
ECS 60 Preparation for Midterm #2 Key

Topics: ADTs, heaps, and graphs.

1. (0-25 points) Programs Problem. This question will attempt to determine whether you wrote the code for

programming assignments 3 and 4. There is no need for you to see sample questions if you actually participated in

writing the code.

2. (30 points) Timetest3 Problem. This question will address what you learned writing your paper for timetest3.cpp.

Questions could be of the form where you are given a description of a new File5.dat, and you are asked for the

expected result for given ADTs compared to one of the original data files. Questions could also involve determining

whether you clearly understand the source(s) of the anomalous behavior of the different ADTs.

3. (15 points) Heap Problem. There will be one problem dealing insert, deleteMin, or BuildHeap operations with a

priority queue. For each of the following binary heaps, show the state of heap after operation specified.

Insert(20)

8 8

28 64 20 64

37 59 87 69 37 28 87 69

43 76 66 43 76 66 59

 DeleteMin()

8 28

28 64 37 64

37 59 87 69 43 59 87 69

43 76 66 66 76

4. Graph Problems (~50 points) There will be two graph problem using one of the following formats.

a) Minimum Spanning Tree. Fill in the following tables using Kruskal's algorithm to find the minimum spanning tree

of the graph. Use union-by-size, but not path compression. For a union of sets of the same size, the new root

should be the old root with the lower array index. Stop the process when you have a minimum spanning tree.

Weights are to the left of internal edges.

b)

Edge Weight Action

(A, B) 1 accept

(E, H) 2 accept

(D, G) 3 accept

(E, F) 4 accept

(D, F) 5 accept

(F, H) 6 reject

(A, C) 7 accept

(F, G) 8 reject

(B, C) 9 reject

(C, F) 10 accept

(A, H) 11

(C, H) 12

(C, G) 13

Find-Union Array

A B C D E F G H

0 1 2 3 4 5 6 7

4 0 0 4 -8 4 3 4

b) Graph II (30 points) Fill in the table using Prim's algorithm to determine the shortest paths from vertex E. The

weight of each interior edge is to the left of the edge. (1 point for each dv, and pv, 4 points for all known as T.)

 2 13 2 1

 A B C D E

 5 2 8 5 2 7 12

 F G H I 6

 4 2 1 3 4 1 2

 J K L M

 4 7 3

Vertex known dv pv

A T 2 G

B T 2 A

C T 2 D

D T 1 E

E T 0 -

F T 4 J

G T 1 K

H T 2 D

I T 1 L

J T 2 G

K T 3 H

L T 4 H

M T 2 I

(5 points) Based on your tables, draw the minimum spanning tree of the

graph. (Don't bother with weights.)

 A B C D E

 F G H I

 J K L M

c) Network Flow. Choosing the augmenting path that allows the largest increase in flow, find the maximum network

flow for the following graph, G. Internal flows are to the left of their respective edges. Your score will be based on

your completion of the augmented path line, Gf and Gr , including their initial states and back-flow edges where

appropriate.

G Gf Gr

 5 0 5

A B A B A B

8 4 0 0 8 4

 s 2 5 t s 0 0 t s 2 5 t

 4 6 0 0 4 6

 C D C D C D

 6 0 6

1
st
 augmented Path: s, A, B, D, t (5) Gf Gr

 5 5

 A B A B

 5 0 3 0 4

 s 0 5 t s 2 0 5 t

 0 5 4 1

 C D C D

 0 6

2nd augmented Path: s, C, D, B, t (4) Gf Gr

 5 5

 A B A B

 5 4 3 0 0

 s 0 1 t s 2 4 1 t

 4 5 0 4 1

 C D C D

 4 2

3rd augmented Path: s, A, C, D, t (1) Gf Gr

 5 5

 A B A B

 6 4 2 0 0

 s 1 1 t s 1 1 4 1 t

 4 6 0 5 0

 C D C D

 5 1

d) Shortest Path. Fill in the table using Dijkstra's algorithm to determine the shortest paths from vertex B The weight

of each interior edge is to the left of the edge.

