, Max Heap

w/Hash, or None.

- Greedy Algorithm but self correcting

- Dijkstra-esque but uses a max heap

instead of a min heap because we want

maximum flow

You have a network of pipes and

you want to know the max

amount of water that can flow

from the source to the sink

1. Use Dijkstra table with max heap

to find augmented path with max

flow

2. Done when sink is true

max flow * dijkstra big-oh

O(V^2) using no ADT for dense

graphs because E log E for a

dense graph is (v^2)/2 log (v^2)/2

which is worse. O(E Log E) using

heap. O(E Log V) technically 2(E

log V) using heap w/hash

You want to make a network of

computers so which paths do you

choose so that your network has

minimum of materials being

used?

