
ECS 60 Lectures #2 Complexity

I. Math Background

A. Definitions of functions to establish the relative rates of growth of functions.

1. T(N) = O(f(N)) if there are c > 0 and n > 0 such that T(N) cf(N) when N n.

a) T(N) = N
2
 + 25 = O(N

2
)

2. T(N) = (f(N)) if there are c > 0 and n > 0 such that T(N) cf(N) when N n.

3. T(N) = (f(N)) if and only if T(N) = O(f(N)) and T(N) = (f(N)).

4. T(N) = o(f(N)) if and only if T(N) = O(f(N)) and T(N) (f(N)).

B. Rules

1. If T(N) = O(f(N)) and V(N) = O(g(N)) then

a) T(N) + V(N) = max(O(f(N)), O(g(N)))

b) T(N) * V(N) = O(f(N) * g(N))

2. If T(N) is a polynomial of degree k, then T(N) = (N
k
). This means you ignore lower-order terms and

multiplicative constants.

C. Style

1. Don't include constants or low order terms inside a Big-Oh.

2. Don't say T(N) O(f(N)). The inequality is implied by the definition.

II. Running Time Calculations

A. General rules

1. For Loops: The running time for a for loop is at most the running time of the statements inside the for loop times

the number of iterations.

2. Nested Loops: Analyze these inside out. The total running time of a statement inside a group of nested loops is

the running time of the statement multiplied by the product of the sizes of all the loops.

3. Consecutive Statements: Just add together, i.e., the maximum is all that counts.

4. If/Else: Time of test plus the maximum of the two alternatives.

5. Analyze from inside out.

6. Analyze function calls first. Ignore costs of the mechanism of calling functions unless there is a call by value for

a data structure with a size dependent on N.

III. Intuitive interpretation of growth rate functions.

A. O(1) implies a problem whose time requirement is constant, and therefore independent of N

B. O(log N): Logarithmic = An algorithm that takes constant (O(1)) time to cut the problem size by a fraction (usually

1/2). Base is irrelevant. Binary search.

1. Show that for all constants a,b > 1 f(N) is O(logaN) if and only if f(N) is O(logbN). Thus, you can omit the base.

Define c = 1/(logba) and remember that logaN = logbN / logba

Then f(N) is O(logaN) = O(c * logbN) = c * O(logbN) = O(logbN)

Define c = 1/(logab) and the proof is symmetrical

C. O(N): Linear = Time increases directly with N. Linear Search.

D. O(N log N): Logarithmic that has a linear component. Mergesort.

E. O(N
2
) Quadratic = Two nested loops. Bubble sort and insertion sort.

F. O(N
3
) Cubic = Three nested loops.

G. O(2
N
) Exponential = Combinatorial. NP problems, searching permutations to find optimal, e.g. TSP.

IV. Best, average, worst cases based on data

V. Perspective.

A. Consider the frequency of the types of operations.

B. Some seldom-used critical operations must be efficient.

C. If N is always small, then you can probably ignore an algorithm's efficiency.

D. For smaller N, constants can be important. Mergesort with insertion sort.

E. Weigh trade-offs between an algorithm's time requirements and its memory requirements. Sparse matrix vs. full

matrix.