 8 16 4 23

 A B C D E

 1 5 2 5 10 11 12

 F G H I 10

 1 3 6 3 4 18 1

 J K L M

 2 7 20

Vertex known dv pv

A T 7 G

B T 0 --

C T 15 H

D T 19 C

E T 41 M

F T 6 J

G T 2 B

H T 10 K

I T 30 D

J T 5 G

K T 7 J

L T 14 K

M T 31 I

e) Event Node Graph. For the following Activity-node graph:

A (6) C (9) F (12)

start B (7) D (10) G (13) H (4) finish

 E (20)

Draw the corresponding Event-node graph using numbered nodes (start numbering at left please).

 9 12

 2 5 7

 6 0

 0

 1 4 6 8 10 11

 0 10 13 0 4

 7 0

 3 9

 20

 Based on your graph fill in the values for the following table. There may be more columns than needed.

Nodes: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Earliest completion time 0 6 7 7 15 17 27 30 27 30 34

pv 1 1 1 3 2 4 5 6 3 8 10

f) (35 points) Articulation Points. Using DFS, starting at A, searching in alphabetical order whenever multiple

vertices may be processed, give each vertex a number followed by its low. Then list the articulation points

A B C D E

F G H I J

K L M N O

 (5 points) Show DFS tree(s) below. You need not show the back edges, but may if you wish.

A B C D E

F G H I J

K L M N O

2 points for each completely correct column

 A B C D E F G H I J K L M N O

Vertex number

(5 points)
1 2 3 4 6 12 13 8 5 7 14 15 9 10 11

Low (5 points)

1 1 3 3 5 1 2 3 3 5 13 13 8 8 11

Articulation Point

Y or N (5 points)
N Y Y N N N Y Y Y N N N N Y N

5. ADT and Algorithm Essay (45-50 points) This an ECS 60 problem placed within a familiar context. For the war in

Iraq, the Defense Department had to plan how and when to transport troops and materiel to Iraq so that they were all

there and operational on March 1st. However, having units arrive earlier than needed would degrade their

performance. For each of the 1000 battalions, the planners were given a list of the battalions that it directly required

to be operational before that battalion could start setting itself up. It took each battalion 10 days to become

operational once ALL of the listed battalions upon which it was dependent were operational.

The planners had 100 ships that took 30 days to travel from the U.S.A. to Kuwait, and 30 days to travel from

Kuwait to the U.S.A. Each ship could carry five battalions. How would you approach the planner's problem of

scheduling battalion departures? Specifically, describe the ADT(s) and algorithms you would use to determine: 1) The

order of departure; and 2) the time of departure of each battalion. Provide Big-Ohs wherever possible. For the Big-Os

describe what V, E, N, etc. relate to in this problem. (Note that sorting N items will take NlogN time.)

Algorithm selection : 8 points.

Description of graph(s) : 8 points

Graph representation : 2 points

Big–O analysis : 8 points

Explanation of departure ordering process: 12 points.

Explanation of departure times process: 12 points

This is a two phase question. First, I can create an event node graph using an adjacency list. Each battalion

would have three events associated with it: #1) Departing U.S.; #2) Arriving in Kuwait; and #3) Becoming

operational. There would be a single edge of 30 days between node #1 and node #2 of each battalion. There

would also be edges of 0 weight leading back from node #2 to the node #3 of all the battalions upon which it

was dependent. There would be a single edge of 10 days between node #2 and node #3 each battalion. All

node #1 will have an incoming edge from a single starting node.

Having created the event node graph, I would then do a critical path analysis. This requires a topological

sort of the battalions. Since there should be no cycles in the dependencies, I can use a queue and do the sort in

O(V + E) where V is the number of battalions, and E is the total number of items on the dependency lists plus 2

* V.

I can use the latest start times for node #1 from the analysis to determine the ordering of departure of the

battalions. Unhappily, this ordering does not have to match the topological sort. To determine the sorted

order will take N logN time where N is the number of battalions.

You will note that after removing the starting node, none of the node #1 has an incoming edge! This would

indicate that all could depart at the same time. But the 100 ships can only carry 500 battalions at a time. To

allow for the time for the ships to return to U.S.A., I will add an edge of 30 days from node #2 of the first node

in the ordering to the node #1 of the 501
st
 node in the ordering. I will add similar edges from the 2

nd
 node to the

502
nd

 node and so on. The latest starting times determined by a critical path analysis of this new graph, will

now be accurate. Note that ordering of the battalions will be the same as before.

The planners can now group five battalions together based on their ordering, and have their ship depart on

the date of latest start time of the battalion earliest in the ordering.

